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The inner life of protons:
Parton Distribution Functions
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Lepton vs Hadron Colliders

In high-energy lepton colliders, such as the Large Electron-Positron Collider (LEP) at CERN, the
collisions involve elementary particles without substructure
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Cross-sections in lepton colliders can be computed in perturbation theory using the
Feynman rules of the Standard Model Lagrangian
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Lepton vs Hadron Colliders

In high-energy hadron colliders, such as the LHC, the collisions involve composite particles
(protons) with internal structure (quarks and gluons)
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Parton Distributions
Non-perturbative
From global analysis

Quark/gluon collisions
Perturbative
From SM Lagrangian

Calculations of cross-sections in hadron collisions require the combination of perturbative,
quark/gluon-initiated processes, and non-perturbative, parton distributions, information
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Parton Distributions

The distribution of energy that quarks and gluons carry inside the proton is quantified by the Parton
Distribution Functions (PDFs)

a:o Q: Energy of the quark/gluon collision
g 9 > Inverse of the resolution length
/ M 'L——M

g(x,Q):. Probability of finding a gluon inside \\j

a proton, carrying a fraction x of the proton
momentum, when probed with energy Q

x: Fraction of the proton’s momentum

PDFs are determined by non-perturbative QCD dynamics: cannot be computed from first
principles, and need to be extracted from experimental data with a global analysis

1
¢ Energy conservation / dx (9(%@) + g q(z,Q)) -1
0
q

¢ Dependence with quark/gluon collision energy Q determined in perturbation theory

8’2(1?3) = Py (as) ® g(2, Q) + Py (as) @ q(, Q)
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The Factorization Theorem

The QCD Factorization Theorem guarantees PDF universality: extract them from a subset of process
and use them to provide pure predictions for new processes

oip = 01g (s, @) ® 4(2, Q) gy ~ Fyq (as, @) ® q(z1, Q) @ G(z2, Q)

L
Lepton / epton +
= H

_QQ q w

~ Scattered _
o > q(z2, Q) 4
T lq Quark (7, Gya (Ofs, a)

O~

IDetermine PDFs in lepton-proton collisions .... [

\ And use them to compute cross-sections
in proton-proton collisions at the LHC
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The global PDF analysis

¢ Combine state-of-the-art theory calculations, the constraints from PDF-sensitive measurements from
different processes and colliders, and a statistically robust fitting methodology

¢ Extract Parton Distributions at hadronic scales of a few GeV, where non-perturbative QCD sets in

¢ Use perturbative evolution to compute PDFs at high scales as input to LHC predictions
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The NNPDF approach

A novel approach to PDF determination, improving the limitations of the traditional PDF fitting methods
with the use of advanced statistical techniques such as machine learning and multivariate analysis

Non-perturbative PDF parametrization

& Traditional approach: based on restrictive functional forms leading to strong theoretical bias

& NNPDF solution: use Artificial Neural Networks as universal unbiased interpolants

PDF uncertainties and propagation to LHC calculations

Traditional approach: Hessian method, limited to Gaussian/linear approximation

€

NNPDF solution: based on the Monte Carlo replica method to create a probability distribution in the
space of PDFs. Specially critical in extrapolation regions (i.e. high-x) for New Physics searches

€

Fitting technique

Traditional approach: deterministic minimization of x?, flat directions problem

€C

NNPDF solution: Genetic Algorithms to explore efficiently the vast parameter space, with cross-
validation to avoid fitting stat fluctuations

€
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The Monte Carlo replica method

& Two main approaches to estimate PDF uncertainties: the Hessian method and the Monte Carlo method
In the Hessian method, the x? is expanded quadratically in the fit parameters {an} around the best fit

L ooad NZ 1 T, ({a}) /N, OT,:({a})/ N,
2 a; O (guncorr)2 3, (oo )? day Dt

€

Hn

Ilm
1=1

The Hessian matrix is diagonalized, and PDF errors on cross sections F from linear error propagation

€

. - | P 1 n )
A,Xélobal = kglobal — Xinin = Z Hij(a; — a..?)(a.j - a?) AF = 9 Z [F(S{) — F(S{)]Z-,
i,j=1 k=1
In the Monte Carlo replica method, pseudo-data replicas with same fluctuations as real data are

generated, and then a PDF fit is performed in each individual replica

€

*€C

Leads to probability distribution in the space of PDFs, without linear/Gaussian approximations

corr
_ , UNCOIT. UNCOLT. § : COIT. .COIT. N ON
D‘m«‘l — Dm,lr + Rm ) Om.i Rm 771,1{;15 (1 T Rm m)
/V

Pseudo-data
MC replica

Original data
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ANN for PDF parametrization

€

ANNs are routinely exploited in high-energy physics, in most cases as classifiers to separate between
interesting and more mundane events

“€cC

ANNSs also provide universal unbiased interpolants to parametrize the non-perturbative dynamics
that determines the size and shape of the PDFs from experimental data

Traditional approach g(x, Qo) = Ay(1 — I)a’gilf_bg (1 + Cg\/'g +dgr + .. )
NNPDF approach | g(x,Qo) = A;ANN,(x)
ANN,(2) = €1 = F [0, {0}, {0}]
O _ N2, 0001 0
—1) (-1
gi =49 sz‘j fj _91'
j=1

from choice of ad-hoc functional forms

stable if O(4000) parameters used!

regions with scarce experimental data
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¢ ANNSs eliminate theory bias introduced in PDF fits

¢ NNPDF fits used O(400) free parameters, to be
compared with O(10-20) in traditional PDFs. Results

¢ Faithful extrapolation: PDF uncertainties blow up in



Artificial Neural Networks vs Polynomials

¢ Compare a benchmark PDF analysis where the same dataset is fitted with Artificial Neural Networks
and with standard polynomials, other settings identical)

¢ ANNS s avoid biasing the PDFs, faithful extrapolation at small-x (very few data, thus error blow up)

Fit vs HIPDF2000, Q° = 4. GeV?
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MSTW 2008 NLO PDF fit
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Experimental data

& The global QCD analysis requires combining different experiments with disparate characteristics

2 Type of high energy collision (lepton-proton, proton-proton), center-of-mass energy of collision

& Whether of not experimental correlated systematics are available, and if so, in which format

2 Mutually inconsistent datasets and datasets with few points but large constraining power vs
datasets with many points but moderate constraining power

Lepton-Hadron collisions NNPDF3.0 dataset | Hadron-Hadron collisions
Experiment Dataset ‘ Ref. ‘ Sys. Unc. ‘ Nga¢ DO cuts Kinematics
(NLO/NNLO cuts) Experiment Dataset Ref. Sys. Une. Nga¢ DO cuts Kinematics
NMC (NLO/NNLO cuts)
NMC d/p [19] | A | full 280 (132/132)
NMC oNC» 20 | A | fun 211 (224/224) DY E866 DY Esge 4. ay | M (15/15)
SLAC 866 d/p 41 M | none 15 (15/15
SLAC p I [23] l A ‘ none | a 191 (37/37) ‘ DY E866 p [39,40] | M | none 184 (184/184)
SLAC d (23] [ A |nome|a 191 (37/37) DY E605 B8] | M | none 119 (119/119)
BCDMS
BCDMS p 21 | A| full |b| 351 (333/333) CDF
BCDMS d 22 | A| full | b 254 (248/248) CDF Z rap [43] M| full | h 29 (29/29)
CHORUS CDF Run-II k; jets [83] M| full | h 76 (76/52)
CHORUS » ’ [35] ’ A ’ full | c 572 (431/431) ’ Do
— CHORUS » [35] A | full |c 572 (431/431) DO Z rap | [44] I M | full | 28 (28/28)
NuTeV v (36,37] | A | none 45 (41/41) ATLAS
NuTeV » [36,37] | A | none 44 (38/38) ATLAS W, Z 2010 [47] M | full i 30 (30/30)
LS o | a | o | m0) ATLAS 7 TeV jets 2010 | [50] | M | full | ij 90 (90/9)
JINCe 24 ul 434 (379/379) ATT A e ) ; jet
HERAINC e~ | [24) | M| fal | d 145 (145,/145) ATLAS 2.76 TeV jets [63] M| full | j 59 (59/3) 20 < pf § 200 GeV
HERA-ICC et | [24] | M | full |d 34 (34/34) ) ) 0< |7 <44
HERA-ICC e~ | [24] | M | ful |d 34 (34/34) ATLAS high-mass DY [56] | M | full 11 (5/5) 116 < My < 1500 GeV
ZEUS HERA-TT ATLAS W pr [57] M | full 11 (9/-) 0 < py <300 GeV
ZEUSIINCe™ | [33] | M| full |e 90 (90/90) CMS
ZEUSIICCe | [34] | M| full |e 37 (37/37) . ‘ i
ZEUSIINC et | [53 | M| full | f 90 (90/90) 51073 < z < 0.40 CMS W electron asy (48] | M| cov 11 (11/11)
200 < Q2 < 310* GeV? CMS W muon asy [58] M | cov 11 (11/11) 0<|ml <24
ZEUS-IICCe* | [54] | M| full | f 35 (35/35) 781077 <z < 0.42 CMS jets 2011 [62] M | full 133 (133/83) 114 < p* <2116 GeV
280 < Q2 < 310* GeV? 0< |7 <25
HI HERAIT CMS W + ¢ total 60] | M| cov 5 (5/5) 0< |m| <21
H1-II NC e~ 51 | M| ful |g 139 (139/139) 2107 <2 < 0.65 e o ' 2 {9/ S iml s &
120 < Q% < 410* GeV? CMS W + ¢ ratio [60] M | cov 5(5/5) 0<|m| <21
HI-II NC e* B1] | M| full | g 138 (138/138) 2107 <z <065 CMS 2D DY 2011 [59] M | cov 124 (88/110) 20 < My <1200 GeV
120 < Q?* < 410* GeV? 0< |nu| <24
HI-II CC e~ 1] [ M| full | g 29 (29/29) 8107 <z < 0.40 TICh — —
300 < Q% < 310* GeV? P ‘ )
HI-II CC e+ By | M| ful |g 29 (20/29) 810~% < z < 0.40 LHCb W rapidity [49] | M| cov 10 (10/10)
300 < Q? < 310* GeV? LHCb Z rapidity [61] M | cov 9 (9/9) 20<m <45
HI-II low Q? [52] | M| full 136 (124/124) 2.8107° <z <0.015 o (tt)
= 2 2
HI-IT high y 52] | M| full 55 (52/52) 21.5315*? 35192 ? 103/*3 ATLAS o(t) [657(_57] \I none 3 (3/3) B
55 < 07 < 90 GeV? CMS o((t) [68-70] | M | none 3 (3/3) -
HERA o&c B5] | M | full 52 (47/47) 310 ° <z <0.05 Total [ [ [ [ [ 5179 (4276/4078) |
2.5 < Q? <210° GeV?
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Experimental data

& The global QCD analysis requires combining different experiments with disparate characteristics
2 Type of high energy collision (lepton-proton, proton-proton), center-of-mass energy of collision
& Whether of not experimental correlated systematics are available, and if so, in which format

2 Mutually inconsistent datasets and datasets with few points but large constraining power vs
datasets with many points but moderate constraining power

NNPDF3.0 NLO dataset
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Incongistent data

What it is usually meant by inconsistent data?

€

Not a unique definition. Typically when one experiment that when added into a global fit leads to x?>> Naat

€

Many possible reasons for this:

[ Underestimated systematic uncertainties?

M Incomplete/partial theory calculations?

[ Methodological limitations, ie, too restrictive PDF fitting functional forms?

M Genuine statistical pull between different experiments in the global fit? (This is not inconsistency!)

¢ Dealing with potentially inconsistent experiments in the global PDF fit is very delicate. On the one hand, it is
not advisable to bias a priori the fit with a subjective selection of which experiments are more reliable. On the
other hand, once wants to achieve statistically sound results, and in particular PDF uncertainties that truly
quantify our genuine lack of information. So there are two complementary avenues:

[ Attempt to understand how the inconsistencies arise, and when possible fix them (for example using a
better theory)

[4 Devise a fitting methodology that can deal with inconsistent experiments, regardless of the origin of the
inconsistency

¢ Note that some of the older fixed-target DIS experiments do not provide the full breakdown of systematics,
but this is now a small weight in the global fit
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Dealing with inconsistent data,

In the global PDF fit, different
experiments will prefer different
solutions, not always compatible

Also, the number of datapoints
(statistical weight) of each experiment
can be quite different, and one wants
to describe both exps with many data
points and those with few

Using textbook statistics, 68% CL
uncertainties in the PDF (fit
parameters should be determined
from the Ax2=1 criteria

However it has been shown that this
criterion is not adequate in the global
fits with many experiments

So global Hessian fits use effectively
an increased tolerance Ax?*>>1, to
ensure that all fitted experiments are
reasonably described

Juan Rojo
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Dealing with inconsistent data

¢ In the MSTW approach, a dynamical tolerance criterion is used where different individual experiments
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determine the allowed upper and lower variations of each eigenvectors
¢ This also indicates which datasets are more sensitive to each eigenvector
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Dealing with inconsistent data,

¢ In the NNPDF approach, no need to modify the fitting methodology in the presence of inconsistencies

¢ When new (compatible) experiments are added, then PDF errors decrease. If inconsistent experiments
included, fit essentially unaffected and PDF errors not modified (since no new information added)

¢ Fitting methodology also unchanged even for large variations of the fitted dataset

NNLO, o = 0.118, Q% = 10* GeV?
=== HERA-only
------- HERA + ATLAS
---=== Global fit

1.3

1.25

1.2

(b 1.15

|IIII [TTTTTTTTTTTTT

102 107
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LHC 13 TeV, a,4=0.118, MadGraph5_aMC@NLO fNLO

:-—l—NhPDFz.i f ' f ' f f f
[~ ——=— NNPDF3.0
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———, p+p->W'>etv,
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p+p->e’ v, +jet
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Reweighting as an alternative to fitting

¢ When a new dataset becomes available, instead of updating the global fit, it is possible include this
new information on a prior PDF set using Bayes” Theorem

¢ The weight (likelihood) in the presence of the new experiment corresponding to each Monte Carlo
replica k is given in terms of the x% between data and the theory computed with this replica

1 (n—1) — 12

(x3)?2"

1 N [/ 2\i(n—1) _—3iy?2
N k:l(.xk)Q( ) e~ 3Xk

Wy, =

¢ The Bayesian reweighting technique also allows to quantify the overall consistency of the new experiment
with those already included of the global fit by defining

v

N
P(a) %Z wi ().

k=1

where wi(a) are the weights wi now with x?rescaled as x?/a, that is, they correspond to the case where the
new experimental dataset has uncertainties rescaled by a factor a'?2

¢ Any inconsistent experiment can be brought in agreement with the global fit by a suitable rescaling of its
uncertainties (though this is not necessary in the NNPDF framework)
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Reweighting as an alternative to fitting

Adding new experiments, in this case the Tevatron inclusive jet data, by reweighting leads to results that
are statistically consistent with refitting

Main benefit of RW is that it can be performed using only public tools (PDF sets and codes for cross-section
calculation) without any input from the PDF fitters

0.7
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Reweighting as an alternative to fitting

¢ The distribution of the x?rescaling parameter a allows to quantify the level of (in)consistency of a new

experiment with those already included in the global fit

N
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Conservative Partons

¢ To study the robustness of the global
fit results, it is possible to define
parton distributions based on a
maximally consistent dataset: the
conservative partons

¢ Include in the conservative fit only
those experiments which in the global
fit have their P(a) distribution peaked
at a< Omax

¢ modifying this threshold allows to
tune the PDF fit to be more or less
conservative

¢ Quantify impact of known dataset
inconsistencies on the global fit PDFs

¢ This is not merely a conceptual detail:
assessing robustness of PDF errors in
LHC cross-section is central ie for the
characterisation of the Higgs boson

Juan Rojo

Qmax = 1.1 Qmax = 1.2 Qmax = 1.3 Global fit

2 2 2 2 2 2 2 2
Xnlo Xnnlo Xnlo Xnnlo Xnlo Xnnlo Xnlo Xnnlo
Total 0.96 1.01 1.06 1.10 1.12 1.16 1.23 1.29
NMC d/p 0.91 0.91 089 089 (088 0289 (092 0.93
NMC N - - - - . - 1.63 152
SLAC - - - - 1.77 1.19 1.59 1.13
BCDMS - - 1.11 1.15 1.12 1.16 1.22 1.29
CHORUS - - 1.06 1.02 1.09 1.07 1.11 1.09
NuTeV 035 034 | 062 064 (070 070 [ 0.70 0.86
HERA-I 0.97 0.98 1.02 1.00 1.02 0.99 1.05 1.04
ZEUS HERA-II - - - - 1.41 1.48 1.40 1.48
H1 HERA-II - - - - - - 1.65 1.79
HERA oy - - 1.21 1.32 1.20 1.31 1.27 1.28
E886 d/p 030 030 | 043 040 (044 046 | 0.53 0.48
E886 p - - 1.18 1.40 1.27 1.53 1.19 1.55
E605 1.04 1.10 | 0.74 0.83 | 0.75 0.88 | 0.78 0.90
CDF Z rapidity - ~ - = = - 1.33 153
CDF Run-II k; jets - - 1.01 2.01 1.04 1.84 | 0.96 1.80
D0 Z rapidity 0.56 0.61 0.62 0.71 0.60 0.69 | 0.57 0.61
ATLAS W, Z 2010 - - 1.19 1.13 1.19 1.17 1.19 1.23
ATLAS 7 TeV jets 2010 || 0.96 1.65 1.08 1.58 1.10 1.54 1.07 1.36
ATLAS 2.76 TeV jets 1.03 0.38 1.38 0.36 1.35 0.35 1.29 0.33
ATLAS high-mass DY - - - - - - 2.06 1.45

ATLAS W pr - - - - - - 1.13 -
CMS W electron asy 098 084 (082 072 (08 073 |087 0.73
CMS W muon asy - - - - - - 1.81 1.72
CMS jets 2011 090 209 | 096 209 | 099 210 | 0.96 1.90
CMS W + ¢ total - - - - - - 0.96 0.84
CMS W + ¢ ratio - - - - - - 2.02 177
CMS 2D DY 2011 - - - - 1.20 1.30 1.23 1.36
LHCb W rapidity - - 0.69 065 | 0.74 0.69 | 0.71 0.72
LHCb Z rapidity - - 1.23 1.78 1.11 1.58 1.10 1.59
a(tt) - - - - - - 1.43 0.66
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Conservative Partons

& At the level of LHC cross-sections, conservative PDFs consistent with global fit PDFs within uncertainties
¢ Conservative PDFs affected by larger uncertainties due to reduced dataset

¢ Non-trivial validation of the robustness of the global fit results

LHC 13 TeV, a.=0.118, MadGraph5_aMC@NLO fNLO
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Closure Testing of Parton Distributions

¢ PDF uncertainties have been often criticised by a potential lack of statistical interpretation

¢ Within NNPDF, we performed a systematic closure tests analysis based on pseudo-data, and verified that
PDF uncertainties exhibit a statistically robust behaviour

NNPDF3.0 Closure Test

Try harder!
> New Fitting Methodology

/

Define Underlying Physical Law
ie input PDFs from MSTWO08, CT10, NNPDF2.3...

Now you can fit
real exp data!

/

Generate random pseudo-data for the NNPDF3.0 dataset
from info of experimental uncertainties and correlations

)

Closure Test
Perform (NN)PDF fit successful!

/

Validate resulting PDF set:

[ Reproduce input PDFs OK!

[ Both central values and uncertainties ’
I I | Expected values of x? are determined by pseudo-data

Fail? /] PDF reweighting equal to refitting (Bayesian inference)
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Closure Testing of Parton Distributions

¢ For instance, if the pseudo-data is generated without statistical fluctuations (that is, identical to the input
theory) then the agreement with theory by construction should become arbitrarily good

¢ And indeed it does: as the minimization advances, the x? decreases monotonically, and the PDF
uncertainties as well are reduced, as the fitted theory collapses to the underlying law

Effectiveness of Genetic Algorithm in Level 0 Closure Tests Effectiveness of Genetic Algorithms In Level 0 Closure Tests
T I T T T T T T T I T T T . T T l. T I 0-45 I : : : I : . — ] r
R —¢— 0Old (2.3) genetic algorithm C ]
10 . . = C —<— NNPDF3.0 GA settings 1
= —>— New genetic algorithm 3 0.4 ?{ .
- - 0.35| ~-3¢-- NNPDF2.3 GA settings -
102 _ 0.3 ;— _;
N - E o 025 -
B ] s~ E =
L 4 02— —]
1078 = = 0.155— Y —E
- - - ~—— : 3
B ] 0.1 :— \\\\ >< ------- x
i NNPDF 14 7 - TS— 7
K 7 0.05 —
1 0-4 1 I 1 1 1 1 1 1 11 I 1 1 1 1 1 11 1 I E E
103 . 4 ‘ 105 0 | 1 1 | L ] [ A |
Number of 8‘enerat|0ns 0’ Number of dRAGenerations 4
{ ¢ = /'2 — /'.2
Px2 = \/(X [T [fe], Do]) — x*[(T [fat])> Do) -
Measure of PDF uncertainties in units of data uncertainties
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Closure Testing of Parton Distributions

Another important advantage of closure testing the global PDF analysis is that it allows to disentangle the
various components of the total PDF uncertainty

LvlO0: fit pseudo-data without
fluctuations (limit: x2 -> 0)

=> Extrapolation Uncertainty

Lvl1: fit pseudo-data with
fluctuations (limit: x2-> 1)

=> Functional uncertainty

LvI2: fit Monte Carlo replicas
of pseudo-data with
fluctuations (limit: x2->2)

=> Data uncertainty

2
2 Juan Rojo

Ratios of d at different closure test levels

NNPDF 14

I LvIO Closure Fit
I Lvi1 Closure Fit
[ ] LvI2 Closure Fit
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Closure Testing of Parton Distributions

In the closure tests, it is possible to validate new techniques, such as the Bayesian reweighting, in a clean
environment where everything is under control (free in particular of potential data inconsistencies)

29
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Closure testing the global fit allows disentangling methodological issues of principle (in an ideal world
with perfectly consistent datasets, does my fitting methodology give the result it should?) with those of
practice (how to deal with inconsistent experiments or with incomplete theory?)
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Adding artificial inconsistencies

To test the fitting methodology in a realistic situation, it is possible to generate pseudo-data adding artificial
inconsistencies and study how the resulting PDFs are modified.

In the MMHT approach, adding artificial inconsistencies in a closure test leads to modified PDFs in most
cases in agreement with the global fit PDF uncertainties

This is only the case if their dynamical tolerance criterion Ax? >> 1 is used, as opposed to Ax2=1

Gluon distribution at Q% = 10* GeV?
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summary and outlook

¢ Parton Distributions are an essential ingredient for LHC phenomenology

& At the LHC, precision PDFs are required for many analysis from the characterisation of the
Higgs sector to BSM searches and Monte Carlo event generators

¢ The global QCD analysis aims to extract parton distributions from a diverse experimental
dataset using state-of-the-art theory and methodology

¢ This involves having to deal with several non-trivial statistical issues, in particular with
potential inconsistencies between fitted datasets, that can arise from various sources: partial
theory, limited fitted methodology or underestimated systematic uncertainties

¢ To deal with these problems, a number of techniques have been developed, which allow to
validate the robustness of our PDF uncertainty estimates for high-precision LHC
phenomenology
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