

Overview of LHC observables for PDF fits

Juan Rojo CERN, PH Division, TH Unit

> PDF4LHC Workshop CERN, 17/04/2013

PDF whishlist at the LHC

Traditional Finclusive jets and dijets, central and forward: large-x quarks and gluons

Final Inclusive W and Z production and asymmetries: quark flavor separation, strangeness

New@LHC 🐓 Isolated photons, photons+jets: **medium-x gluons**

- W production with charm quarks: **direct handle on strangeness**
- W and Z production at high p_T: medium and small-x gluon
- Giff resonance Drell-Yan and W production at high mass: quarks at large-x
- Low mass Drell-Yan production: **small-x gluon**
- Fop quark cross-sections and differential distributions: large-x gluon

Speculative Z+charm: intrinsic charm PDF

- Single top production: gluon and bottom PDFs
- Charmonium production: small-x gluon
- Open heavy quark production: gluon and intrinsic heavy flavor

Jet production

- $\stackrel{\scriptstyle \odot}{=}$ Traditional source of information on the **gluon** in global PDF fits (as well as for α_s)
- For **p**_T < **800 GeV**, **quark-gluon** scattering dominates, for higher **p**_T one is probing **quark-quark**
- The higher the p_T, the higher the Bjorken-x value one is probing

Important since large-x PDFs have very large uncertainties

Also substantial dependence on non-perturbative parameters from hadronization and UE

Jet production

ATLAS 2010 data: systematic uncertainties large, moderate improvement in gluon PDF

© Dijet data typically worse description than inclusive jets due to *scale choice issues*

PDF sensitivity enhanced in cross-section ratios between LHC energies (see Mark's talk, more later)

Inclusive vector boson production

Final Inclusive W and Z production probes **quark flavor separation** in a broad range of x

Solution Most useful: separate differential distributions of W+, W- and Z together with the corresponding covariance matrix

Data available: ATLAS and CMS 2010 data, CMS electron W asymmetry 2011 data

Inclusive vector boson production

Final sector in the production improves the PDF uncertainties in antiquarks (NNPDF2.3), and validates an extended MSTW parametrization based on Chebyshev polynomials

A QCD analysis of the ATLAS W, Z data allows to determine the strange PDF. ATLAS analysis based on HERAfitter indicates strange ~ down. NNPDF2.3 analysis confirms central value, but larger uncertainties

Isolated photons

Photon production directly sensitive to the gluon via QCD Compton scattering (also Mark's talk)

Photon production was used in **early PDF fits** for gluon constraints, then replaced by jets due to poor data/theory agreement of **some fixed-target data**

Free Recently reanalysis of all **isolated collider** photon data with the most updated theory, **JetPhox+NNPDF2.1**, and found **overall agreement**

Moderate reduction of gluon PDF errors from LHC photon data, in the region relevant for Higgs production in gluon fusion

NNPDF2.1 NLO + IsoPhotons

0.01 0.02

Х

Seed a **fast interface** to include photon data in PDF fits

Need more precise data for photon+jet production

NNPDF2.1 NLO

LHC 7 TeV isolated-y data

Q = 100 GeV

Juan Rojo

1.15

SHOU PCE

0.95

0.002

Ratio of

D'Enterria and J. R, arXiv:1202.1762

0.1 0.2

W production with charm quarks

Strangeness is the worst known of all light quark PDFs
 In global PDF fits determined by neutrino charm production data (dimuon data, NuTeV+CHORUS)

W+c data from ATLAS and CMS, total cross-sections and differential distributions, instrumental to conclusively determine strangeness from collider-only data

Recent results from CMS are consistent with the strange PDF determined in global fits from neutrino data

W production with charm quarks

 $\stackrel{\circ}{\Rightarrow}$ A PDF fit based only on **HERA**, **Tevatron and LHC** data (with inclusive W, Z data) favors a **symmetric strange PDF**, **r**_s ~ **1**, but with large uncertainties

 $\stackrel{\scriptstyle \odot}{\scriptstyle \odot}$ Qualitatively, the CMS W+c direct measurement consistent with the strangeness suppression measured in neutrino charm data, $r_s \sim 0.5$, symmetric strange disfavored (consistent within uncertainties)

♀ Ongoing (NNPDF, HERAfitter): include the W+c differential distributions in **PDF fits** to **quantify** impact on strangeness

Solution No public results from ATLAS yet

Probing the gluon with high $p_T Z$ production

In global PDF fits, the medium and large-x **gluon** is directly constrained by **jet data** only

Given the crucial role of the gluon for LHC physics, complementary LHC observables directly sensitive the gluon would be beneficial

One possibility is Z/W boson production at large pT (in association with jets). Cross section > 80% dominated by gluon-quark scattering

Measurement should be only with leptons, double differential in p_T and rapidity, thus **small systematic errors** feasible

Similar kinematic region as for **Higgs production** in gluon fusion

Probing the gluon with high $p_T W/Z$ ratios

While the **absolute W and Z pt distributions** sensitive to the **gluon PDF**, the **ratio of W+ and W-** sensitive to the **up/down ratio** (with reduced theoretical and experimental uncertainties): see **Graeme's talk**

High Mass Drell-Yan

In global PDF fits, fixed target Drell-Yan data are instrumental for quark flavor separation, but several issues: low energies (thus larger scale errors), nuclear corrections, no covariance matrix: we would like to replace them with collider data

$$x_1^0 = \sqrt{\tau} e^y = \frac{M}{\sqrt{s}} e^y$$
, $x_2^0 = \sqrt{\tau} e^{-y} = \frac{M}{\sqrt{s}} e^{-y}$

At the LHC, **large mass DY** can be used to large-x quarks and antiquarks: **essential for high mass New Physics searches (see Stefano's talk)**

- At large masses, crucial to properly account **for electroweak corrections and photon induced processes**
- Preliminary 7 TeV data available both from ATLAS and CMS

Low Mass Drell-Yan

Low mass DY could constraints small-x gluon, but need resummed calculations for reliable results (Simone's talk)

Potentially relevant for tests of **new regimes of QCD**, like saturation models, or high energy scenarios

Data available from CMS and LHCb, what about ATLAS?

PDF sensitivity enhanced by the **forward region** in LHCb kinematics

For quark pair production at the LHC is **directly sensitive to the gluon luminosity**, thus provides a potential new observable to constrain gluons in **global PDF analysis**

Free availability of the **full NNLO calculation** provides the first ever hadronic observable, **directly sensitive to the gluon**, that can be included in a **NNLO global fit**

	TeVatron	LHC 7 TeV	LHC 8 TeV	LHC 14 TeV
gg	15.4%	84.8%	86.2%	90.2%
$qg + \bar{q}g$	-1.7%	-1.6%	-1.1%	0.5%
qq	86.3%	16.8%	14.9%	9.3%

In addition, reduced non-perturbative corrections as compared to photons and jets

Contribution to the NNLO+NNLL cross section from different subprocesses

In recent paper we explored the **phenomenology of the NNLO top cross-section**, here show an overview of selected results

Czakon, Mangano, Mitov, Rojo, arXiv:1303.7215

Generations at NNLO+NNLL with top++2.0 for different PDF sets with the associated theoretical uncertainties

 $\stackrel{\scriptstyle \odot}{=}$ Top mass fixed to $m_t = 173.3$ GeV. Assume $\delta m_t = 1$ GeV, and $\delta \alpha_S = 0.007$

Parametric uncertainties (PDFs, m_t , α_s) added in quadrature, then linearly to scale uncertainty

Generation Compare to the most precise ATLAS and CMS 7 and 8 TeV data

When available, correct cross section to mt = 173.3 GeV

Most PDF sets provide a good quantitative description of Tevatron and LHC top data

$$\chi^2 = \sum_{i=1}^{N_{\text{dat}}} \frac{\left(\sigma_{t\bar{t}}^{(\text{exp})} - \sigma_{t\bar{t}}^{(\text{th})}\right)^2}{\delta_{\text{tot}}^{(\text{exp})2}}$$
$$P = \frac{1}{N_{\text{dat}}} \sum_{i=1}^{N_{\text{dat}}} \frac{\left(\sigma_{t\bar{t}}^{(\text{exp})} - \sigma_{t\bar{t}}^{(\text{th})}\right)^2}{\delta_{\text{tot}}^{(\text{exp})2} + \delta_{\text{tot}}^{(\text{th})2}}$$

	$\chi^2_{ m tev}$	$\chi^2_{ m lhc7}$	$\chi^2_{ m lhc8}$	$\chi^2_{ m tot}$	$\chi^2_{\rm tot}/N_{\rm dat}$	Р
AMB11	3.5	31.4	5.3	40.2	8.0	3.2
CT10	0.4	3.3	1.7	5.3	1.1	0.3
HERAPDF15	0.0	6.1	3.1	9.2	1.8	0.5
MSTW08	1.3	3.1	1.6	6.0	1.2	0.4
NNPDF2.3	0.9	3.4	2.0	6.3	1.3	0.4

LHC top data already discriminates between PDF sets

PDF4LHC workshop, CERN, 17/04/2013

- Top quark cross-section data **discriminates between PDF sets**
- In addition, it can also be used to **reduce the PDF uncertaintie**s within a single PDF set
- Final of the second sec

For quark cross-section data reduces the PDF uncertainty in the large-x gluon by up to 20%

The impact is restricted to the region between
0.1<x<0.5, where the correlation between the gluon and the top cross section is most significant

PDF fits based on **reduced datasets**, such as HERAPDF, display **large PDF uncertainties for the gluon** due to the lack of direct constraints

Fop quark data can be included in a NNLO fit based on HERA data

Substantial reduction of PDF uncertainties

The HERA+Top gluon PDF is close to the gluon from the global PDF fit

Generation of the optimized of the optiz

Full experimental covariance matrix available

NNLO not available, only NLO + resummation for some distributions

Cross section Ratios between 2.76,7 and 8 TeV

The staged increase of the LHC beam energy provides a new class of interesting observables: cross section ratios for different beam energies

$$R_{E_2/E_1}(X) \equiv \frac{\sigma(X, E_2)}{\sigma(X, E_1)} \quad R_{E_2/E_1}(X, Y) \equiv \frac{\sigma(X, E_2)/\sigma(Y, E_2)}{\sigma(X, E_1)/\sigma(Y, E_1)}$$

- These ratios can be computed with very high precision due to the correlation of theoretical uncertainties at different energies
- **Experimentally** these ratios can also be measured accurately since many systematics, like luminosity or jet energy scale, **cancel partially in the ratio**s
- These ratios allow **stringent precision tests of the SM**, in particular **PDF discrimination**

Cross section Ratios between 2.76,7 and 8 TeV

Cross section ratios cancel most of theory systematics, PDFs dominant remainder, specially at large masses 0/7 ToV

	0//	IEV		
Cross Section	$R^{\mathrm{th,nnpdt}}$	$\delta_{\rm PDF}(\%)$	δ_{α_s} (%)	δ_{scales} (%)
$t\bar{t}/Z$	2.12	± 1.3	-0.8 - 0.8	-0.4 - 1.1
$t\bar{t}$	3.90	± 1.1	-0.5 - 0.7	-0.4 - 1.1
Z	1.84	± 0.7	-0.1 - 0.3	-0.3 - 0.2
W^+	1.75	± 0.7	-0.0 - 0.3	-0.3 - 0.2
W^-	1.86	± 0.6	-0.1 - 0.3	-0.3 - 0.1
W^+/W^-	0.94	± 0.3	-0.0 - 0.0	-0.0 - 0.0
W/Z	0.98	± 0.1	-0.1 - 0.0	-0.0 - 0.0
ggH	2.56	± 0.6	-0.1 - 0.1	-0.9 - 1.0
$t\bar{t}(M_{tt} \ge 1 \text{ TeV})$	8.18	± 2.5	-1.3 - 1.1	-1.6 - 2.1
$t\bar{t}(M_{\rm tt} \ge 2 {\rm ~TeV})$	24.9	± 6.3	-0.0 - 0.3	-3.0 - 1.1
$\sigma_{\rm jet}(p_T \ge 1 { m TeV})$	15.1	± 2.1	-0.4 - 0.0	-1.9 - 2.4
$\sigma_{\rm jet}(p_T \ge 2 {\rm TeV})$	182	\pm 7.7	-0.3 - 0.2	-5.7 - 4.0

21

Cross section ratios should be pursued as a novel approach to constrain PDF

First measurement of cross section ratios by ATLAS: jet cross sections between 7 and 2.76 TeV

Reduced experimental and theory (scale) uncertainties, potentially can improve the sensitivity to PDFs of 7 TeV ATLAS jet data alone

PDF4LHC workshop, CERN, 17/04/2013

PDF whishlist at the LHC

Solution Section Full NNLO calculation, exp. data extending to higher pt with smaller systematics

Final Inclusive **W** and **Z** production and asymmetries: *update to 2011, 2012 data, correlation between W,Z and between experiments, photon-induced effects*

Solated **photons and photon+jets**: *full NNLO, fast interface, experimental covariance matrix, extend high pt coverage, covariance matrix, reduced systematics*

W production with charm: results from ATLAS, update to 2012 data, quantify impact in strangeness

 $\stackrel{\circ}{\Rightarrow}$ **W and Z production at high p**_T: *full NNLO, experimental measurements in format suitable for PDF analysis*

General Off resonance **Drell-Yan and W production at high mass**: update to 8 TeV, validation of NNLO codes and electroweak corrections

Solution: Understand better theory systematics

Top quark cross-sections and differential distributions: *full NNLO for differential, update to full 8 TeV dataset*

Cross-section ratios between 2.76, 7 and 8 TeV: *measure in other processes on top of jets*

EXTRA MATERIAL

Dependence on the top quark mass

Compare total theory uncertainty with and without top quark mass uncertainty

 $$\widehat{\}$ Thanks to the improvement of the NNLO calculation, now all theory uncertainties of similar size, only **mild reduction (< 1.5%)** in the total theory errors if one assumes that $\delta_{mt} \approx 0$

Collider	$\sigma_{tt} \ (\mathrm{pb})$	$\delta_{\text{PDF+scales}+\alpha_{s}}$ (pb)	$\delta_{\rm tot} \ ({\rm pb})$
Tevatron	7.258	$+0.267 (+3.7\%) \\ -0.352 (-4.9\%)$	$+0.390 (+5.4\%) \\ -0.469 (-6.5\%)$
LHC 7 TeV	172.7	$^{+10.4}_{-11.8}~(+6.0\%)$	$+12.5 (+7.2\%) \\ -13.7 (-8.0\%)$
LHC 8 TeV	248.1	$^{+14.0}_{-16.2}$ $(+5.6\%)$	$^{+17.1}_{-19.1} (+6.9\%) (-7.7\%)$
LHC 14 TeV	977.5	$+44.1 (+4.5\%) \\ -55.8 (-5.7\%)$	$+57.4 (+5.9\%) \\ -68.5 (-7.0\%)$

Pinning down the gluon with top data

Adding data from lower energy colliders: reduced theory uncertainties at higher energies

Adding **TeV+LHC7** data to NNPDF2.3, we obtain the **best possible theory prediction for LHC8**

Not only PDF uncertainty reduced, also central value **shifts** to increase agreement with data

Collider	Ref	Ref+TeV	Ref + TeV + LHC7	Ref+TeV+LHC7+8
Tevatron	7.26 ± 0.12	-	-	-
LHC 7 TeV	172.5 ± 5.2	172.7 ± 5.1	-	-
LHC 8 TeV	247.8 ± 6.6	248.0 ± 6.5	(245.0 ± 4.6)	_
LHC 14 ${ m TeV}$	976.5 ± 16.4	976.2 ± 16.3	969.8 ± 12.0	969.6 ± 11.6

PDF uncertainty only

Using TeV+LHC7 data, optimal fit description for LHC8

Free precise LHC7 data carry most of the information, but full 8 TeV analysis still missing

Collider	χ^2 (Total, $N_{\rm dat} = 5$)	$\chi^2~({\rm LHC}~8~{\rm TeV},N_{\rm dat}=2)$
NNPDF2.3	6.28	1.64
NNPDF2.3 + TeV,LHC data	4.88	1.24
NNPDF2.3 + TeV,LHC7 data	4.87	1.24