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(unpolarized) Parton Distributions

The distribution of energy that quarks and gluons carry inside the proton is quantified by the Parton

Distribution Functions (PDFs)

- g(x

g(x,Q):. Probability of finding a gluon inside
a proton, carrying a fraction x of the proton

momentum, when probed with energy Q

Q: Energy of the quark/gluon collision
y > Inverse of the resolution length
- ° |

N\

M

x: Fraction of the proton’s momentum

PDFs are determined by non-perturbative QCD dynamics: cannot be computed from first
principles, and need to be extracted from experimental data with a global analysis

1
¢ Energy conservation / dx (9(%@) + g q(z,Q)) -1
0
q

¢ Dependence with quark/gluon collision energy Q determined in perturbation theory

dg(z, Q)
JlnQ
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The Factorization Theorem

The QCD Factorization Theorem guarantees PDF universality: extract them from a subset of process
and use them to provide pure predictions for new processes

oip = 01g (s, @) ® 4(2, Q) gy ~ Fyq (as, @) ® q(z1, Q) @ G(z2, Q)
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IDetermine PDFs in lepton-proton collisions .... [

\ And use them to compute cross-sections
in proton-proton collisions at the LHC
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The NNPDF approach

A novel approach to PDF determination, improving the limitations of the traditional PDF fitting methods
with the use of advanced statistical techniques such as machine learning and multivariate analysis

Non-perturbative PDF parametrization

& Traditional approach: based on restrictive functional forms leading to strong theoretical bias

& NNPDF solution: use Artificial Neural Networks as universal unbiased interpolants

PDF uncertainties and propagation to LHC calculations

Traditional approach: limited to Gaussian/linear approximation

€

NNPDF solution: based on the Monte Carlo replica method to create a probability distribution in the
space of PDFs. Specially critical in extrapolation regions (i.e. high-x) for New Physics searches

€

Fitting technique

Traditional approach: deterministic minimization of x?, flat directions problem

€C

NNPDF solution: Genetic Algorithms to explore efficiently the vast parameter space, with cross-
validation to avoid fitting stat fluctuations

€
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ANN as universal interpolators

€

ANNs are routinely exploited in high-energy physics, in most cases as classifiers to separate between
interesting and more mundane events

“€cC

ANNSs also provide universal unbiased interpolants to parametrize the non-perturbative dynamics
that determines the size and shape of the PDFs from experimental data

Traditional approach g(x, Qo) = Ay(1 — I)a’gilf_bg (1 + Cg\/'g +dgr + .. )
NNPDF approach | g(x,Qo) = A;ANN,(x)
ANN,(2) = €1 = F [0, {0}, {0}]
O _ N2, 0001 0
—1) (-1
gi =49 sz‘j fj _91'
j=1

¢ ANNSs eliminate theory bias introduced in PDF fits
from choice of ad-hoc functional forms

¢ NNPDF fits used O(400) free parameters, to be
compared with O(10-20) in traditional PDFs. Results
stable if O(4000) parameters used!

¢ Faithful extrapolation: PDF uncertainties blow up in
regions with scarce experimental data
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Artificial Neural Networks vs Polynomials

¢ Compare a benchmark PDF analysis where the same dataset is fitted with Artificial Neural Networks
and with standard polynomials, other settings identical)

¢ ANNS s avoid biasing the PDFs, faithful extrapolation at small-x (very few data, thus error blow up)

Fit vs HIPDF2000, Q° = 4. GeV?
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The Monte Carlo replica method

& Two main approaches to estimate PDF uncertainties: the Hessian method and the Monte Carlo method
In the Hessian method, the x? is expanded quadratically in the fit parameters {an} around the best fit

L ooad NZ 1 T, ({a}) /N, OT,:({a})/ N,
2 a; O (guncorr)2 3, (oo )? day Dt

€

Hn

Ilm
1=1

The Hessian matrix is diagonalized, and PDF errors on cross sections F from linear error propagation

€

. - | P 1 n )
A,Xélobal = kglobal — Xinin = Z Hij(a; — a..?)(a.j - a?) AF = 9 Z [F(S{) — F(S{)]Z-,
i,j=1 k=1
In the Monte Carlo replica method, pseudo-data replicas with same fluctuations as real data are

generated, and then a PDF fit is performed in each individual replica

€

*€C

Leads to probability distribution in the space of PDFs, without linear/Gaussian approximations

corr
_ , UNCOIT. UNCOLT. § : COIT. .COIT. N ON
D‘m«‘l — Dm,lr + Rm ) Om.i Rm 771,1{;15 (1 T Rm m)
/V

Pseudo-data
MC replica

Original data
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Closure Testing of Parton Distributions

¢ PDF uncertainties have been often criticised by a potential lack of statistical interpretation

& NNPDF performed a systematic closure tests analysis based on pseudo-data, and verified that PDF
uncertainties exhibit a statistically robust behaviour

NNPDF3.0 Closure Test

Try harder!
> New Fitting Methodology

/

Define Underlying Physical Law
ie input PDFs from MSTWO08, CT10, NNPDF2.3...

Now you can fit
real exp data!

/

Generate random pseudo-data for the NNPDF3.0 dataset
from info of experimental uncertainties and correlations

)

Closure Test
Perform (NN)PDF fit successful!

/

Validate resulting PDF set:

[ Reproduce input PDFs OK!

[ Both central values and uncertainties ’
I I | Expected values of x? are determined by pseudo-data

Fail? /] PDF reweighting equal to refitting (Bayesian inference)
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Closure Testing of Parton Distributions

& For instance, if the pseudo-data is generated without statistical fluctuations (that is, identical to the
input theory) then the agreement with theory by construction should become arbitrarily good

¢ And indeed it does: as the minimization advances, the x? decreases monotonically, and the PDF
uncertainties as well are reduced, as the fitted theory collapses to the underlying law

Effectiveness of Genetic Algorithm in Level 0 Closure Tests Effectiveness of Genetic Algorithms In Level 0 Closure Tests
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.65 GeV

non-perturbative charm

ied Charm
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Recent Results with
Unpolarized NNPDFs
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' ¥ NNPDF2.0: global fit with hadronic data

used in Higgs discovery papers

{ § NNPDF1.0: DIS-only PDFs
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PDF constrains from LHC data

IExploitation of PDF-sensitive information from LHC data: essential component of global PDF fit program l
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Parton Distributions with QED corrections

At the LHC, electroweak corrections can become comparable or larger than QCD effects

Precision physics thus requires PDFs with QCD+QED evolution, and a determination of the photon PDF

Drell-Yan process: high-mass lepton pair production

QCD-only, leading order
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Parton Distributions with QED corrections

At the LHC, electroweak corrections can become comparable or larger than QCD effects

Precision physics thus requires PDFs with QCD+QED evolution, and a determination of the photon PDF

Drell-Yan process: high-mass lepton pair production

QCD-only, leading order QCD+QED, leading order

-

Z-}-

For many processes, accurate determination of the photon PDF as important as that of quark and gluon PDFs
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Parton Distributions with QED corrections

At the LHC, electroweak corrections can become comparable or larger than QCD effects

Precision physics thus requires PDFs with QCD+QED evolution, and a determination of the photon PDF

NNPDF2.3QED: first (and only) QED PDF fit with

. ey Photon-induced biquit t LHC
model-independent photon PDF determination .... [_roroninauced processes uotquitons 4 =7+ |

Ball, Bertone, Carrazza, Forte, Guffanti, Hartland, Rojo 13
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ATLAS high-mass Drell-Yan measurements
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The charm content of the proton

¢ The motivation to fit a charm PDF in a global analysis is two-fold:
[ Stabilise the dependence of LHC calculations with respect to value of the charm mass

[ Quantify the non-perturbative charm component in the proton and compare with models

P(xg)  pegy=im23(1 —xg)

3.0 | X (1+10xg+x3) — 20s(1 +x5)In 1/x5]

Brodsky et al, PLB 1980
20

1.0

L X
0 0.5 10

A 30-years old conundrum of QCD!
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Global QCD analysis with Intrinsic Charm

ooy NNPDF3 NLO, mE*°=1.47 GeV, Q=1.65 GeV NNPDF3 NLO, m’**=1.47 GeV, Q=100 GeV
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At low scales, evidence for a non-perturbative charm component, but PDF errors still large
At LHC scales, fitted and dynamical charm in good agreement for x < 0.01

Charm can account up to 1% of the total proton momentum at low scales

PDF set Q Charm momentum fraction
NNPDF3 dynamical charm (0.239 £ 0.003)%
NNPDFS3 fitted charm 1.65 GeV (0.7+£0.3)%
NNPDFS3 fitted charm (no EMC) (1.6 £ 1.2)%
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The charm PDF': implications for the LHC

M A number of LHC processes are sensitive to the charm content of the proton
[ Typically to probe large-x charm we need either large pT or forward rapidities production

M Within the reach of the LHC at Run II Inclusive charm production, y _ =2.0, LHC 13 TeV
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Parton Distributions are an essential component of many LHC analyses
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Polarised Parton Distributions

Polarised PDFs provide a unique windows on the spin structure of the proton.

How the proton spin is distributed among its constituents is a crucial issue for our understanding of
non-perturbative QCD and confinement

OO sedrr e e

How do quarks (including sea quarks) and gluons carry the proton spin

1 R 1 [ 1
S(p) = 5= Z <P; S|JZ(p)|P; 5> = 5/ dxAY (x, 1) —|—/ dxAg(x,p) + L,
P 0 0
Quarks? Gluons? Angular Mom?

eg. DIS dAoc = Af(x, Q)RdAG r(xP,as(Q?)) dAG-r = EEAN ) _ : :
& 7 C% ( ) Frerl (@) r nzo (47T) """ & First measurements with polarised DIS
(80s) showed that quark contribution
Reaction Partonic subprocess PDF probed x Q2 [GeV?] mU.Ch Smaller than expected (pT’Oton Spin

1 é‘ 0 {p,d, n} —» etx v*q > q A"AJFgM 0.003< x<0.8 1<Q2<70 CT”ZSIS)

& With the availability of polarised hadronic
/o o d) o Ehx e AuAS oas<x<os 1< Q<60 and semi-inclusive data, global polarised
2 A . .
sipis o {p,d} — £ Dx y*g — cc Ag 0.06 <x<0.2 ~ 10 PDF fltS POSSlble

€

The NNPDF framework has also been
qg — qg

S a2 BT ooz i applied to the polarized case, with
ﬁ:iﬁ diig — W Ad Ad NNPDFpoll.1 is the most updated set

BB — jet(s)X 8¢ = a8 Ag 0056 <x<02 305 p2 < 800

e PP — wX &8 — a8 Ag 005<x<04 1<p

2 < 200
qg — qg T~

Juan Rojo 21 QCD-N’16, Guetxo, 11/07/2016



Unraveling the gluon polarisation

& Contribution of gluon polarisation to the proton spin has been of the big unknowns in the last 30 years

& The analysis of RHIC polarised jet data in the NNPDFpoll.1 and DSSV frameworks provides first ever
evidence for positive (non-zero) polarisation of the gluon in the proton

& Importance of this important result recognised also in media outlets
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Total contribution of gluons to proton

uncertainties at small-x from lack of data: need an Electron-Ion Collider
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Proton Spin Mystery Gains a New
Clue

Physicists long assumed a proton’s spin came from its three constituent quarks. New
measurements suggest particles called gluons make a significant contribution

July 21, 2014 | By Clara Moskowitz

Protons have a constant spin that is an
intrinsic particle property like mass or
charge. Yet where this spin comes from is
such a mystery it’s dubbed the “proton spin
crisis.” Initially physicists thought a
proton’s spin was the sum of the spins of its
three constituent quarks. But a 1987

spin still unknown since large
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& Inclusive DIS data does not allow to separate polarised quarks from antiquarks

The polarised quark sea

& Recent data on polarised semi-inclusive DIS and hadronic W production allow this separation

& Stringent constraints on non-perturbative models of the polarized proton
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The Way Ahead
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Neural Network Fragmentation Functions

Fragmentation functions (FFs) parametrize the non-perturbative dynamics responsible for the
hadronization process (Rodolfo’s talk)

As opposed to MC hadronization models, FFs can be used to compute hadron production to much
higher formal accuracy: NNLO in e+e-, NLO in DIS and pp

Crucial for our understanding of non-perturbative QCD, to obtain information on the nucleon
structure from semi-inclusive processes, and for LHC phenomenology, i.e. inclusive hadron
production as probe of the quark-gluon plasma

Now working in NNFF1.0, the first set of FFs using the NNPDF methodology

Charged Pions FF, NLO, Q*>=10* GeV? Charged Pions FF, NLO, Q°=10* GeV?
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NNFF1.0: Bertone, Carrazza, Nocera and |R, in preparation
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Neural Network Nuclear PDF's

& The PDFs of nucleons in bound nuclei
are modified as compared to the free
nucleon PDFs

€«

Nuclear PDFs parametrize a rich variety =~ . '  Le a delpl‘J OI;WF’DF?_
of nuclear effects: shadowing, the EMC o AL . NRRIEPNE L mcostumaasmoms .
effect, Fermi motion .... | 4 A . '

High-precision nuclear PDFs are a . .
crucial ingredient of the pPb and PbPb SRS SRR 1
heavy ion program at the LHC, : :
providing the cold-nuclear matter
benchmark for quark-gluon plasma
characterisation

*€C

Now working in N3PDF1.0, the first set
of nuclear PDFs using the NNPDF
methodology

*€c

f NcI Sadoing f

A
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The NNPDF Roadmap

Unpolarized
present: NNPDEF3.0

future: NNPDF3.1/4.0
LHC Run II data, theory errors,
NNLO QCD+NLO EW ....

N

Nucleon Structure
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The NNPDF Roadmap

Unpolarized
present: NNPDEF3.0

future: NNPDF3.1/4.0
LHC Run II data, theory errors,
NNLO QCD+NLO EW ....

Polarized
present: NNPDFpoll.2
future: NNPDFpol2.0 (?)

Semi-inclusive data using NNFFs

7

N

Nucleon Structure
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The NNPDF Roadmap

Unpolarized
present: NNPDEF3.0

future: NNPDF3.1/4.0
LHC Run II data, theory errors,
NNLO QCD+NLO EW ....

Polarized
present: NNPDFpoll.2
future: NNPDFpol2.0 (?)

Semi-inclusive data using NNFFs

7

N

Nucleon Structure

/

TMD-PDFs (?)

Nuclear PDFs GPDs (?)
future: N3PDF1.0 (?) Double PDFs (?)
from nuclear DIS data from a global analysis of

Double Parton Scattering data
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Unpolarized
present: NNPDEF3.0

future: NNPDF3.1/4.0
LHC Run II data, theory errors,
NNLO QCD+NLO EW ....

Polarized
present: NNPDFpoll.2
future: NNPDFpol2.0 (?)

Semi-inclusive data using NNFFs

The NNPDF Roadmap

Fragmentation Functions
present: NNFF1.0

future: NNFF2.0 (?)
Global fit with SIDIS and pp data
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Nucleon Structure
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Nuclear PDFs
future: N3PDF1.0 (?)

from nuclear DIS data

Juan Rojo

Hadron Fragmentation

N

TMD-PDFs (?)
GPDs (?)
Double PDFs (?)

from a global analysis of
Double Parton Scattering data
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The NNPDF Roadmap

Unpolarized

Polarized Fragmentation Functions
fPresengglglgfﬁfo present: NNPDFpol1.2 present: NNFF1.0
LH(I?1 It{?ll;leil data theo1:y er.rors future: NNPDFpol2.0 (7) e TS o)
’ / i i i Global fit with SIDIS and pp dat
NNLO OCD+NLO EW ... Semi-inclusive data using NNFFs obal fit wi and pp data

TMD-PDFs (?)

GPDs (?)
future: N3PDF1.0 (?) Double PDFs (?)
from nuclear DIS data from a global analysis of

Double Parton Scattering data
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