LHeC impact on PDF determination

Juan Rojo INFN Sezione di Milano

On behalf of the NNPDF Collaboration: A. Guffanti (Freiburg), R. D. Ball, L. Del Debbio, M. Ubiali (Edinburgh), S. Forte (Milano), J. I. Latorre (Barcelona)

> Future of DIS Working Group DIS 2010, April 21, 2010

Introduction

- The present study aims to assess the impact of LHeC data in PDF determination
- We will consider the separate impact of inclusive NC and CC data for various scenarios of LHeC operation
- We will also estimate the impact of other measurements: red $sW \rightarrow c$, F_2^c and F_L
- The baseline PDF set is NNPDF2.0, a global fit of DIS, DY and Jet data
 → see M. Ubiali's talk
- For illustration, we will show when required results from NNPDF1.0 (based on inclusive DIS data) and NNPDF1.2 (which includes dimuon data to constrain s, s)

- The *N*_{rep} replicas of a NNPDF fit give the probability density in the space of PDFs
- Expectation values for observables are Monte Carlo integrals

$$\langle \mathcal{F}[f_i(x, Q^2)]
angle = rac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}\Big(f_i^{(net)(k)}(x, Q^2)\Big)$$

... the same is true for errors, correlations, etc.

• We can assess the impact of including new data in the fit updating the probability density distribution taking into account the new data

Bayesian Reweighting Assessing the impact of new data on PDF fits

According to Bayes Theorem we have

$$P_{\text{new}}(\lambda) = P(\lambda|x^e) = \frac{P(x^e|\lambda)P_{\text{init}}(\lambda)}{P(x^e)}, \qquad P(x^e|\lambda) = e^{-\frac{\chi^2_{\text{new}}(\lambda)}{2}}$$

 Monte Carlo integrals defining observables dependent on PDFs are now given by weighted sums

$$\langle \mathcal{F}[f_i(x, Q^2)] \rangle = \sum_{k=1}^{N_{rep}} w_k \mathcal{F}(f_i^{(net)(k)}(x, Q^2))$$

where the weights are given by

$$\mathbf{W}_{k} = \frac{\mathbf{e}^{-\frac{1}{2}\chi^{2}_{\text{new}}(\lambda^{k})}}{\sum_{i=1}^{N_{\text{rep}}} \mathbf{e}^{-\frac{1}{2}\chi^{2}_{\text{new}}(\lambda^{i})}}$$

(Giele, Keller, Kosower, hep-ph/0104052)

LHeC STUDIES Inclusive Data

LHeC Scenarios

Different scenarios for LHeC under investigation:

config.	E(e)	E(N)	N	$\int L(e^+)$	∫L(e ⁻)	Pol	L/10 ³² P/MW years type			
A	20	7	р	1	1	-	1	10	1	SPL
В	50	7	р	50	50	0.4	25	30	2	RR hiQ ²
С	50	7	р	1	1	0.4	- 1	30	1	RR lo x
D	100	7	р	5	10	0.9	2.5	40	2	LR
Е	150	7	р	3	6	0.9	1.8	40	2	LR
F	50	3.5	D	1	1		0.5	30	1	eD
G	50	2.7	Pb	0.1	0.1	0.4	0.1	30	1	ePb
Н	50	1	р		1		25	30	1	lowEp

• Pseudodata are given for all different scenarios at

http://liv.ph.ac.uk/~mklein/simdis09.html

- Pseudodata included: positron and electron beams, Neutral- and Charged-Current reduced cross-sections (σ^{+,-}_{NC,CC})
- NLO pseudodata generated according to NNPDF2.0 central value
- Scenarios studied: A-E

LHeC Scenarios

- The various LHeC scenarios are not exclusive → Each scenario assumes 1-2 years of running, while total LHC operation is ~ 10 years
- A reasonable expectation for the "total LHeC dataset" includes
 - Inclusive data: B+C+F+H scenarios (High-Q² + Low-x + Deuteron run + Lower E_ρ run)
 - **2** $F_L(x, Q^2)$ data (from scenario H)

 - Strangeness s, \bar{s} determination from $sW \rightarrow c$
- Here we study the impact of each scenario separately → The combined impact of the "total LHeC dataset" will be presented for CDR

LHeC Scenarios Scenario A: $E_e = 20$ GeV, $E_p = 7$ TeV, SPL, 1 year

LHeC Scenarios Scenario A: $E_e = 20$ GeV, $E_p = 7$ TeV, SPL, 1 year

LHEC Scenarios Scenario B: $E_e = 50$ GeV, $E_p = 7$ TeV, RR high- Q^2 , 2 year (10° cut)

NNPDF2.0

LHeC Scenarios Scenario B: $E_e = 50$ GeV, $E_p = 7$ TeV, RR high- Q^2 , 2 year (10° cut)

LHeC Scenarios Scenario B: $E_e = 50$ GeV, $E_p = 7$ TeV, RR high- Q^2 , 2 year (5° cut)

LHeC Scenarios Scenario B: $E_e = 50$ GeV, $E_p = 7$ TeV, RR high- Q^2 , 2 year (5° cut)

LHEC Scenarios Scenario C: $E_e = 50$ GeV, $E_p = 7$ TeV, RR low-*x*, 1 year

NNPDF2.0

NNPDF2.0

NNPDF2.0 + LHeC (C)

NNPDF2.0 + LHeC (C)

LHEC Scenarios Scenario C: $E_e = 50$ GeV, $E_p = 7$ TeV, RR low-*x*, 1 year

LHeC Scenarios Scenario D: $E_e = 100$ GeV, $E_p = 7$ TeV, LR, 2 years

NNPDF2.0

9.0. 2.0-0.0-

0.2

0.3 0.4 0.5

0.8

LHeC Scenarios Scenario D: $E_e = 100$ GeV, $E_p = 7$ TeV, LR, 2 years

LHeC Scenarios Scenario E: $E_e = 150$ GeV, $E_p = 7$ TeV, LR, 2 years

NNPDF2.0

0.5

NNPDF2.0

NNPDF2.0 + LHeC (E)

0.6 0.8

NNPDF2.0 + LHeC (E)

NNPDF2.0

0.5 0.7

0.4 0.5 0.7

NNPDF2.0 + LHeC (E)

LHeC Scenarios Scenario E: $E_e = 150$ GeV, $E_\rho = 7$ TeV, LR, 2 years

- For the A-E scenarios, the improvement on PDFs concentrated at small-x Singlet and gluon
- Large-*x* valence PDFs from NNPDF2.0 already well constrained from fixed target DIS, Drell-Yan and vector boson production data
- To assess the impact of high-*Q*² (large-*x*) LHeC data on a DIS-only fit, revisit scenario B with NNPDF1.2
- As expected, high-Q² LHeC data has a larger impact in a DIS-only fit than in a global fit

LHeC Scenarios - NNPDF1.2 Scenario B: $E_e = 50$ GeV, $E_p = 7$ TeV, RR high- Q^2 , 2 year (10° cut)

NNPDF1 2

LHEC Scenarios - NNPDF1.2 Scenario B: $E_e = 50$ GeV, $E_p = 7$ TeV, RR high- Q^2 , 2 year (10° cut)

NNPDF1 2

NNPDF1.2 + LHeC (B - 10 deg.)

LHeC Scenarios - NNPDF1.2 Scenario B: $E_e = 50$ GeV, $E_p = 7$ TeV, RR high- Q^2 , 2 year (5° cut)

NNPDF1.2

NNPDF1.2 + LHeC (B - 5 deg.)

LHeC Scenarios - NNPDF1.2 Scenario B: $E_e = 50$ GeV, $E_p = 7$ TeV, RR high- Q^2 , 2 year (5° cut)

NNPDF1.2

The longitudinal structure function $F_L(x, Q^2)$ From the lower E_p LHeC runs

Gluon uncertainties with small- $x F_2^p$ LHeC data only

Modest error reduction of gluon at small-x, need F_L for more

The longitudinal structure function $F_L(x, Q^2)$ From the lower E_p LHeC runs

Gluon uncertainties with small- $x F_2^p$ and F_1^p LHeC data

 \rightarrow Sizable error reduction of gluon at small-x requires LHeC F_L data

LHeC STUDIES Exclusive Data

Constraints on Strangeness $Ws \rightarrow c$: Exclusive CC charm production

Compare expected accuracy on 'xs(x)' at LHeC with NNPDF2.0 uncertainties

Constraints on Strangeness $Ws \rightarrow c$: Exclusive CC charm production

LHeC errors on 'xs(x)' smaller than NNPDF2.0 at small- $x \rightarrow$ Impact of LHeC data for strangeness constraints If compared with NNPDF1.1 (DIS-only fit, free strangeness) LHeC s, \bar{s} would constrain strangeness in all the kinematical range

Important: Assumed central values for NNPDF2.0 \rightarrow Even more significant improvements if current neutrino data has problems!

Constraints on the Gluon through $F_2^c(x, Q^2)$ $\gamma^*g \rightarrow c$: NC charm production

Compare expected accuracy on $F_2^c(x, Q^2)$ at LHeC with NNPDF2.0 uncertainties

Constraints on the Gluon through $F_2^c(x, Q^2)$ $\gamma^*g \rightarrow c$: NC charm production

Small- $x, Q^2 F_2^c$ measurements will provide very important constraints on the small-x gluon

Constraints on the Gluon through $F_2^c(x, Q^2)$ $\gamma^*g \rightarrow c$: NC charm production

Small-x, $Q^2 F_2^b$ measurements not accurate enough to provide constraints on the small-x gluon

However, F_2^b might be a very useful probe of new small-x HQ production dynamics

Conclusions and Outlook

- Bayesian reweighting provides an efficient way to assess the impact of including new data in a PDF fit
- Impact of LHeC
 - Strong constraint on gluon at small-x (scenarios C,D,E)
 ⇒ Opening up of a new kinematic region
 - Impact on strangeness (scenario B) concentrated at small-x \implies Exclusive charm production ($sW \rightarrow c$) pins downs small-x strangeness
 - Valence distributions mostly unaffected
 - \implies Strong constraints from fixed target and Drell-Yan data
 - F_2^c very important measurement
 - \implies Sizable constraints on the low-*x* gluon
 - Complements the potential of $F_L(x, Q^2)$ measurements
 - Assumption: Central NNPDF2. values assumed (no new dynamics considered), but LHeC explores a completely new kinematical range

Combination of scenarios crucial to assess full impact of LHeC on PDF

 \implies Full study of the impact of the combined LHeC scenarios (B+C+F+H): low-*x* and large- Q^2 data, deuteron runs, low- E_p runs (F_L measurement), xs(x)

Backup Slides

LHeC Scenarios - NNPDF1.2 Scenario A

LHeC Scenarios - NNPDF1.2 Scenario A

LHeC Scenarios - NNPDF1.2 Scenario B (10° cut)

LHeC Scenarios - NNPDF1.2 Scenario (10° cut)

NNPDF1.2

··· NNPDF1.2 + LHeC (B - 10 deg.)

LHeC Scenarios - NNPDF1.2 Scenario B (5° cut)

LHeC Scenarios - NNPDF1.2 Scenario B (5° cut)

NNPDF1.2

NNPDF1.2 + LHeC (B - 5 deg.)

LHeC Scenarios - NNPDF1.2 Scenario C

NNPDF1.2

LHeC Scenarios - NNPDF1.2 Scenario C

LHeC Scenarios - NNPDF1.2 Scenario D

5

LHeC Scenarios - NNPDF1.2 Scenario D

LHeC Scenarios - NNPDF1.2 Scenario E

0.8 5

LHeC Scenarios - NNPDF1.2 Scenario E

