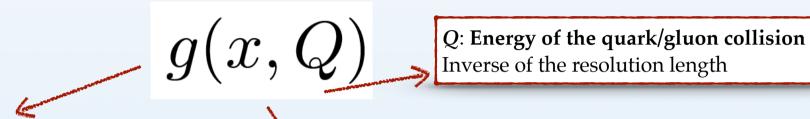


Neural Network Fits of Parton Distributions


Juan Rojo

Rudolf Peierls Center for Theoretical Physics University of Oxford

QCD-N'16
4th Workshop on the QCD Structure of the Nucleon Guetxo, Spain, 11/07/2016

(unpolarized) Parton Distributions

The distribution of energy that quarks and gluons carry inside the proton is quantified by the Parton **Distribution Functions (PDFs)**

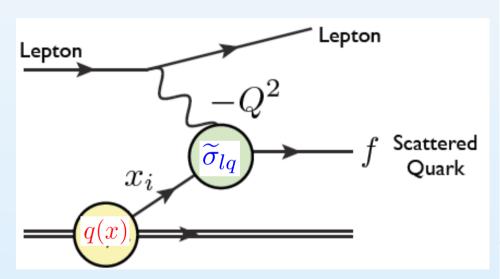
g(x,Q): Probability of finding a gluon inside **a proton**, carrying a fraction *x* of the proton momentum, when probed with energy Q

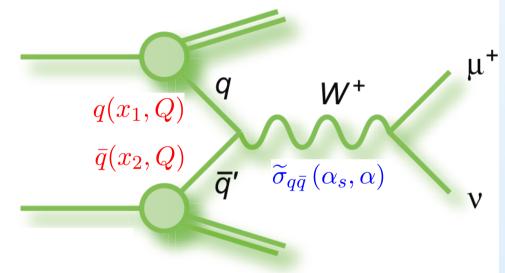
x: Fraction of the proton's momentum

PDFs are determined by non-perturbative QCD dynamics: cannot be computed from first principles, and need to be extracted from experimental data with a global analysis

Energy conservation
$$\int_0^1 dx \left(g(x,Q) + \sum_q q(x,Q) \right) = 1$$

Dependence with quark/gluon collision energy Q determined in perturbation theory


$$\frac{\partial g(x,Q)}{\partial \ln Q} = P_g(\alpha_s) \otimes g(x,Q) + P_q(\alpha_s) \otimes q(x,Q)$$


The Factorization Theorem

The **QCD** Factorization Theorem guarantees PDF universality: extract them from a subset of process and use them to provide pure predictions for **new processes**

$$\sigma_{lp}\simeq\widetilde{\sigma}_{lq}\left(lpha_{s},lpha
ight)\otimes q(x,Q)$$

$$\sigma_{pp}\simeq\widetilde{\sigma}_{qar{q}}\left(lpha_{s},lpha
ight)\otimes q(x_{1},Q)\otimesar{q}(x_{2},Q)$$

Determine PDFs in lepton-proton collisions

And use them to compute cross-sections in proton-proton collisions at the LHC

The NNPDF approach

A **novel approach to PDF determination**, improving the limitations of the traditional PDF fitting methods with the use of **advanced statistical techniques** such as **machine learning** and **multivariate analysis**

Non-perturbative PDF parametrization

- Traditional approach: based on restrictive functional forms leading to strong theoretical bias
- NNPDF solution: use Artificial Neural Networks as universal unbiased interpolants

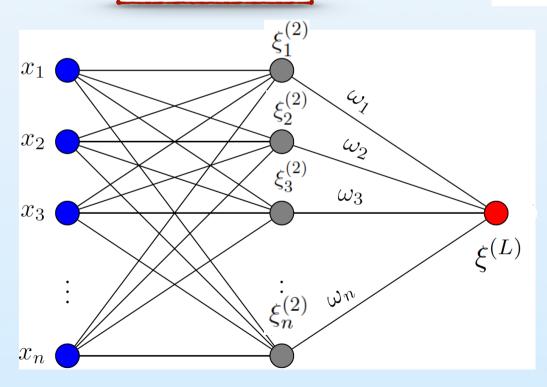
PDF uncertainties and propagation to LHC calculations

- **Traditional approach**: limited to Gaussian/linear approximation
- **NNPDF solution**: based on the **Monte Carlo replica method** to create a probability distribution in the space of PDFs. Specially critical in **extrapolation regions** (i.e. high-*x*) for New Physics searches

Fitting technique

- \geqslant **Traditional approach**: deterministic minimization of χ^2 , flat directions problem
- NNPDF solution: Genetic Algorithms to explore efficiently the vast parameter space, with cross-validation to avoid fitting stat fluctuations

ANN as universal interpolators

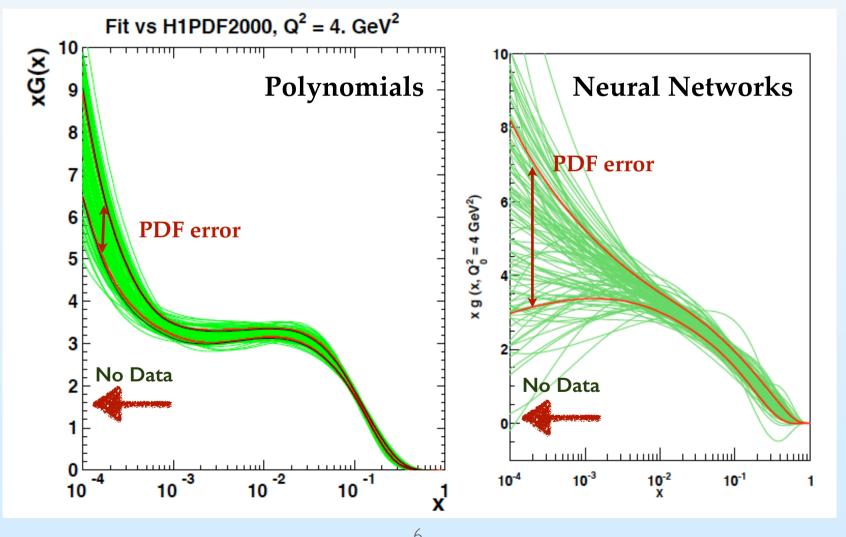

- ANNs are routinely exploited in **high-energy physics**, in most cases as **classifiers** to separate between interesting and more mundane events
- ANNs also provide universal unbiased interpolants to parametrize the non-perturbative dynamics that determines the size and shape of the PDFs from experimental data

Traditional approach

$$g(x,Q_0) = A_g(1-x)^{a_g} x^{-b_g} \left(1 + c_g \sqrt{s} + d_g x + \ldots\right)$$

NNPDF approach

$$g(x, Q_0) = A_g ANN_g(x)$$


$$\text{ANN}_g(x) = \xi^{(L)} = \mathcal{F}\left[\xi^{(1)}, \{\omega_{ij}^{(l)}\}, \{\theta_i^{(l)}\}\right]$$

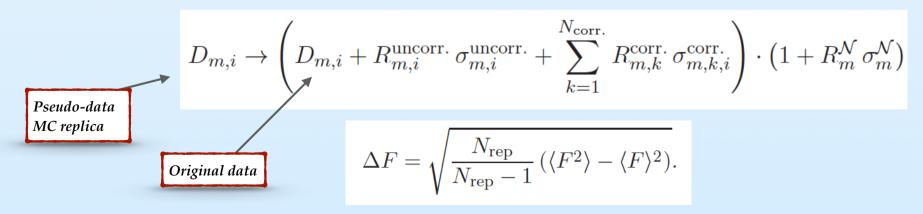
$$\xi_i^{(l)} = g \left(\sum_{j=1}^{n_{l-1}} \omega_{ij}^{(l-1)} \xi_j^{(l-1)} - \theta_i^{(l)} \right)$$

- ANNs eliminate **theory bias** introduced in PDF fits from choice of *ad-hoc* functional forms
- NNPDF fits used **O(400)** free parameters, to be compared with O(10-20) in traditional PDFs. Results stable if **O(4000)** parameters used!
- Faithful extrapolation: PDF uncertainties blow up in regions with scarce experimental data

Artificial Neural Networks vs Polynomials

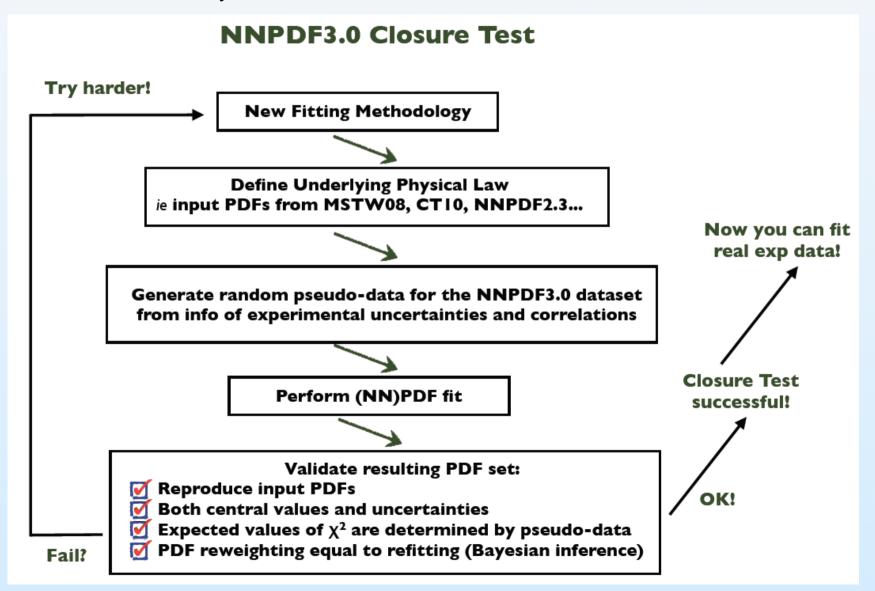
- © Compare a benchmark PDF analysis where the same dataset is fitted with Artificial Neural Networks and with **standard polynomials**, other settings identical)
- ANNs avoid biasing the PDFs, faithful extrapolation at small-x (very few data, thus error blow up)

The Monte Carlo replica method


- Two main approaches to estimate PDF uncertainties: the Hessian method and the Monte Carlo method
- \geqslant In the **Hessian method**, the χ^2 is expanded quadratically in the **fit parameters** $\{a_n\}$ around the best fit

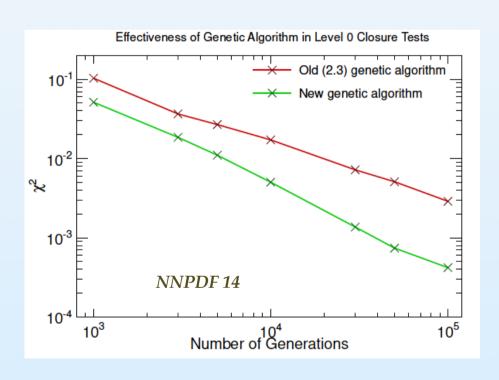
$$H_{lm}^{n} \equiv \frac{1}{2} \frac{\partial \chi_{n}^{2}}{\partial a_{l} \partial a_{m}} = \sum_{i=1}^{N_{\text{pts.}}} \frac{1}{(\sigma_{n,i}^{\text{uncorr.}})^{2} + \sum_{k} (\sigma_{n,k,i}^{\text{corr.}})^{2}} \frac{\partial T_{n,i}(\{a\})/\mathcal{N}_{n}}{\partial a_{l}} \frac{\partial T_{n,i}(\{a\})/\mathcal{N}_{n}}{\partial a_{m}}$$

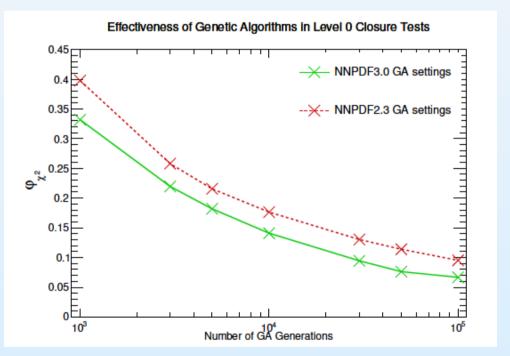
From linear error propagation The Hessian matrix is diagonalized, and PDF errors on cross sections F from linear error propagation


$$\Delta \chi_{\text{global}}^2 \equiv \chi_{\text{global}}^2 - \chi_{\min}^2 = \sum_{i,j=1}^n H_{ij} (a_i - a_i^0) (a_j - a_j^0) = \Delta F = \frac{1}{2} \sqrt{\sum_{k=1}^n \left[F(S_k^+) - F(S_k^-) \right]^2},$$

- § In the Monte Carlo replica method, pseudo-data replicas with same fluctuations as real data are generated, and then a PDF fit is performed in each individual replica
- Leads to probability distribution in the space of PDFs, without linear/Gaussian approximations

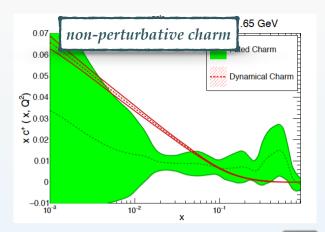
Closure Testing of Parton Distributions

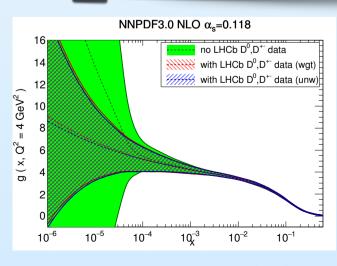

- PDF uncertainties have been often criticised by a potential lack of statistical interpretation
- NNPDF performed a systematic **closure tests analysis** based on pseudo-data, and verified that **PDF uncertainties** exhibit **a statistically robust behaviour**



Closure Testing of Parton Distributions

For instance, if the **pseudo-data is generated without statistical fluctuations** (that is, identical to the input theory) then the agreement with theory by construction should become **arbitrarily good**


 \S And indeed it does: as the minimization advances, the χ^2 decreases monotonically, and the PDF uncertainties as well are reduced, as the fitted theory collapses to the underlying law



$$\varphi_{\chi^2} \equiv \sqrt{\langle \chi^2[\mathcal{T}[f_{\mathrm{fit}}], \mathcal{D}_0] \rangle - \chi^2[\langle \mathcal{T}[f_{\mathrm{fit}}] \rangle, \mathcal{D}_0]}$$

Measure of PDF uncertainties in units of data uncertainties

Recent Results with Unpolarized NNPDFs

The NNPDF time-line

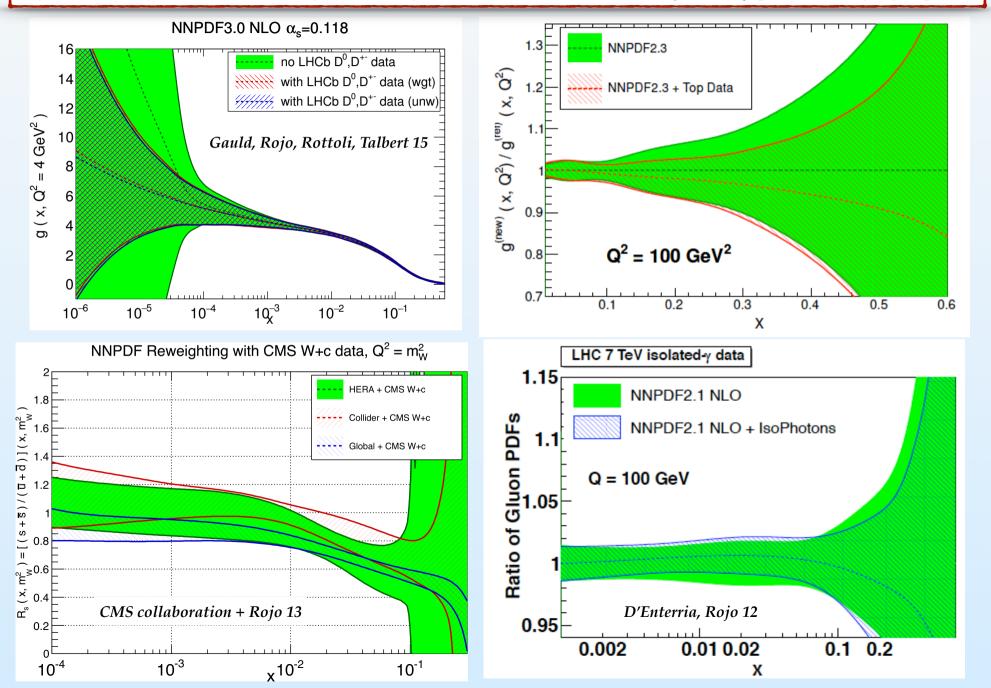
2016 NNPDF3IC: the charm content of the nucleon

2014 NNPDF3.0: the C++ generation, closure test validation

2013 NNPDF2.3QED: QCD+QED fits and photon PDF

2012 NNPDF2.3: PDFs with LHC data

2011 NNPDF2.1: LO and NNLO, heavy quark mass effects

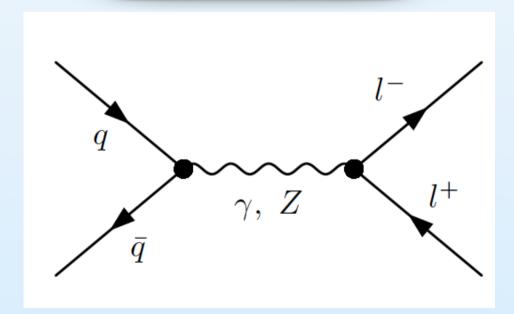

2010 NNPDF2.0: global fit with hadronic data used in Higgs discovery papers

NNPDF1.0: DIS-only PDFs

2008

PDF constrains from LHC data

Exploitation of PDF-sensitive information from LHC data: essential component of global PDF fit program

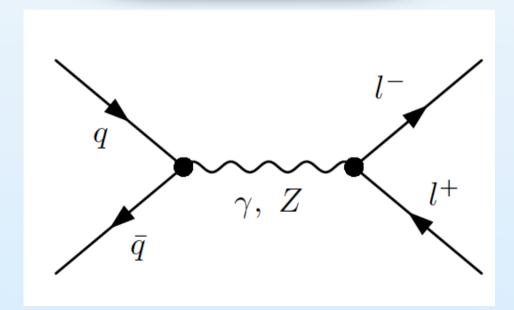


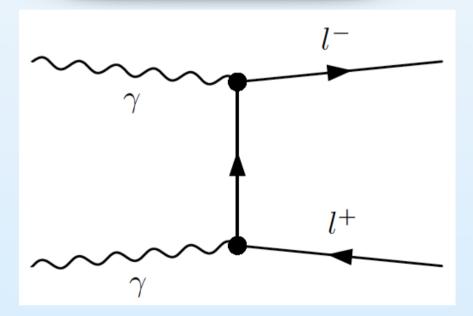
Parton Distributions with QED corrections

At the LHC, **electroweak corrections** can become comparable or larger than **QCD effects**Precision physics thus requires **PDFs with QCD+QED evolution**, and a determination of the **photon PDF**

Drell-Yan process: high-mass lepton pair production

QCD-only, leading order


Parton Distributions with QED corrections

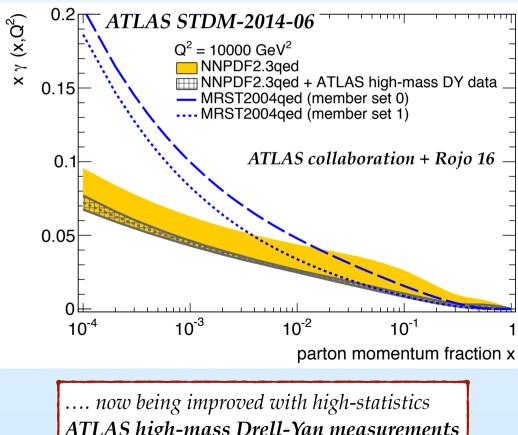

At the LHC, **electroweak corrections** can become comparable or larger than **QCD effects**Precision physics thus requires **PDFs with QCD+QED evolution**, and a determination of the **photon PDF**

Drell-Yan process: high-mass lepton pair production

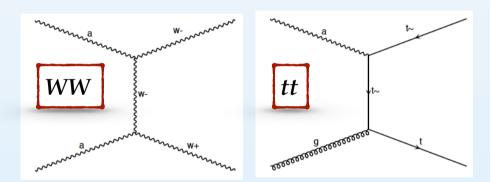
QCD-only, leading order

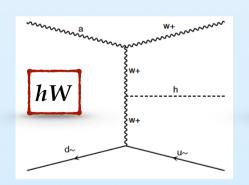
QCD+QED, leading order

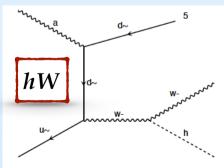
For many processes, accurate determination of the **photon PDF** as important as that of **quark and gluon PDFs**


Parton Distributions with QED corrections

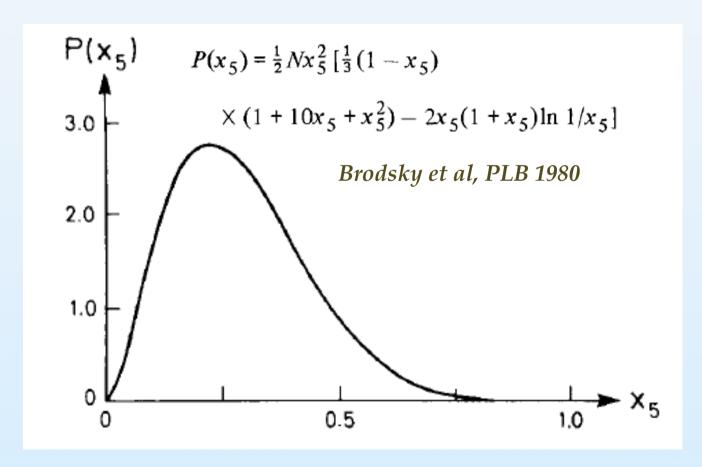
At the LHC, **electroweak corrections** can become comparable or larger than **QCD effects** Precision physics thus requires PDFs with QCD+QED evolution, and a determination of the photon PDF


NNPDF2.3QED: first (and only) QED PDF fit with model-independent photon PDF determination ...


Photon-induced processes ubiquitous at LHC


Ball, Bertone, Carrazza, Forte, Guffanti, Hartland, Rojo 13

ATLAS high-mass Drell-Yan measurements

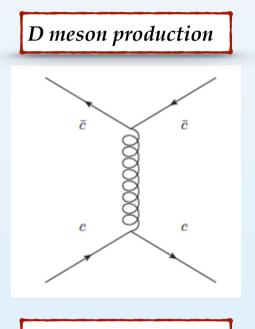


The charm content of the proton

- Fig. The motivation to fit a charm PDF in a global analysis is two-fold:
 - **Stabilise the dependence of LHC calculations** with respect to **value of the charm mass**
 - **Quantify the non-perturbative charm component in the proton** and compare with models

A 30-years old conundrum of QCD!

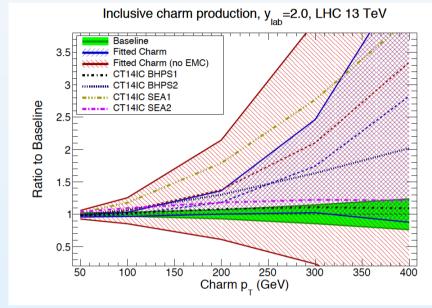
Global QCD analysis with Intrinsic Charm

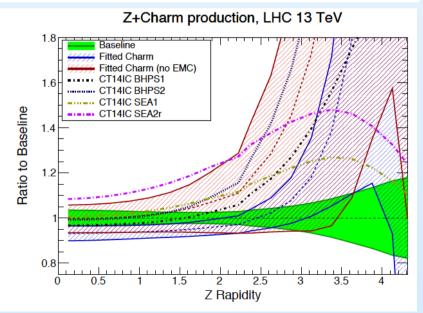

Ball, Bertone, Bonvini, Carrazza, Forte, Guffanti, Hartland, Rojo and Rottoli 16

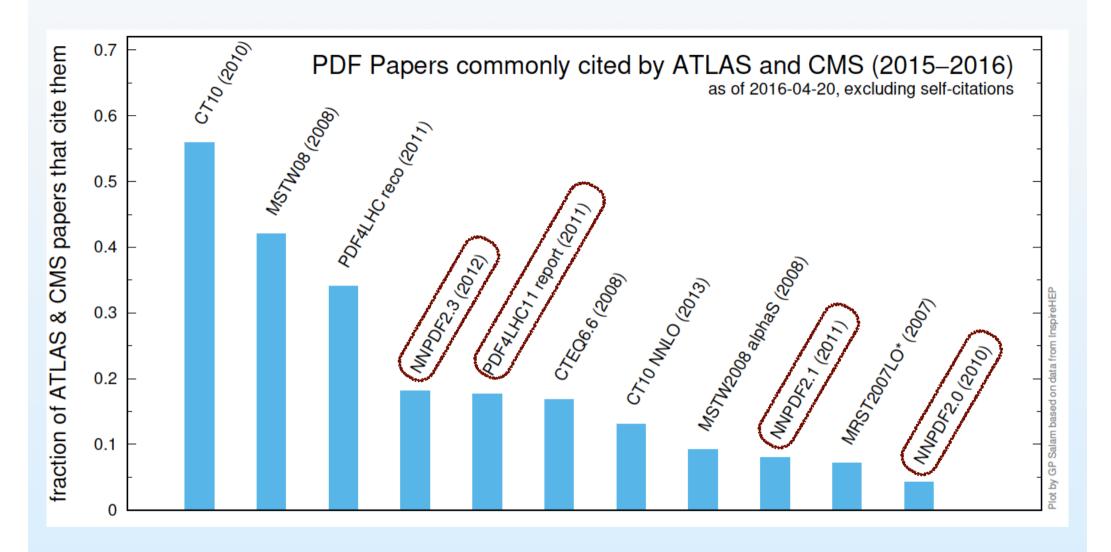
At low scales, evidence for a **non-perturbative charm component**, but PDF errors still large At LHC scales, **fitted and dynamical charm in good agreement** for x < 0.01 Charm can account up to 1% **of the total proton momentum** at low scales


PDF set	Q	Charm momentum fraction
NNPDF3 dynamical charm		$(0.239 \pm 0.003)\%$
NNPDF3 fitted charm	$1.65~{ m GeV}$	$(0.7 \pm 0.3)\%$
NNPDF3 fitted charm (no EMC)		$(1.6 \pm 1.2)\%$

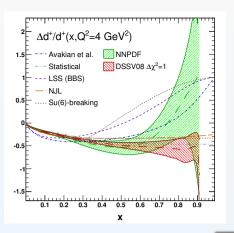
The charm PDF: implications for the LHC

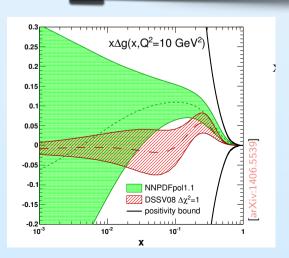

- ☑ A number of LHC processes are sensitive to the **charm content of the proton**
- Typically to probe large-x charm we need either large pT or forward rapidities production
- Within the reach of the LHC at Run II





Juan Rojo




PDFs usage in ATLAS and CMS

Parton Distributions are an essential component of many LHC analyses

Recent Results with Polarized NNPDFs

NNPDF, arXiv:1303.7236 NNPDF, arXiv:1406.5539

Polarised Parton Distributions

- Polarised PDFs provide a unique windows on the spin structure of the proton.
- How the **proton spin is distributed among its constituents** is a crucial issue for our understanding of **non-perturbative QCD and confinement**

$$\Delta f(x,Q^2) = f^{\Rightarrow \rightarrow}(x,Q^2) - f^{\Rightarrow \leftarrow}(x,Q^2)$$

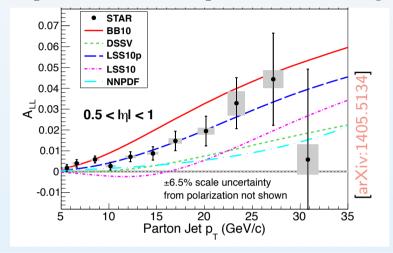
How do quarks (including sea quarks) and gluons carry the proton spin

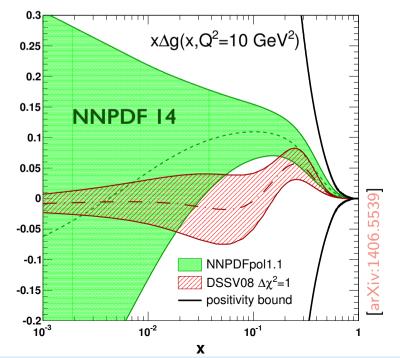
$$S(\mu) = \frac{1}{2} = \sum_{f} \left\langle P; S | \hat{J}_{f}^{z}(\mu) | P; S \right\rangle = \frac{1}{2} \int_{0}^{1} dx \Delta \Sigma(x, \mu) + \int_{0}^{1} dx \Delta g(x, \mu) + L_{z}$$

Quarks?

Gluons?

Angular Mom?

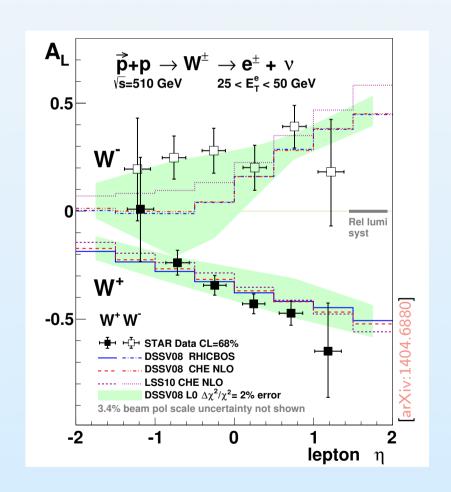

e.g. DIS	$d\Delta\sigma = \sum_{q,\bar{q},g} \Delta f(x,g)$	$, {Q^2}) \otimes d\Delta \hat{\sigma}_{\gamma^*f}(xP)$	$(\alpha_s(Q^2))$	$d\Delta\hat{\sigma}_{\gamma^*f} = \sum_{n=1}^{\infty}$	$\int_{0}^{\infty} \left(\frac{\alpha_{s}}{4\pi}\right)^{n} d\Delta \hat{\sigma}_{\gamma^{*}f}^{(n)}$
	Reaction	Partonic subprocess	PDF probed	х	Q^2 [GeV 2]

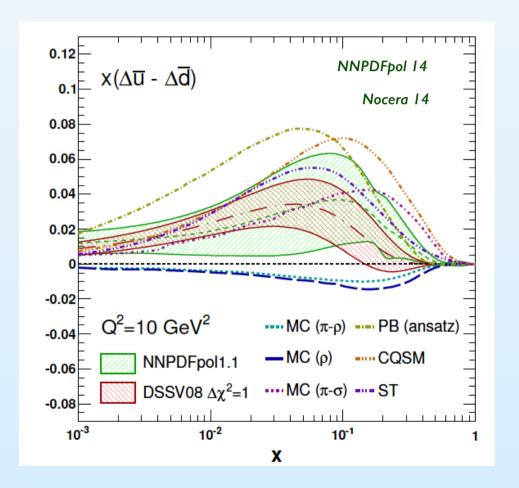

	Reaction	Partonic subprocess	PDF probed	×	Q^2 [GeV 2]
P	$\ell^{\pm}\{p,d,n\} \to \ell^{\pm}X$	$\gamma^* q \to q$	$egin{array}{c} \Delta q + \Delta ar{q} \ \Delta g \end{array}$	$0.003 \lesssim x \lesssim 0.8$	$1 \lesssim Q^2 \lesssim 70$
₹,K,	$\ell^{\pm}\{p,d\} \rightarrow \ell^{\pm}hX$ $\ell^{\pm}\{p,d\} \rightarrow \ell^{\pm}DX$	$\gamma^* q o q$ $\gamma^* g o c\bar{c}$	Δu Δ <u>ū</u> Δd Δd Δg Δg	$0.005 \lesssim x \lesssim 0.5$ $0.06 \lesssim x \lesssim 0.2$	$1 \lesssim Q^2 \lesssim 60$ ~ 10
1015	$\overrightarrow{p} \overrightarrow{p} \rightarrow jet(s)X$ $\overrightarrow{p} p \rightarrow W^{\pm}X$	$egin{array}{c} gg ightarrow qg \ qg ightarrow qg \ u_L \overline{d}_R ightarrow W^+ \ d_L \overline{u}_R ightarrow W^- \end{array}$	Δg Δu Δū Δd Δd̄	$0.05 \lesssim x \lesssim 0.2$ $0.05 \lesssim x \lesssim 0.4$	$30 \lesssim p_T^2 \lesssim 800$ $\sim M_W^2$
PP	$\overrightarrow{p}\overrightarrow{p} \rightarrow \pi X$	$egin{array}{l} gg ightarrow qg \ qg ightarrow qg \end{array}$	Δg	$0.05 \lesssim x \lesssim 0.4$	$1 \lesssim ho_T^2 \lesssim 200$

- First measurements with polarised DIS (80s) showed that quark contribution much smaller than expected (proton spin crisis)
- With the availability of polarised hadronic and semi-inclusive data, global polarised PDF fits possible
- From The NNPDF framework has also been applied to the polarized case, with NNPDFpol1.1 is the most updated set

Unraveling the gluon polarisation

- Contribution of **gluon polarisation to the proton spin** has been of the **big unknowns** in the last 30 years
- The analysis of RHIC polarised jet data in the NNPDFpol1.1 and DSSV frameworks provides first ever evidence for positive (non-zero) polarisation of the gluon in the proton
- Importance of this important result recognised also in media outlets

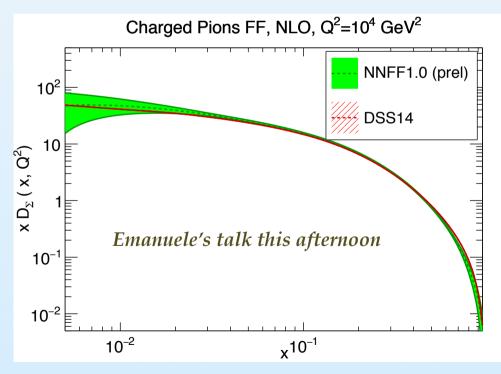


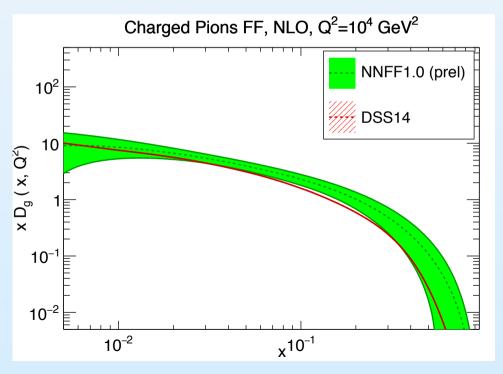


Total contribution of gluons to proton spin still unknown since **large uncertainties at small-x** from lack of data: need an **Electron-Ion Collider**

The polarised quark sea

- Inclusive DIS data does not allow to separate polarised quarks from antiquarks
- Recent data on polarised **semi-inclusive DIS** and **hadronic** *W* **production** allow this separation
- Stringent constraints on non-perturbative models of the polarized proton

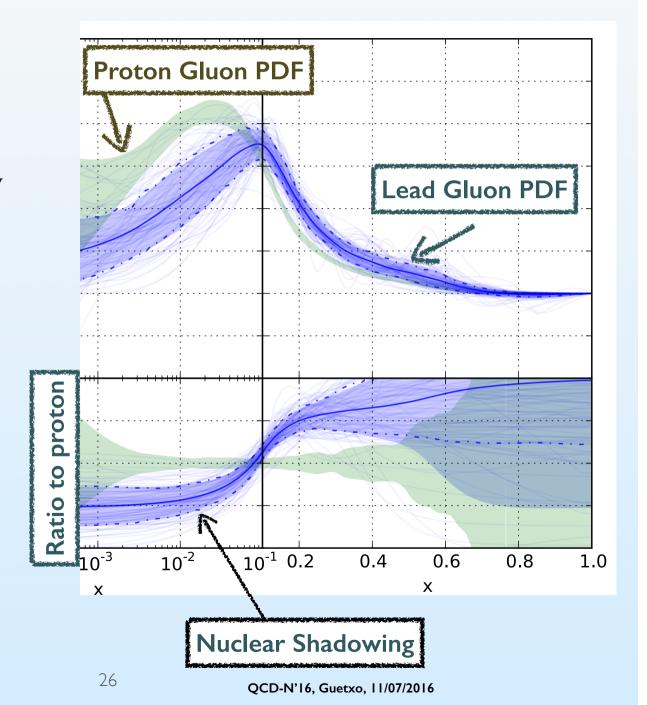




The Way Ahead

Neural Network Fragmentation Functions

- Fragmentation functions (FFs) parametrize the non-perturbative dynamics responsible for the hadronization process (*Rodolfo's talk*)
- As opposed to MC hadronization models, FFs can be used to compute hadron production to much **higher formal accuracy**: NNLO in e+e-, NLO in DIS and pp
- © Crucial for our understanding of **non-perturbative QCD**, to obtain information on the nucleon structure from **semi-inclusive processes**, and for **LHC phenomenology**, *i.e.* inclusive hadron production as probe of the quark-gluon plasma
- Now working in NNFF1.0, the first set of FFs using the NNPDF methodology



NNFF1.0: Bertone, Carrazza, Nocera and JR, in preparation

Neural Network Nuclear PDFs

- The PDFs of nucleons in bound nuclei are modified as compared to the free nucleon PDFs
- Nuclear PDFs parametrize a rich variety of nuclear effects: shadowing, the EMC effect, Fermi motion
- High-precision nuclear PDFs are a crucial ingredient of the pPb and PbPb heavy ion program at the LHC, providing the cold-nuclear matter benchmark for quark-gluon plasma characterisation
- Now working in N3PDF1.0, the first set of nuclear PDFs using the NNPDF methodology

Unpolarized present: NNPDF3.0

future: NNPDF3.1/4.0

LHC Run II data, theory errors, NNLO QCD+NLO EW

Nucleon Structure

Unpolarized present: NNPDF3.0

future: NNPDF3.1/4.0

LHC Run II data, theory errors, NNLO QCD+NLO EW

Polarized

present: NNPDFpol1.2

future: NNPDFpol2.0 (?)

Semi-inclusive data using NNFFs

Nucleon Structure

Unpolarized present: NNPDF3.0

future: NNPDF3.1/4.0

LHC Run II data, theory errors, NNLO QCD+NLO EW

Polarized

present: NNPDFpol1.2

future: NNPDFpol2.0 (?)

Semi-inclusive data using NNFFs

Nucleon Structure

4

Nuclear PDFs future: N3PDF1.0 (?) from nuclear DIS data

TMD-PDFs (?)
GPDs (?)
Double PDFs (?)

from a global analysis of Double Parton Scattering data

Unpolarized present: NNPDF3.0

future: NNPDF3.1/4.0

LHC Run II data, theory errors, NNLO QCD+NLO EW

Polarized

present: NNPDFpol1.2

future: NNPDFpol2.0 (?)

Semi-inclusive data using NNFFs

Fragmentation Functions

present: NNFF1.0

future: NNFF2.0 (?)

Global fit with SIDIS and pp data

Nucleon Structure

Hadron Fragmentation

Nuclear PDFs future: N3PDF1.0 (?) from nuclear DIS data

TMD-PDFs (?)
GPDs (?)
Double PDFs (?)

from a global analysis of Double Parton Scattering data

Unpolarized

present: NNPDF3.0

future: NNPDF3.1/4.0

LHC Run II data, theory errors, NNLO QCD+NLO EW

Polarized

present: NNPDFpol1.2

future: NNPDFpol2.0 (?)

Semi-inclusive data using NNFFs

Fragmentation Functions

present: NNFF1.0

future: NNFF2.0 (?)

Global fit with SIDIS and pp data

Thanks for your attention.

Thanks for your attention. Nucleon Structure

Nucle IJFs

future: N3PDF1.0 (?)

from nuclear DIS data

GPDs (?)

Double PDFs (?)

from a global analysis of Double Parton Scattering data