

Parton Distributions from High-Precision Collider Data

Juan Rojo VU Amsterdam & Theory Group, Nikhef

> Max Plank Institute for Physics Munich, 26/07/2017

MPP, Munich, 26/07/2017

Exploring the high-energy frontier at the Large Hadron Collider

Juan Rojo

MPP, Munich, 26/07/2017

The Higgs boson

MHuge gap, **10**¹⁷, between **Higgs and Plank scales**

- **Elementary or composite**? Additional Higgs bosons?
- Coupling to **Dark Matter**? Role in cosmological phase transitions?

M Is the **vacuum state of the Universe** stable?

Juan Rojo

The Higgs boson

MHuge gap, **10**¹⁷, between **Higgs and Plank scales**

- **Elementary or composite**? Additional Higgs bosons?
- Coupling to **Dark Matter**? Role in cosmological phase transitions?

M Is the **vacuum state of the Universe** stable?

Weakly interacting massive particles? Sterile neutrinos? Extremely light particles (axions)?

Mathematical Standard Model Particles?

What is the **structure of the Dark Sector**? Is Dark Matter self-interacting?

MPP, Munich, 26/07/2017

The Higgs boson

MHuge gap, **10**¹⁷, between **Higgs and Plank scales**

Elementary or composite? Additional Higgs bosons?

Coupling to **Dark Matter**? Role in cosmological phase transitions?

M Is the **vacuum state of the Universe** stable?

Quarks and leptons

Why three families? Can we explain masses and mixings?

✓Origin of Matter-Antimatter asymmetry in the Universe?

✓Are neutrinos Majorana or Dirac? CP violation in the lepton sector?

Weakly interacting massive particles? Sterile neutrinos? Extremely light particles (axions)?

Mathematical Standard Model Particles?

What is the **structure of the Dark Sector**? Is Dark Matter self-interacting?

Many of these crucial questions can be addressed at the Large Hadron Collider

For the next 20 years, LHC will be the forefront of the exploration of the high-energy frontier

Machine Learning and Artificial Neural Networks at the LHC

MPP, Munich, 26/07/2017

8

Machine Learning at the LHC

By Machine Learning we usually denote those families of computer algorithms that learn how to excel on a task based on a large sample of examples, rather than on some a priori fixed rules

- ML algorithms are nowadays ubiquitous, from **driverless cars** to **Amazon's purchase suggestions**, to **automated medical imaging recognition** to beating the words best players at Go and chess
- ML tools rely on the **efficient exploitation of immense datasets**. And the **LHC** has a lot of data!

Machine Learning tools are everywhere!

Deep Kalman RNNs

Deep ML +FPGA

Generative Models, Adversarial Networks

FCN, Recurrent, LSTM NN

Convolutional DNN Multiobjective Regression

For many crucial applications, ML tools not just one option, but **the only option**

ML cheat sheet

Endless possibilities - but also many non-trivial hurdles to overcome

Artificial Neural Networks

Inspired by **biological brain models**, **Artificial Neural Networks** are **mathematical algorithms** widely used in a wide range of applications, from **HEP** to **targeted marketing** and **finance forecasting**

From Biological to Artificial Neural Networks

Artificial neural networks aim to excel where domains as their **evolution-driven counterparts outperforms traditional algorithms in tasks such as pattern recognition, forecasting, classification**, ...

ANNs - a marketing example

A bank wants to offer a new credit card to their clients. Two possible strategies:

- **Contact all customers**: slow and costly
- Contact 5% of the customers, train a ANN with their input (gender, income, loans) and their output (yes/no) and use the information to contact only clients likely to accept the product

Cost-effective method to improve marketing performance!

ANNs and pattern recognition

ANNs can enable an autonomous vision-control drone to recognize and follow forest trails
Image classifier operates directly on pixel-level image intensities
If a trail is visible, the software steers the drone in the corresponding direction

Similar algorithms at work in self-driving cars!

Giusti et al, IEEE Robotics and Automation Letters, 2016

A crash course on parton distributions

Juan Rojo

MPP, Munich, 26/07/2017

15

Lepton vs Hadron Colliders

In high-energy **lepton colliders**, such as the **Large Electron-Positron Collider** (LEP) at CERN, the collisions involve **elementary particles** without substructure

Cross-sections in lepton colliders can be computed in perturbation theory using the **Feynman rules of the Standard Model Lagrangian**

Lepton vs Hadron Colliders

In high-energy **hadron colliders**, such as the LHC, the collisions involve **composite particles** (protons) with internal structure (quarks and gluons)

Lepton vs Hadron Colliders

In high-energy **hadron colliders**, such as the LHC, the collisions involve **composite particles** (protons) with internal structure (quarks and gluons)

Calculations of cross-sections in hadron collisions require the combination of **perturbative**, **quark/gluon-initiated processes**, and **non-perturbative**, **parton distributions**, information

8

Parton Distributions

The distribution of energy that **quarks and gluons carry inside the proton** is quantified by the **Parton Distribution Functions (PDFs)**

Parton Distributions

The distribution of energy that **quarks and gluons carry inside the proton** is quantified by the **Parton Distribution Functions (PDFs)**

PDFs are determined by **non-perturbative QCD dynamics**, cannot be computed from first principles, and need to be **extracted from experimental data** with a **global analysis**

Parton Distributions

The distribution of energy that **quarks and gluons carry inside the proton** is quantified by the **Parton Distribution Functions (PDFs)**

PDFs are determined by **non-perturbative QCD dynamics**, cannot be computed from first principles, and need to be **extracted from experimental data** with a **global analysis**

Energy conservation

$$\int_0^1 dx \mathbf{x} \left(g(x,Q) + \sum_q q(x,Q) \right) = 1$$

Dependence with quark/gluon collision energy Q determined in perturbation theory

$$\frac{\partial g(x,Q)}{\partial \ln Q} = P_g(\alpha_s) \otimes g(x,Q) + P_q(\alpha_s) \otimes q(x,Q)$$

Juan Rojo

The QCD Factorization Theorem

The **QCD factorization theorem** guarantees **PDF universality: extract them from a subset of** process and use them to provide pure predictions for new processes

$$\sigma_{lp} \simeq \widetilde{\sigma}_{lq} \left(\alpha_s, \alpha \right) \otimes q(x, Q) \qquad \sigma_{pp} \simeq \widetilde{\sigma}_{q\bar{q}} \left(\alpha_s, \alpha \right) \otimes q(x_1, Q) \otimes \bar{q}(x_2, Q)$$

The global PDF analysis

- Combine state-of-the-art theory calculations, the constraints from PDF-sensitive measurements from different processes and colliders, and a statistically robust fitting methodology
- Extract Parton Distributions at hadronic scales of a few GeV, where non-perturbative QCD sets in
- Use perturbative evolution to compute PDFs at high scales as input to LHC predictions

Why we need better PDFs?

Dominant TH und	for M_W measurements at LHC
-----------------	-------------------------------

ATLAS 2017

Channel	$\begin{bmatrix} m_{W^+} - m_{W^-} \\ \text{[MeV]} \end{bmatrix}$	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EW Unc.	PDF Unc.	Total Unc.
$\begin{array}{l} W \to e\nu \\ W \to \mu\nu \end{array}$	-29.7 -28.6	17.5 16.3	0.0 11.7	4.9 0.0	0.9 1.1	5.4 5.0	0.5 0.4	0.0 0.0	24.1 26.0	30.7 33.2
Combined	-29.2	12.8	3.3	4.1	1.0	4.5	0.4	0.0	23.9	28.0

MPP, Munich, 26/07/2017

The NNPDF approach

A **novel approach to PDF determination**, improving the limitations of the traditional PDF fitting methods with the use of **advanced statistical techniques** such as **machine learning** and **multivariate analysis**

Non-perturbative PDF parametrization

- **Fraditional approach**: based on **restrictive functional forms** leading to strong theoretical bias
- NNPDF solution: use Artificial Neural Networks as universal unbiased interpolants

PDF uncertainties and propagation to LHC calculations

- **Fraditional approach**: limited to Gaussian/linear approximation
- **NNPDF solution**: based on the Monte Carlo replica method to create a probability distribution in the space of PDFs. Specially critical in extrapolation regions (i.e. high-*x*) for New Physics searches

Fitting technique

- **Fraditional approach**: deterministic minimization of χ^2 , flat directions problem
- **NNPDF solution: Genetic Algorithms** to explore efficiently the vast parameter space, with crossvalidation to avoid fitting stat fluctuations

The PDF fitting landscape

April 2017	NNPDF3.0	MMHT2014	CT14	HERAPDF2.0	CJ15	ABMP16
Fixed Target DIS	 ✓ 	 ✓ 	v	×	v	~
JLAB	×	×	×	×	v	×
HERA I+II	 	 		 	 	~
HERA jets	×	 	×	×	×	×
Fixed Target DY	 	 	~	×	 	~
Tevatron W,Z	 	 	~	×	 	~
Tevatron jets	 	 	~	×	 	×
LHC jets	 	 	~	×	×	×
LHC vector boson	 ✓ 	 ✓ 	~	×	×	~
LHC top	 ✓ 	×	×	×	×	 ✓
Stat. treatment	Monte Carlo	Hessian Δχ² dynamical	Hessian Δχ² dynamical	Hessian Δχ²=1	Hessian Δχ²=1.645	Hessian Δχ²=1
Parametrization	Neural Networks (259 pars)	Chebyshev (37 pars)	Bernstein (30-35 pars)	Polynomial (14 pars)	Polynomial (24 pars)	Polynomial (15 pars)
HQ scheme	FONLL	TR'	ΑСΟΤ-χ	TR'	ΑСΟΤ-χ	FFN (+BMST)
Order	NLO/NNLO	NLO/NNLO	NLO/NNLO	NLO/NNLO	NLO	NLO/NNLO

Ubiali, DIS2017

NNLO, Q=1.65 GeV

NNPDF3.1

The NNPDF Collaboration 17

Why NNPDF3.1?

An **update of the NNPDF global analysis** is motivated by:

The availability of a wealth of high-precision PDF-sensitive measurements from the Tevatron, ATLAS, CMS and LHCb, including processes such as the **Z** p_T and **differential distributions in top-quark production** that have never been used before in a PDF fit

The striking **recent progress in NNLO QCD calculations**, which allows to include the majority of PDF-sensitive collider measurements into a **fully consistent NNLO global analysis**

The recent realisation that fitting the charm PDF has several advantages in the global QCD fit (beyond comparison with non-perturbative models), in particular stabilise the dependence with m_{charm} and improve the data/theory agreement for some of the most precise collider observables.

The NNPDF Collaboration 16

Fitted vs Perturbative charm

From The change of scheme between a theory with 3 active quarks and another with 4 active quarks is determined by the matching conditions:

$$\alpha_s^{(4)}(m_h^2) = \alpha_s^{(3)}(m_h^2) + \mathcal{O}(\alpha_s^3) ,$$

$$f_i^{(4)}(m_h^2) = \sum_j K_{ij}(m_h^2) \otimes f_j^{(3)}(m_h^2)$$

Solution \mathbb{P} Most global fits (including NNPDF3.0) **assume that** $c^{(3)}(x)=0$, in other words, the scale-independent (intrinsic) charm content of the proton vanishes

Whether or not c⁽³⁾(x)=0 is a good assumption can only be determined from data

Releasing this assumption leads to the modified matching conditions

$$f_{h}^{(3)} = f_{h}^{(4)}(Q^{2}) - \alpha_{s}^{(4)}(Q^{2}) \left(K_{hh}^{(1)}(m_{h}^{2}) + P_{qq}^{(0)}L\right) \otimes f_{h}^{(4)}(Q^{2}) - \alpha_{s}^{(4)}(Q^{2})LP_{qg}^{(0)} \otimes g^{(4)}(Q^{2})$$

$$f_{h}^{(3)} = f_{h}^{(4)}(Q^{2}) - \alpha_{s}^{(4)}(Q^{2})LP_{qg}^{(0)} \otimes g^{(4)}(Q^{2})$$

$$f_{h}^{(4)}(Q^{2}) - \alpha_{s}^{(4)}(Q^{2})LP_{qg}^{(0)} \otimes g^{(4)}(Q^{2})LP_{qg}^{(0)} \otimes g^{(4)}(Q^{2})$$

$$f_{h}^{(4)}(Q^{2}) - \alpha_{s}^{(4)}(Q^{2})LP_{qg}^{(0)} \otimes g^{(4)}(Q^{2})$$

$$f_{h}^{(4)}(Q^{2}) - \alpha_{s}^{(4)}(Q^{2})LP_{qg}^{(0)} \otimes g^{(4)}(Q^{2})$$

$$f_{h}^{(4)}(Q^{2}) - \alpha_{s}^{(4)}(Q^{2})LP_{qg}^{(0)} \otimes g^{(4)}(Q^{2})$$

$$f_{h}^{(4)}(Q^{2}) - \alpha_{s}^{$$

New datasets in NNPDF3.1

Measurement	Data taking	Motivation
Combined HERA inclusive data	Run I+II	quark singlet and gluon
D0 legacy W asymmetries	Run II	quark flavor separation
ATLAS inclusive W, Z rap 7 TeV	2011	strangeness
ATLAS inclusive jets 7 TeV	2011	large- <i>x</i> gluon
ATLAS low-mass Drell-Yan 7 TeV	2010+2011	small- <i>x</i> quarks
ATLAS Z pT 7,8 TeV	2011+2012	medium-x gluon and quarks
ATLAS and CMS tt differential 8 TeV	2012	large- <i>x</i> gluon
CMS Z (pT,y) 2D xsecs 8 TeV	2012	medium-x gluon and quarks
CMS Drell-Yan low+high mass 8 TeV	2012	small- <i>x</i> and large- <i>x</i> quarks
CMS W asymmetry 8 TeV	2012	quark flavor separation
CMS 2.76 TeV jets	2012	medium and large-x gluon
LHCb W,Z rapidity dists 7 TeV	2011	large-x quarks
LHCb W,Z rapidity dists 8 TeV	2012	large-x quarks

New datasets in NNPDF3.1

Fit quality: χ^2

	NNLO FittedCharm	NNLO PertCharm	NLO FittedCharm	NLO PertCharm
HERA	1.16	1.21	1.14	1.15
ATLAS	1.09	1.17	1.37	1.45
CMS	1.06	1.09	1.20	1.21
LHCb	1.47	1.48	1.61	1.77
TOTAL	1.148	1.187	1.168	1.197

For collider data, **NNLO theory** leads to a markedly better fit quality that than **NLO** (since the new data included has small experimental uncertainties, and NNLO corrections mandatory)

Free global PDF analysis where the charm PDF is fitted leads to a **slightly superior fit quality** than assuming a perturbatively generated charm PDF

In general **good description of all the new collider measurements** included in NNPDF3.1

Impact of new data

Juan Rojo

Impact of new data

MPP, Munich, 26/07/2017

Impact of new data

MPP, Munich, 26/07/2017

Comparison with NNPDF3.0

Juan Rojo

MPP, Munich, 26/07/2017

36

The large-x gluon from top-quark production

Fop-quark pair production driven by the gluongluon luminosity

NNLO calculations for stable top quarks available (with decays in the pipeline)

Recent precision data from ATLAS and CMS at 8 TeV with full breakdown of statistical and systematic uncertainties

For the first time, included ATLAS+CMS 8 TeV differential top measurements into the **global PDF fit**

Czakon, Hartland, Mitov, Nocera, Rojo 16

MPP, Munich, 26/07/2017

The large-x gluon from top-quark production

♀ PDF uncertainties reduced by more than a factor two for $m_{tt} \gtrsim 500 \text{ GeV}$

Gur choice of fitted distributions, y_t and y_{tt}, reduces the **risk of** *BSM contamination* (kinematical suppression of resonances), which might show up instead in **m**_{tt} and **p**^t_T, where PDF uncertainties are now much smaller

Self-consistent program to use top data to provide better theory predictions

Improved sensitivity to BSM dynamics with top-quark final states

Impact of $Z \ p_{\rm T}$ data

See also Boughezal et al 17

For the first time in a global fit, the transverse momentum of the Z boson has been included

- **NNLO calculations for K-factors** very CPU time intensive
- All the Z p_T measurements from **ATLAS and CMS at 8 TeV** included in NNPDF3.1

	ATLAS 8 TeV (y,pT)	ATLAS 8 TeV (M,pT)	CMS 8 TeV (y,pT)
χ² (NNLO)	0.93	0.94	1.31
χ² (NLO)	1.17	1.78	3.62

Impact of $Z \ p_{\rm T}$ data

Solution **Moderate error reduction in the intermediate-x** region, excellent consistency with the other experiments in the global fit.

Given very high precision (sub-percent) of these experiments, this is quite a non-trivial achievement

The ATLAS Z p_T 7 TeV data not included in NNPDF3.1. If included, **poor data/theory agreement**, $\chi^2 =$ **3.5**, and shifts in gluon and quarks. *Tension with 8 TeV data*?

Impact on the gluon

In NNPDF3.1 we have three groups of processes that provide **direct information on the gluon**: inclusive jets, top pair differential, and the Z transverse momentum

Are the constraints from each of these groups **consistent among them?** Yes!

Impact on the gluon

In NNPDF3.1 we have three groups of processes that provide **direct information on the gluon**: inclusive jets, top pair differential, and the Z transverse momentum

Are the constraints from each of these groups **consistent among them?** Yes!

NNPDF3.1 NNLO, Q = 100 GeV

NNLO jets and PDF fits

NNPDF3.1 NNLO, Q = 100 GeV

Juan Rojo

NNPDF3.1 NNLO: includes jet data using NNLO evolution and NLO matrix elements, with scale variations as additional TH systematic error

 $\frac{1}{2}$ The jet \mathbf{p}_T is always used as central scale choice

Solution Also tried variants where ATLAS and CMS 2011 7 TeV data included **using exact NNLO theory**

Very small impact on the gluon

Moderate improvement of the chi2

Given \mathcal{F} Only central bin of ATLAS data included - the large χ^2 once all bins are included remains there once exact NNLO theory is used

	NNPDF3.1	exact NNLO
$CDF Run II k_t jets$	0.84	0.85
ATLAS jets 2.76 TeV	1.05	1.03
CMS jets 2.76 TeV	1.04	1.02
ATLAS jets 2010 7 TeV	0.96	0.95
ATLAS jets 2011 7 TeV	1.06	0.91
CMS jets 7 TeV 2011 7 TeV	0.84	0.79

NNLO jets and PDF fits

The availability of **NNLO corrections** to both **inclusive jet** and **dijet production** motivates revisiting in detail their effects in the PDF fit

Dijets in particular **never been included in global fits** so far since data/theory agreement at NLO poor, with a rather large scale dependence

Work in progress with **the NNLOjet authors** to include all available inclusive jet and dijet data into the NNPDF NNLO global analysis

In collaboration with N. Glover, A. Huss, T. Gerhmann, A. Gerhmann, J. Pires, R. Gauld

How strange is the proton? $R_{s}(x,Q^{2}) = \frac{s(x,Q^{2}) + \bar{s}(x,Q^{2})}{\bar{u}(x,Q^{2}) + \bar{d}(x,Q^{2})}$ $Q^{2} = 1.9 \text{ GeV}^{2}, x=0.023 \text{ ATLA}$ $ABM12 \xrightarrow{}$

xFitter analysis of the ATLAS W,Z 2011 inclusive data prefers a **symmetric strange sea** with small uncertainty, at odds with all other PDF fits

Solution Actually the ATLAS data suggest that there are **more strange than up and down sea quarks in the proton**, which is **very difficult to understand** from non-perturbative QCD arguments

Can one accommodate the ATLAS W,Z 2011 data in the **global fit**? What happens to strangeness?

45

How strange is the proton?

PDF set	$R_s(x = 0.023, Q = 1.65 \text{ GeV})$	$R_s(x=0.013, Q=M_Z)$
NNPDF3.0	$0.47{\pm}0.09$	$0.79{\pm}0.04$
NNPDF3.1	$0.62{\pm}0.12$	$0.83{\pm}0.05$
NNPDF3.1 collider-only	$0.86{\pm}0.17$	$0.94{\pm}0.07$
NNPDF3.1 HERA + ATLAS W, Z	$0.96{\pm}0.20$	$0.98{\pm}0.09$
ATLAS W, Z 2011 xFitter (Ref. [93])	$1.13^{+0.11}_{-0.11}$	-
ATLAS W, Z 2010 HERAfitter (Ref. [120])	$1.00^{+0.25}_{-0.28}$ (*)	$1.00^{+0.09}_{-0.10}$ (*)

Confirmed the strange symmetric fit preferred by the ATLAS W,Z 2011 measurements, though we find PDF uncertainties larger by a factor 2

Free global fit accommodates both the neutrino data and the ATLAS W,Z 2011 ($\chi^2_{nutev}=1.1$, $\chi^2_{AWZ11}=2.1$) finding a compromise value for R_S=0.62+-0.12

Solution With Market Ma

PDF luminosities

MPP, Munich, 26/07/2017

47

Higgs production cross-sections

ABM16, $\alpha_s = 0.118$ 0 0.95 1 Ratio to NNPDF3.1 1.05 1.00 1.10

MPP, Munich, 26/07/2017

1.00

1.02

1.04

Higgs production cross-sections

For **gluon-initiated processes**, good agreement between 3.1 and 3.0 with reduced PDF uncertainties in the latter case

For **quark-initiated processes**, the new collider data pulls towards higher cross-sections

The new ABMP16 set is in reasonable agreement with the other sets provided the PDG value of the strong coupling is used

W, Z production at 13 TeV

9.8

Ratio of W^+ to W^- boson 0 NNPDF3.1 MMHT14 ATLAS 13 TeV O \diamond ABMP16 NNPDF3.0 Δ CT14 data \pm total uncertainty Heavy: NNLO QCD + NLO EW Light: NNLO QCD 1.27 1.28 1.29 $\sigma_{W^+}/\sigma_{W^-}$ 1.32 1.33 1.26 1.31

MMHT14 0 NNPDF3.1 ATLAS 13 TeV NNPDF3.0 \diamond ABMP16 Δ CT14 data \pm total uncertainty Heavy: NNLO QCD + NLO EW Light: NNLO QCD \diamond

Ratio of W^{\pm} to Z boson

Parton Distributions with BFKL resumation

Bonvini, Marzani, Peraro 16 The NNPDF Collaboration, in preparation

Beyond fixed-order DGLAP

Perturbative fixed-order QCD calculations have been extremely successful in describing a wealth of data from proton-proton and electron-proton collisions

However, there are theoretical indications that eventually we might need to go beyond DGLAP:

- At very small-x, **logarithmically enhanced terms in 1/x become dominant** and need to be resummed: small-x/high-energy/BFKL resummation formalism.
- The steep rise in the small-x gluon will eventually trigger non-linear recombinations: gluon saturation, BK/JIMWLK equations

© Crucially, **BFKL resummation** can be matched to the DGLAP collinear framework

$$\begin{array}{l} \mathbf{DGLAP} \\ \mathbf{Evolution in } \mathbf{Q}^{2} \end{array} \quad \mu^{2} \frac{\partial}{\partial \mu^{2}} f_{i}(x,\mu^{2}) = \int_{x}^{1} \frac{dz}{z} P_{ij}\left(\frac{x}{z},\alpha_{s}(\mu^{2})\right) f_{j}(z,\mu^{2}), \\ \\ \mathbf{BFKL} \\ \mathbf{Evolution in } \mathbf{x} \end{array} \quad \left[-x \frac{d}{dx} f_{+}(x,M) = \chi(M,\alpha_{s}) f_{+}(x,M) \right] \end{array}$$

$$f_{+}(x,M) = \int_{-\infty}^{\infty} \frac{dQ^2}{Q^2} \left(\frac{Q^2}{Q_0^2}\right)^{-M} f_{+}(x,Q^2)$$

PDFs with BFKL resumation

- Ultimately, the need for (or lack of) BKFL resummation can only be assessed by performing a global PDF analysis with (N)NLO+NLLx matched theory

$$\alpha_s = 0.20$$
, $n_f = 4$, $Q_0 \overline{MS}$

Juan Rojo

PDFs with BFKL resumation

- Ultimately, the need for (or lack of) BKFL resummation can only be assessed by performing a global PDF analysis with (N)NLO+NLLx matched theory

NNPDF3.1sx

Same fit settings as in NNPDF3.1, with **additional cuts to hadronic data**: NLLx resummation not yet available for most collider processes

Juan Rojo

55

MPP, Munich, 26/07/2017

Global PDFs with BFKL resummation

Small-x resummation cures the **instability at small-x of the NNLO perturbative expansion Unambiguous evidence of the onset of BFKL dynamics** in inclusive HERA data

Global PDFs with BFKL resummation

Small-x resummation cures the **instability at small-x of the NNLO perturbative expansion**

Unambiguous evidence of the onset of BFKL dynamics in inclusive HERA data

Fit quality

Small-x resummation cures the **instability at small-x of the NNLO perturbative expansion**

Unambiguous evidence of the onset of BFKL dynamics in inclusive HERA data

Juan Rojo

Fit quality

Small-x resummation cures the **instability at small-x of the NNLO perturbative expansion**

Unambiguous evidence of the onset of BFKL dynamics in inclusive HERA data

Juan Rojo

From the LHC to Neutrino Telescopes

Summary and outlook

Parton distributions are a crucial aspect of the **LHC precision phenomenology program**, with direct implications from Higgs characterisation to BSM searches

NNPDF3.1 is a state-of-the-art global PDF analysis, including a **wealth of precision LHC measurements**, some of them for the first time such as the 8 Z p_T data and top quark production differential distributions

Good stability with respect to NNPDF3.0, with main differences being a reduction of the large-*x* PDF uncertainties and an improved quark flavour separation

Improved stability of the gluon from the combination of **top**, **Z p**_T, **and jet data**

Improved fit quality once the charm PDF is fitted, rather than perturbatively generated

Free perturbative convergence of small-x QCD can be improved by matching to BFKL evolution using **small-x resummation**

Solution Clear evidence of the **onset of BFKL dynamics** in HERA data: *New Physics* within QCD!

61

Summary and outlook

Parton distributions are a crucial aspect of the LHC precision phenomenology program, with direct implications from Higgs characterisation to BSM searches

NNPDF3.1 is a state-of-the-art global PDF analysis, including a wealth of precision LHC **measurements**, some of them for the first time such as the 8 Z p_T data and top quark production differential distributions

Good stability with respect to NNPDF3.0, with main the perturbative provided of the large-x PDF uncertainties and an improved quark attended to the stability of th

Free perture any convergence of small-x QCD can be improved by matching to BFKL evolution using small-x resummation

Clear evidence of the onset of BFKL dynamics in HERA data: New Physics within QCD!