Neural Network Parton Distributions

Juan Rojo⁵

on behalf of the **NNPDF Collaboration**: R. D. Ball¹, L. Del Debbio¹, S. Forte², A. Guffanti³, J. I. Latorre⁴, A. Piccione², J. R.⁵ and M. Ubiali¹

¹University of Edinburgh, ² Università di Milano, ³Albert-Ludwigs-Universität Freiburg, ⁴Universitat de Barcelona, ⁵LPTHE, UPMC Paris VI

International Symposium on Multiparticle Dynamics 08 18/09/2008, DESY Hamburg

- After 40 years of QCD, still issues to be understood in the determination of parton distributions (G. Altarelli, LHeC workshop opening lecture)
- The standard approach to PDF determination (see J. Stirling's talk) has important drawbacks, summarized by the 2006 HERA-LHC PDF benchmark analysis
- The NNPDF Collaboration approach is a proposal to overcome various problems in PDF determination with statistically sound techniques
- A faithfully estimate of PDF uncertainties is of paramount importance for precision LHC studies, even for discovery! (see talks by M. Lancaster and T. Shears)
- NNPDF1.0 → First parton set from the NNPDF collaboration → "A determination of parton distribution with faithful uncertainty estimation", arxiv:0808.1231

BENCHMARK PARTONS

Proposed during the first HERA-LHC workshop → Benchmark PDF fit to a reduced, consistent DIS data set

Set	$N_{\rm dat}$	x_{\min}	x_{\max}	Q_{\min}^2	$Q_{\rm max}^2$
BCDMSp	322	$7 \ 10^{-2}$	0.75	10.3	230
NMC	95	0.028	0.48	9	6
NMC-pd	73	0.035	0.67	11.4	99
Z97NC	206	$1.6 \ 10^{-4}$	0.65	10	$2 \ 10^4$
$H197 low Q^2$	77	$3.2 \ 10^{-4}$	0.2	12	150

- Proposed during the first HERA-LHC workshop \rightarrow Benchmark PDF fit to a reduced, consistent DIS data set
- From a full DIS analysis data set ...

4 / 29

Juan Rojo (LPTHE)

- Proposed during the first HERA-LHC workshop → Benchmark PDF fit to a reduced, consistent DIS data set
- ... to the reduced PDF benchmark analysis data set

4 / 29

Juan Rojo (LPTHE)

- Proposed during the first HERA-LHC workshop → Benchmark PDF fit to a reduced, consistent DIS data set
- Compare results between PDF fitting collaborations and with global fits including more data
- Note for benchmark fit Δχ² = 1, while for global fit Δχ²_{mrst} = 50, Δχ²_{cteq} = 100
 → Statistical treatment is dataset dependent, also input parametrizations are
 different

Compare $u(x, Q^2 = 2 \text{ GeV}^2)$ from MRST2001 global PDF determination ...

ISMD 2008

... with MRST HERA-LHC benchmark partons

PDFs inconsistent by many $\sigma!$ in data region

Similar inconsistencies in the extrapolation region

DESY

Problems in standard PDF determination approach

- Summary of HERA-LHC benchmark fit: Benchmark partons do not agree with global fit partons within uncertainties
- Implications \rightarrow Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of $\Delta \chi^2$) need to be tuned to experimental data set for standard approach
- Situation not satisfactory, specially problematic to predict behaviour of PDFs in extrapolation regions like for the LHC
- Global fits introduce large tolerances \rightarrow Error blow-up by a factor $S = \sqrt{\Delta \chi^2/2.7}$ (B. Cousins, PDF4LHC) $\rightarrow S_{cteq} \sim 6$, $S_{mstw} \sim 4.5$ both in input measurements and in output PDFs
- Need statistically reliable way to determine if such large values of S are indeed mandatory. Note Δχ² ~ 1 in DIS+DY fits (Alekhin)

THE NNPDF APPROACH

 Benchmark partons
 The NNPDF approach
 NNPDF1.0
 Benchmark partons II
 Outlook

 The NNPDF approach
 $Generate N_{rep}$ Monte Carlo replicas $F_i^{(art)(k)}$ of the original data $F_i^{(exp)}$ $F_i^{(art)(k)}$

$$F_{i}^{(\text{art})(k)} = \left(1 + r_{N}^{(k)}\sigma_{N}\right)\left(F_{i}^{(\text{exp})} + \sum_{\rho=1}^{N_{\text{sys}}} r_{\rho}^{(k)}\sigma_{i,\rho} + r_{i}^{(k)}\sigma_{i,s}\right)$$

• Evolve each PDF parametrized with Neural Nets $q_{\alpha}^{(net)(k)}(x, Q_0^2)$ $F_i^{(net)(k)}(x, Q^2) = C_{i\alpha}(x, \alpha(Q^2)) \otimes q_{\alpha}^{(net)(k)}(x, Q^2)$

• Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\rm dat}} \sum_{i,j=1}^{N_{\rm dat}} \left(F_i^{(\rm art)(k)} - F_i^{(\rm net)(k)} \right) \left(\cos_{ij}^{-1} \right) \left(F_j^{(\rm art)(k)} - F_j^{(\rm net)(k)} \right)$$

• Set of trained NNs \rightarrow Representation of the PDFs probability density

$$\left\langle \mathcal{F}\left[q_{lpha}^{(\mathrm{net})}
ight]
ight
angle =rac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left[q_{lpha}^{(\mathrm{net})(k)}
ight],$$

The NNPDF approach

• Generate N_{rep} Monte Carlo replicas $F_i^{(art)(k)}$ of the original data $F_i^{(exp)}$

$$F_{i}^{(\text{art})(k)} = \left(1 + r_{N}^{(k)}\sigma_{N}\right) \left(F_{i}^{(\text{exp})} + \sum_{p=1}^{N_{\text{sys}}} r_{p}^{(k)}\sigma_{i,p} + r_{i}^{(k)}\sigma_{i,s}\right)$$

• Evolve each PDF parametrized with Neural Nets $q_{\alpha}^{(net)(k)}(x, Q_0^2)$ $F_i^{(net)(k)}(x, Q^2) = C_{i\alpha}(x, \alpha(Q^2)) \otimes q_{\alpha}^{(net)(k)}(x, Q^2)$

• Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left(\text{cov}_{ij}^{-1} \right) \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

• Set of trained NNs \rightarrow Representation of the PDFs probability density

• Generate N_{rep} Monte Carlo replicas $F_i^{(art)(k)}$ of the original data $F_i^{(exp)}$

$$F_{i}^{(\text{art})(k)} = \left(1 + r_{N}^{(k)}\sigma_{N}\right)\left(F_{i}^{(\text{exp})} + \sum_{p=1}^{N_{\text{sys}}} r_{p}^{(k)}\sigma_{i,p} + r_{i}^{(k)}\sigma_{i,s}\right)$$

• Evolve each PDF parametrized with Neural Nets $q_{\alpha}^{(net)(k)}(x, Q_0^2)$ $F_i^{(net)(k)}(x, Q^2) = C_{i\alpha}(x, \alpha(Q^2)) \otimes q_{\alpha}^{(net)(k)}(x, Q^2)$

• Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left(\text{cov}_{ij}^{-1} \right) \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

• Set of trained NNs \rightarrow Representation of the PDFs probability density

16

The NNPDF approach

• Generate N_{rep} Monte Carlo replicas $F_i^{(art)(k)}$ of the original data $F_i^{(exp)}$

$$F_{i}^{(\text{art})(k)} = \left(1 + r_{N}^{(k)}\sigma_{N}\right)\left(F_{i}^{(\text{exp})} + \sum_{p=1}^{N_{\text{sys}}} r_{p}^{(k)}\sigma_{i,p} + r_{i}^{(k)}\sigma_{i,s}\right)$$

- Evolve each PDF parametrized with Neural Nets $q_{\alpha}^{(net)(k)}(x, Q_0^2)$ $F_i^{(net)(k)}(x, Q^2) = C_{i\alpha}(x, \alpha(Q^2)) \otimes q_{\alpha}^{(net)(k)}(x, Q^2)$
- Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left(\text{cov}_{ij}^{-1} \right) \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

 $\bullet~$ Set of trained NNs \rightarrow Representation of the PDFs probability density

$$\left\langle \mathcal{F}\left[q_{\alpha}^{(\mathrm{net})}
ight]
ight
angle =rac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left[q_{\alpha}^{(\mathrm{net})(k)}
ight]$$

• Generate N_{rep} Monte Carlo replicas $F_i^{(art)(k)}$ of the original data $F_i^{(exp)}$

$$F_{i}^{(\text{art})(k)} = \left(1 + r_{N}^{(k)}\sigma_{N}\right)\left(F_{i}^{(\text{exp})} + \sum_{p=1}^{N_{\text{sys}}} r_{p}^{(k)}\sigma_{i,p} + r_{i}^{(k)}\sigma_{i,s}\right)$$

- Evolve each PDF parametrized with Neural Nets $q_{\alpha}^{(net)(k)}(x, Q_0^2)$ $F_i^{(net)(k)}(x, Q^2) = C_{i\alpha}(x, \alpha(Q^2)) \otimes q_{\alpha}^{(net)(k)}(x, Q^2)$
- Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left(\text{cov}_{ij}^{-1} \right) \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

 $\bullet~$ Set of trained NNs $\rightarrow~$ Representation of the PDFs probability density

$$\left\langle \mathcal{F}\left[q_{lpha}^{(\mathrm{net})}
ight]
ight
angle =rac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left[q_{lpha}^{(\mathrm{net})(k)}
ight]$$

The NNPDF approach

Juan Rojo (LPTHE)

THE NNPDF DIS ANALYSIS: NNPDF1.0

NNPDF1.0 - details

- NNPDF1.0 → PDF set determination from all relevant DIS experimental data (~ 3000 data points)
- 5 PDFs ($\Sigma(x)$, V(x), $T_3(x)$, $\Delta_S(x)$ and g(x)) parametrized with NNs at $Q_0^2 = 2 \text{ GeV}^2$ (37 free params each)
- Valence and momentum sum rules incorporated
- Flavour assumptions $\rightarrow s(x) = \bar{s}(x) = C_s/2(\bar{u}(x) + \bar{d}(x))$
- NLO evolution with ZM-VFN scheme for heavy quarks

Data set

Juan Rojo (LPTHE)

Results - Singlet PDFs

ISMD08, 18/09/2008

13 / 29

SMD 2008 DESY

Results - Singlet PDFs

- NNPDF1.0 uncertainties faithfully determined
- PDF error larger than other PDF sets in some regions (extrapolation), smaller in others (not artificially inflated by large $\Delta \chi^2 \sim 50/100$)
- In general close to CTEQ6.5 in data region

Results - Singlet PDFs

- NNPDF1.0 uncertainties faithfully determined
- PDF error larger than other PDF sets in some regions (extrapolation), smaller in others (not artificially inflated by large $\Delta \chi^2 \sim 50/100$)
- In general close to CTEQ6.5 in data region

Results - Singlet PDFs

Individual PDF replicas (*i.e.* the gluon) span uncertainty range free from functional form biases ($N_{\rm rep} = 25$)

Results - Singlet PDFs

Individual PDF replicas (*i.e.* the gluon) span uncertainty range free from functional form biases ($N_{\rm rep} = 100$)

Results - Valence PDFs

14 / 29

Juan Rojo (LPTHE)

Neural Network Parton Distributions

Parton correlations

Compute parton-parton correlations using textbook statistics

$$\rho\left[q(x_1, Q_1^2)\widetilde{q}(x_2, Q_2^2)\right] = \frac{\left\langle q(x_1, Q_1^2)\widetilde{q}(x_2, Q_2^2)\right\rangle_{\rm rep} - \left\langle q(x_1, Q_1^2)\right\rangle_{\rm rep} \left\langle \widetilde{q}(x_2, Q_2^2)\right\rangle_{\rm rep}}{\sigma_q(x_1, Q_1^2)\sigma_{\widetilde{q}}(x_2, Q_2^2)} \quad \blacksquare$$

Juan Rojo (LPTHE)

Neural Network Parton Distributions

ISMD08, 18/09/2008 15 / 29

Results - Predictions for LHC

	$\sigma_{W^+} \mathcal{B}_{I^+ \nu_I}$	$\Delta\sigma_{W^+}/\sigma_{W^+}$	$\sigma_{W} - \mathcal{B}_{l-\nu_{l}}$	$\Delta \sigma_{W^-} / \sigma_{W^-}$	$\sigma_Z \mathcal{B}_{l+l-}$	$\Delta \sigma_Z / \sigma_Z$
NNPDF1.0	11.83 ± 0.26	2.2%	8.41 ± 0.20	2.4%	1.95 ± 0.04	2.1%
CTEQ6.1	11.65 ± 0.34	2.9%	8.56 ± 0.26	3.0%	1.93 ± 0.06	3.1%
MRST01	11.71 ± 0.14	1.2%	8.70 ± 0.10	1.1%	1.97 ± 0.02	1.0%
CTEQ6.5	12.54 ± 0.29	2.3%	9.19 ± 0.22	2.4%	2.07 ± 0.04	1.9%

BENCHMARK PARTONS REVISITED

- Does the NNPDF approach solve the problem with MRST benchmark partons?
- Compare NNPDF1.0 partons with a PDF set obtained from the reduced data set of the HERA-LHC workshop
- For a complete NNPDF version of the HERA-LHC PDF benchmark, see A. Piccione's talks at PDF4LHC meetings and HERA-LHC workshop proceedings

PDFs inconsistent by many $\sigma!$ in data region in standard approach ...

... but not within the NNPDF approach: Full DIS fit

19 / 29

Juan Rojo (LPTHE)

Neural Network Parton Distributions

ISMD08, 18/09/2008

... but not within the NNPDF approach: Benchlike fit

19 / 29

Juan Rojo (LPTHE)

- NNPDF1.0 consistent with MRST global fit
- NNPDF benchlike consistent with both NNPDF1.0 and MRST global and benchmark fits
- Error determination understimated in standard aproach to PDF determination (central values ok)

Problems also cured in (low-x) extrapolation region

DESY

Same for other PDFs - $\overline{d}(x, Q_0^2)$ in data region

Juan Rojo (LPTHE)

Neural Network Parton Distributions

Same for other PDFs - $\overline{d}(x, Q_0^2)$ in extrapolation region

Juan Rojo (LPTHE)

OUTLOOK

- NNPDF1.0 \rightarrow DIS NNPDF set completed and available from the LHAPDF interface
- Faithful determination of uncertainties \rightarrow Suited to to precision LHC physics
- Work in progress → More general flavour assumptions (s(x) & s̄(x)), addition of hadronic data and heavy quark effects, and detailed studies of PDF uncertainty impact on LHC physics

Thanks for your attention!

- NNPDF1.0 \rightarrow DIS NNPDF set completed and available from the LHAPDF interface
- Faithful determination of uncertainties \rightarrow Suited to to precision LHC physics
- Work in progress → More general flavour assumptions (s(x) & s̄(x)), addition of hadronic data and heavy quark effects, and detailed studies of PDF uncertainty impact on LHC physics

Thanks for your attention!

EXTRA MATERIAL

Interpretation of benchmark PDFs

R. Thorne, HERA-LHC 2006 proceedings

errors, but these are relatively small. However, the partons extracted using a very limited data set are completely incompatible, even allowing for the uncertainties, with those obtained from a global fit with an identical treatment of errors and a minor difference in theoretical procedure. This implies that the inclusion of more data from a variety of different experiments moves the central values of the partons in a manner indicating either that the different experimental data are inconsistent with each other, or that the theoretical framework is inadequate for correctly describing the full range of data. To a certain extent both explanations are probably true. Some data sets are not entirely consistent with each other (even if they are seemingly equally reliable). Also, there are a wide variety of reasons why NLO perturbative QCD might require modification for some data sets, or in some kinematic regions [89]. Whatever the reason for the inconsistency between the MRST benchmark partons and the MRST01 partons, the comparison exhibits the dangers in extracting partons from a very limited set of data and taking them seriously. It also clearly illustrates the problems in determining the true uncertainty on parton distributions.

The NNPDF approach

NNPDF1.0

Parametrization independence

Quantify statistical differences between PDF sets \rightarrow

Distances between two probability distributions which describe two sets of PDFs (*i.e.* the gluon $\{g_{ik}^{(1)} = g_k^{(1)}(x_i, Q_0^2)\}$):

$$oldsymbol{d}[g]
angle = \sqrt{\left\langle \left(\langle g_i
angle_{(1)} - \langle g_i
angle_{(2)}
ight)^2 \ \sigma^2[g_i^{(1)}] + \sigma^2[g_i^{(2)}]
ight
angle_{ ext{dat}}}
ight
angle_{ ext{dat}}$$

 $\langle d[g]
angle
ightarrow$ Distance between PDF in units of the variance of expectation value $\langle g
angle$

For statistically equivalent PDF sets: $\langle d[g] \rangle \sim \langle d[\sigma_g] \rangle \sim 1$

Parametrization independence

Check stability for NNs arch. from 2-5-3-1 to 2-4-3-1 (6 params less per PDF)

	Data	Extrapolation
$\Sigma(x, Q_0^2)$	$5 \ 10^{-4} \le x \le 0.1$	$10^{-5} \le x \le 10^{-4}$
$\langle d[q] \rangle$	0.98	1.25
$\langle d[\sigma] \rangle$	1.14	1.34
$g(x, Q_0^2)$	$5 \ 10^{-4} \le x \le 0.1$	$10^{-5} \le x \le 10^{-4}$
$\langle d[q] \rangle$	1.52	1.15
$\langle d[\sigma] \rangle$	1.16	1.07
$T_3(x, Q_0^2)$	$0.05 \le x \le 0.75$	$10^{-3} \le x \le 10^{-2}$
$\langle d[q] \rangle$	1.00	1.11
$\langle d[\sigma] \rangle$	1.76	2.27
$V(x, Q_0^2)$	$0.1 \le x \le 0.6$	$3 \ 10^{-3} \le x \le 3 \ 10^{-2}$
$\langle d[q] angle$	1.30	0.90
$\langle d[\sigma] \rangle$	1.10	0.98
$\Delta_S(x,Q_0^2)$	$0.1 \le x \le 0.6$	$3 \ 10^{-3} \le x \le 3 \ 10^{-2}$
$\langle d[q] angle$	1.04	1.91
$\langle d[\sigma] \rangle$	1.44	1.80

Dynamical stopping

In a standard fit, look for minimum χ^2 for given parametrization.

- If basis too large \rightarrow convergence never reached
- $\bullet \ \ \mathsf{If \ basis \ too \ small} \to \mathsf{parametrization \ bias}$

How can one obtain an unbiased compromise? For NNs, smoothness decreases as fit quality improves \rightarrow Stop before fitting statistical noise (overlearning).

- Divide the data set into training and validation sets
- 2 Minimize χ^2 of training set, monitor χ^2 of validation set
- **③** Stop minimization when validation χ^2 begins to rise (overlearning)

Dynamical stopping

Stop minimization when validation χ^2 begins to rise (overlearning)

Juan Rojo (LPTHE)

Dynamical stopping

Stop minimization when validation χ^2 begins to rise (overlearning)

Problems in standard PDF determination approach

- Consensus (PDF4LHC workshop): serious problem in PDF fits
- Problem summarized by the HERA-LHC benchmark fit: Benchmark partons do not agree with global fit partons within errors
- $\bullet~$ Implications $\rightarrow~$ either experiments are incompatible, or parametrizations not flexible enough, or both
- Global fit solution \rightarrow Error blow-up by a factor $S = \sqrt{\Delta \chi^2/2.7}$ (B. Cousins, PDF4LHC) $\rightarrow S_{cteq} \sim 6$, $S_{mstw} \sim 4.5$ both in input measurements and in output PDFs (very large!)
- Need statistically reliable way to determine if such large values of S are indeed mandatory. Note Δχ² ~ 1 in DIS+DY fits (Alekhin)

Experimental data set

Experiment	Set	N _{dat}	x_{\min}	x_{max}	$Q^2_{\rm min}$	$Q_{\rm max}^2$	σ_{tot} (%)	F	Ref.
SLAC									
	SLACp	211 (47)	.07000	.85000	0.6	29.	3.6	$F_{2_i}^p$	[51]
	SLACd	211 (47)	.07000	.85000	0.6	29.	3.2	F_2^d	[51]
BCDMS	DODMO	251 (222)	07000	77000		020		r^{p}	[477]
	BCDMSd	254 (248)	07000	75000	1.0	230.	5.5	r ₂ F ^d	[41]
NMC	BODMOU	288 (245)	.00350	.47450	0.8	61.	5.0	F_2^p	[50]
NMC-nd		260 (153)	.00150	.67500	0.2	99.	2.1	F_{a}^{d}/F_{a}^{p}	[49]
ZEUS					0.2			- 27 - 2	[-0]
	Z97lowQ2	80	.00006	.03200	2.7	27.	4.9	$\tilde{\sigma}^{NC,e^+}$	[56]
	Z97NC	160	.00080	.65000	35.0	20000.	7.7	$\tilde{\sigma}^{NC,e^+}$	[56]
	Z97CC	29	.01500	.42000	280.0	17000.	34.2	$\tilde{\sigma}^{CC,e^+}$	[57]
	Z02NC	92	.00500	.65000	200.0	30000.	13.2	$\tilde{\sigma}^{NC,e}$	[58]
	Z02CC	26	.01500	.42000	280.0	30000.	40.2	$\tilde{\sigma}^{CC,e}$	[59]
	Z03NC	90	.00500	.65000	200.0	30000.	9.1	$\tilde{\sigma}^{NC,e^+}$	[60]
	Z03CC	30	.00800	.42000	280.0	17000.	31.0	$\tilde{\sigma}^{CC,e^+}$	[61]
H1									
	H197mb	67 (55)	.00003	.02000	1.5	12.	4.9	$\tilde{\sigma}^{NC,e^+}$	[52]
	H197lowQ2	80	.00016	.20000	12.0	150.	4.2	$\tilde{\sigma}^{NC,e^+}$	[52]
	H197NC	130	.00320	.65000	150.0	30000.	13.3	$\tilde{\sigma}^{NC,e^+}$	[53]
	H197CC	25	.01300	.40000	300.0	15000.	29.8	$\tilde{\sigma}^{CC,e^+}$	[53]
	H199NC	126	.00320	.65000	150.0	30000.	15.5	$\tilde{\sigma}^{NC,e}$	[54]
	H199CC	28	.01300	.40000	300.0	15000.	27.6	$\tilde{\sigma}^{CC,e}$	[54]
	H199NChy	13	.00130	.01050	100.0	800.	9.2	$\tilde{\sigma}^{NC,e^{-}}$	[55]
	H100NC	147	.00131	.65000	100.0	30000.	10.4	$\tilde{\sigma}^{NC,e^+}$	[55]
	H100CC	28	.01300	.40000	300.0	15000.	21.8	$\tilde{\sigma}^{CC,e^+}$	[55]
CHORUS	CHORUS	607 (471)	02000	65000	0.2	05	11.9	zν	[69]
	CHORUS	607 (471)	.02000	.65000	0.3	95. 95.	18.7	σ ^ν	[63]
FLH108		8	.00028	.00360	12.0	90.	69.2	F_L	[62]
(T) ()		0040 (0404)							

Juan Rojo (LPT<u>HE)</u>

Neural Network Parton Distributions

ISMD08, 18/09/2008

27 / 29

Statistical estimators

$\chi^2_{ m tot}$	1.34
$\langle E \rangle$	2.71
$\langle E_{ m tr} angle$	2.68
$\langle E_{\mathrm{val}} \rangle$	2.72
$\langle \mathrm{TL} \rangle$	824
$\langle \sigma^{(exp)} \rangle_{dat}$	$5.6 \ 10^{-2}$
$\left< \sigma^{(\rm net)} \right>_{\rm dat}$	$1.4 \ 10^{-2}$
$\left< \rho^{(exp)} \right>_{\mathrm{dat}}$	0.15
$\left< \rho^{(\text{net})} \right>_{\text{dat}}$	0.40
$\langle cov^{(exp)} \rangle_{dat}$	$1.0 \ 10^{-3}$
$\langle \operatorname{cov}^{(\operatorname{net})} \rangle_{\operatorname{dat}}$	$1.6 \ 10^{-4}$

Dependence with preprocessing

Data region								
	$n_v = 0.1$	$n_v = 0.5$	$m_v = 2$	$m_v = 4$	$n_s = 0.8$	$n_s = 1.6$	$m_s = 2$	$m_s = 4$
$\Sigma(x, Q_0^2)$								
$\langle d[q] \rangle$	1.34	1.25	1.37	2.14	1.72	1.38	1.45	1.64
$\langle d[\sigma] \rangle$	1.45	1.44	1.25	1.44	2.03	2.66	0.95	1.35
$g(x, Q_0^2)$								
$\langle d[q] \rangle$	1.31	1.30	2.69	1.15	3.06	2.08	1.20	1.74
$\langle d[\sigma] \rangle$	1.34	1.60	1.56	1.37	3.21	2.44	0.98	1.72
$T_3(x, Q_0^2)$								
$\langle d[q] \rangle$	1.97	2.48	8.35	9.74	1.31	3.23	1.03	1.41
$\langle d[\sigma] \rangle$	1.10	1.47	1.98	1.53	1.10	2.66	1.76	1.99
$V(x, Q_0^*)$								
(d[q])	11.03	1.55	3.61	5.60	0.94	2.12	1.25	3.54
$\langle d[\sigma] \rangle$	3.57	4.74	4.04	3.09	1.03	1.10	0.66	1.98
$\Delta_S(x, Q_0^*)$	0.00	0.00		0.00			0.80	0.00
(d[q])	2.00	2.29	7.51	2.36	1.14	1.70	0.76	0.92
(4[0])	1.20	0.20	1.17	0.00	1.00	1.55	0.91	2.00
Entropolation								
Extrapolation								
Extrapolation	$n_v = 0.1$	$n_v = 0.5$	$m_v = 2$	$m_v = 4$	$n_{s} = 0.8$	$n_s = 1.6$	$m_s = 2$	$m_s = 4$
Extrapolation $\Sigma(x, Q_0^2)$	$n_v = 0.1$	$n_v = 0.5$	$m_v = 2$	$m_v = 4$	$n_s = 0.8$	$n_s = 1.6$	m _s = 2	m _s = 4
Extrapolation $\Sigma(x, Q_0^2)$ $\langle d[q] \rangle$ $\langle d[-1)$	$n_v = 0.1$ 1.06	$n_v = 0.5$ 1.69	$m_v = 2$ 1.49	$m_v = 4$ 1.84	$n_s = 0.8$ 7.72 2.47	$n_s = 1.6$ 4.67	$m_s = 2$ 0.87 0.82	$m_s = 4$ 3.15
Extrapolation $\Sigma(x, Q_0^2)$ $\langle d q \rangle$ $\langle d q \rangle$ $\langle d q \rangle$	$n_v = 0.1$ 1.06 1.12	$n_v = 0.5$ 1.69 1.84	$m_v = 2$ 1.49 2.11	$m_v = 4$ 1.84 1.52	$n_s = 0.8$ 7.72 2.47	$n_s = 1.6$ 4.67 3.66	$m_s = 2$ 0.87 0.82	$m_s = 4$ 3.15 2.34
Extrapolation $\Sigma(x, Q_0^2)$ $\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $g(x, Q_0^2)$ $\langle d[\sigma] \rangle$	$n_v = 0.1$ 1.06 1.12 1.41	$n_v = 0.5$ 1.69 1.84 2.32	$m_v = 2$ 1.49 2.11 2.33	$m_v = 4$ 1.84 1.52 1.34	$n_s = 0.8$ 7.72 2.47	$n_s = 1.6$ 4.67 3.66 4.73	$m_s = 2$ 0.87 0.82	$m_s = 4$ 3.15 2.34 3.49
Extrapolation $\Sigma(x, Q_0^2)$ $\langle d q \rangle$ $\langle d \sigma \rangle$ $g(x, Q_0^2)$ $\langle d q \rangle$ $\langle d q \rangle$ $\langle d q \rangle$	$n_v = 0.1$ 1.06 1.12 1.41 1.41	$n_v = 0.5$ 1.69 1.84 2.32 1.86	$m_v = 2$ 1.49 2.11 2.33 1.95	$m_v = 4$ 1.84 1.52 1.34 1.30	$n_s = 0.8$ 7.72 2.47 1.62 2.15	$n_s = 1.6$ 4.67 3.66 4.73 2.72	$m_s = 2$ 0.87 0.82 1.04 0.81	$m_s = 4$ 3.15 2.34 3.49 2.38
Extrapolation $\Sigma(x, Q_0^2)$ $\langle d q \rangle$ $\langle d \sigma \rangle$ $g(x, Q_0^2)$ $\langle d \sigma \rangle$ $\langle d \sigma \rangle$ $T_{\sigma}(x, Q_0^2)$	$n_v = 0.1$ 1.06 1.12 1.41 1.41	$n_v = 0.5$ 1.69 1.84 2.32 1.86	$m_v = 2$ 1.49 2.11 2.33 1.95	$m_v = 4$ 1.84 1.52 1.34 1.30	$n_s = 0.8$ 7.72 2.47 1.62 2.15	$n_s = 1.6$ 4.67 3.66 4.73 2.72	$m_s = 2$ 0.87 0.82 1.04 0.81	$m_s = 4$ 3.15 2.34 3.49 2.38
Extrapolation $\Sigma(x, Q_0^2)$ $\langle d q \rangle$ $\langle d \sigma \rangle$ $g(x, Q_0^2)$ $\langle d q \rangle$ $\langle d \sigma \rangle$ $\langle d \sigma \rangle$ $\langle d \sigma \rangle$ $\langle d \sigma \rangle$	$n_v = 0.1$ 1.06 1.12 1.41 1.41 1.71	$n_v = 0.5$ 1.69 1.84 2.32 1.86 2.70	$m_v = 2$ 1.49 2.11 2.33 1.95 7.40	$m_v = 4$ 1.84 1.52 1.34 1.30 1.60	$n_s = 0.8$ 7.72 2.47 1.62 2.15 1.36	$n_s = 1.6$ 4.67 3.66 4.73 2.72 2.37	$m_s = 2$ 0.87 0.82 1.04 0.81 0.78	$m_s = 4$ 3.15 2.34 3.49 2.38 0.91
Extrapolation $\Sigma(x, Q_0^2)$ $\langle d[q] \rangle$ $\langle d[\sigma] \rangle$ $g(x, Q_0^2)$ $\langle d[q] \rangle$ $\langle d[q] \rangle$ $\langle d[q] \rangle$ $\langle d[q] \rangle$ $\langle d[q] \rangle$ $\langle d[q] \rangle$	$n_v = 0.1$ 1.06 1.12 1.41 1.41 1.71 4.83	$n_v = 0.5$ 1.69 1.84 2.32 1.86 2.70 4.54	$m_v = 2$ 1.49 2.11 2.33 1.95 7.40 2.89	$m_v = 4$ 1.84 1.52 1.34 1.30 1.60 5.09	$n_s = 0.8$ 7.72 2.47 1.62 2.15 1.36 1.00	$n_s = 1.6$ 4.67 3.66 4.73 2.72 2.37 1.65	$m_s = 2$ 0.87 0.82 1.04 0.81 0.78 0.92	$m_s = 4$ 3.15 2.34 3.49 2.38 0.91 1.26
Extrapolation $\Sigma(x, Q_0^2)$ $\langle d q \rangle$ $\langle d \sigma \rangle$ $g(x, Q_0^2)$ $\langle d \sigma \rangle$ $T_3(x, Q_0^2)$ $\langle d \sigma \rangle$ $\langle d \sigma \rangle$	$n_v = 0.1$ 1.06 1.12 1.41 1.41 1.71 4.83	$n_v = 0.5$ 1.69 1.84 2.32 1.86 2.70 4.54	$m_v = 2$ 1.49 2.11 2.33 1.95 7.40 2.89	$m_v = 4$ 1.84 1.52 1.34 1.30 1.60 5.09	$n_s = 0.8$ 7.72 2.47 1.62 2.15 1.36 1.00	$n_s = 1.6$ 4.67 3.66 4.73 2.72 2.37 1.65	$m_s = 2$ 0.87 0.82 1.04 0.81 0.78 0.92	$m_s = 4$ 3.15 2.34 3.49 2.38 0.91 1.26
Extrapolation $\Sigma(x, Q_0^z)$ $\langle d q \rangle$ $\langle d q \rangle$	$n_v = 0.1$ 1.06 1.12 1.41 1.41 1.41 1.71 4.83 14.85	$n_v = 0.5$ 1.69 1.84 2.32 1.86 2.70 4.54 3.23	$m_v = 2$ 1.49 2.11 2.33 1.95 7.40 2.89 3.75	$m_v = 4$ 1.84 1.52 1.34 1.30 1.60 5.09 2.55	$n_s = 0.8$ 7.72 2.47 1.62 2.15 1.36 1.00 0.86	$n_s = 1.6$ 4.67 3.66 4.73 2.72 2.37 1.65 2.52	$m_s = 2$ 0.87 0.82 1.04 0.81 0.78 0.92 1.26	$m_s = 4$ 3.15 2.34 3.49 2.38 0.91 1.26 1.34
Extrapolation $\sum \{x, Q_0^z\}$ $\langle d q \rangle$ $\langle d \sigma \rangle$	$n_v = 0.1$ 1.06 1.12 1.41 1.41 1.41 1.71 4.83 14.85 2.65	$n_v = 0.5$ 1.69 1.84 2.32 1.86 2.70 4.54 3.23 5.08	$m_v = 2$ 1.49 2.11 2.33 1.95 7.40 2.89 3.75 3.94	$m_v = 4$ 1.84 1.52 1.34 1.30 1.60 5.09 2.55 2.78	$n_s = 0.8$ 7.72 2.47 1.62 2.15 1.36 1.00 0.86 1.20	$n_s = 1.6$ 4.67 3.66 4.73 2.72 2.37 1.65 2.52 0.87	$m_s = 2$ 0.87 0.82 1.04 0.81 0.78 0.92 1.26 0.62	$m_s = 4$ 3.15 2.34 3.49 2.38 0.91 1.26 1.34 2.25
Extrapolation $\sum(x, Q_0^a)$ (d[q]) (d[q]) (d[q]) (d[q]) (d[q]) (d[q]) (f_3(x, Q_0^a) (d[q]) (d[q]) (V(x, Q_0^a) (V(x, Q_0^a) (d[q]) (d[q	$n_v = 0.1$ 1.06 1.12 1.41 1.41 1.41 1.71 4.83 14.85 2.65	$n_v = 0.5$ 1.69 1.84 2.32 1.86 2.70 4.54 3.23 5.08	$m_v = 2$ 1.49 2.11 2.33 1.95 7.40 2.89 3.75 3.94	$m_v = 4$ 1.84 1.52 1.34 1.30 1.60 5.09 2.55 2.78	$n_s = 0.8$ 7.72 2.47 1.62 2.15 1.36 1.00 0.86 1.20	$n_s = 1.6$ 4.67 3.66 4.73 2.72 2.37 1.65 2.52 0.87	$m_s = 2$ 0.87 0.82 1.04 0.81 0.78 0.92 1.26 0.62	$m_s = 4$ 3.15 2.34 3.49 2.38 0.91 1.26 1.34 2.25
Extrapolation $\begin{array}{c} \Sigma(x,Q_{0}^{2}) \\ \hline \\ (d q) \\ (d q) \\ (d q) \\ (d q) \\ \hline \\ T_{3}(x,Q_{0}^{2}) \\ (d q) \\ \hline \end{array}$	$n_v = 0.1$ 1.06 1.12 1.41 1.41 1.41 1.71 4.83 14.85 2.65 1.25	$n_v = 0.5$ 1.69 1.84 2.32 1.86 2.70 4.54 3.23 5.08 2.50	$m_v = 2$ 1.49 2.11 2.33 1.95 7.40 2.89 3.75 3.94 7.75	$m_v = 4$ 1.84 1.52 1.34 1.30 1.60 5.09 2.55 2.78 2.48	$n_s = 0.8$ 7.72 2.47 1.62 2.15 1.36 1.00 0.86 1.20 1.09	$n_s = 1.6$ 4.67 3.66 4.73 2.72 2.37 1.65 2.52 0.87 1.47	$m_s = 2$ 0.87 0.82 1.04 0.81 0.78 0.92 1.26 0.62 1.09	$m_s = 4$ 3.15 2.34 3.49 2.38 0.91 1.26 1.34 2.25 0.83

