

NNPDF1.2: Unbiased Determination of Electro-Weak Parameters and the Strange Content of the Proton

Juan Rojo

Instituto Nazionale di Fisica Nucleare, Sezione di Milano

Deep Inelastic Scattering Workshop 2009 Madrid, 28 April 2009

Work in collaboration

NNPDF collaboration

¹ PPT Group, School of Physics, University of Edinburgh

- ² Dipartimento di Fisica, Università di Milano
- ³ Physikalisches Institut, Albert-Ludwigs-Universität Freiburg

⁴ Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona

イロト イポト イラト イラト

1

SOR

Outline

Motivation

Data and theoretical input

- Experimental data
- Theoretical input
- The proton strangeness content
 - Strange sea fraction
 - Strange asymmetry

Determination of EW parameters

- NuTeV anomaly
- $\bullet~|V_{\rm cs}|$ and $|V_{\rm cd}|$ determination

5 Conclusions

イロト イポト イヨト イヨト

Motivation

Data and theoretical input The proton strangeness content Determination of EW parameters Conclusions

Outline

Motivation

- 2 Data and theoretical input
 - Experimental data
 - Theoretical input
- 3 The proton strangeness content
 - Strange sea fraction
 - Strange asymmetry
- Determination of EW parameters
 NuTeV anomaly
 |V_{cs}| and |V_{cd}| determination

Conclusions

イロト イポト イヨト イヨト

Motivation

 The strange PDFs are the worse known light quark PDFs (CTEQ6.5, MRST2001E → (s + s̄) = κ_s (ū + s̄), s - s̄ = 0) → Effects of parametrization bias should be dominant Lack of precise information forces in standard PDFs restrictive parametrizations for s[±](x) Example: Results from the CTEQ6.5S (Lai et al, JHEP 0704:089,2007)

Image: A match a ma

Motivation

• The strange sea asymmetry [*S*⁻] plays a prominent role in explaining the NuTeV anomaly (PRL **88** (2002) 091802)

 $\left. \sin^2 \theta_W \right|_{\rm EWfit} = 0.2223 \pm 0.0003 \;, \quad \left. \sin^2 \theta_W \right|_{\rm NuTeV} = 0.2277 \pm 0.0017$

Motivation

• The strange sea asymmetry [*S*⁻] plays a prominent role in explaining the NuTeV anomaly (PRL **88** (2002) 091802)

$$\sin^2 \theta_W \Big|_{\rm EWfit} = 0.2223 \pm 0.0003 \;, \quad \sin^2 \theta_W \Big|_{\rm NuTeV} = 0.2277 \pm 0.0017$$

NuTeV result assumes $[S^-] = 0$ but (S. Davidson et al., JHEP 0202:037,2002)

$$\delta_s \sin^2 \theta_{\rm W} = -\frac{\left[S^{-}\right]}{\left[Q^{-}\right]} \frac{1}{6} \left[3 - 7\sin^2 \theta_{\rm W}\right] \approx -0.240 \frac{\left[S^{-}\right]}{\left[Q^{-}\right]}$$

 $\left[S^{-}\right] \sim 5\cdot10^{-3}$ enough to explain NuTeV anomaly

$$[S^{-}] \equiv \int_{0}^{1} dx \, xs^{-}(x, Q^{2}) \,, \quad [Q^{-}] = \frac{1}{2} \int_{0}^{1} dx \, x \left(u_{V}(x, Q^{2}) + d_{v}(x, Q^{2}) \right)$$

Note also isospin violations contributes to decrease the NuTeV anomaly (MRST2004QED, EPJC39:155,2005)

イロト イポト イヨト イヨト

Motivation

- $\bullet\,$ Best direct determination of CKM $|\textit{V}_{\rm cd}|$ from dimuon data
- $\bullet\,$ Only lower limits for $|V_{\rm cs}|,$ large ($\sim 10\%)$ uncertainties in other direct determinations
- $\bullet\,$ Existing determinations of $|\textit{V}_{\rm cd}|, |\textit{V}_{\rm cs}|$ include several model assumptions
- Example: CDHS, Z.Phys.C15:19,1982 $\rightarrow |V_{\rm cs}| \geq 0.59$ (Still quoted in PDG, EPJ C15 (2000) 1)
 - Q^2 -dependence of PDFs neglected
 - No NLO corrections
 - Vanishing $[S^-]$

$$\frac{|V_{\rm cs}|^2}{|V_{\rm cd}|^2} = \frac{\left[S^+\right]}{\left[\bar{U} + \bar{D}\right]}$$

Uncertainties in $[S^+]$ prevent accurate $|V_{cs}|$ determination?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Motivation

- The strange PDFs are the less well known light quark PDFs
- The strange sea asymmetry [S⁻] plays a prominent role in explaining the NuTeV anomaly
- \bullet Best direct determination of CKM $|V_{\rm cd}|$ from dimuon data, but only lower limits for $|V_{\rm cs}|$
- Motivation for NNPDF1.2 \rightarrow Revisit the determination of precision EW parameters and the proton strange content the improved statistical techniques of the NNPDF approach:
 - Faithful estimation of PDF uncertainties
 - Absence of parametrization bias (no theoretical prejudices)
 - No model assumptions in determination of EW parameters

イロト イポト イヨト イヨト

SOR

Experimental data Theoretical input

Outline

Motivation

2 Data and theoretical input

- Experimental data
- Theoretical input
- 3 The proton strangeness content
 - Strange sea fraction
 - Strange asymmetry
- Determination of EW parameters
 NuTeV anomaly
 |V_{cs}| and |V_{cd}| determination

Conclusions

Experimental data Theoretical input

Experimental data

• Direct determination of both s and \bar{s} allowed by recent NuTeV data, via

$$\frac{1}{E_{\nu}}\frac{d^{2}\sigma^{\nu(\bar{\nu}),2\mu}}{dx\,dy}(x,y,Q^{2}) \equiv \frac{1}{E_{\nu}}\frac{d^{2}\sigma^{\nu(\bar{\nu}),c}}{dx\,dy}(x,y,Q^{2})\cdot\langle \operatorname{Br}\left(D\to\mu\right)\rangle\cdot\mathcal{A}\left(x,y,E_{\nu}\right)\;,$$

$$\begin{split} & \bar{\sigma}^{\nu(\bar{\nu}),c} \propto (F_2^{\nu(\bar{\nu}),c}, F_3^{\nu(\bar{\nu}),c}, F_L^{\nu(\bar{\nu}),c}) \\ & F_2^{\nu,c} = x \left[C_{2,q} \otimes \left(|V_{\rm cd}|^2 (u+d) + 2|V_{\rm cs}|^2 s \right) + C_{2,g} \otimes g \right] \\ & \bar{\tau}_2^{\bar{\nu},c} = x \left[C_{2,q} \otimes \left(|V_{\rm cd}|^2 (\bar{u}+\bar{d}) + 2|V_{\rm cs}|^2 \bar{s} \right) + C_{2,g} \otimes g \right] \end{split}$$

Additional data in NNPDF1.2:

- Neutrino and anti-neutrino dimuon production from NuTeV.
- HERA-II ZEUS data on NC and CC reduced xsec at large-Q².

イロト イポト イヨト イヨト

1

* HERA-II ZEUS data on $xF_3^{\gamma Z}$.

Juan Rojo

Theoretical input

 \bullet Only theoretical constraint on strange PDFs \rightarrow valence sum rule

.)

$$\int_0^1 dx s^-(x,Q^2) = 0$$

- Charm mass effects for NuTeV dimuon production treated in the Improved ZM-VFN scheme [Thorne, Tung, ArXiv:0809.0714],[Nadolsky, Tung, ArXiv:0903.2667].
- Neutrino data (NuTeV and CHORUS) corrected by (small) nuclear effects from various models [Hirai, Kumano, Nagai de Florain, Sassot]

Strange sea fraction Strange asymmetry

Outline

Motivation

- 2 Data and theoretical input
 - Experimental data
 - Theoretical input
- The proton strangeness content
 - Strange sea fraction
 - Strange asymmetry
- Determination of EW parameters
 NuTeV anomaly
 |V_{cs}| and |V_{cd}| determination

Conclusions

Strange sea fraction Strange asymmetry

Strange sea PDF: $s^+(x, Q^2)$

Total strangeness: log scale \downarrow , individual reps \searrow . Total strangeness: lin scale \rightarrow

Sar

- Data region \rightarrow Moderate uncertainties, larger than CTEQ6.6/MSTW08
- Extrapolation region → Blow-up of uncertainties due to lack of experimental constraints

Strange sea fraction Strange asymmetry

Strange sea fraction

Strange sea fraction characterized by $K_S(Q^2)$

$$K_{S}(Q^{2}) \equiv \frac{\int_{0}^{1} dx \times s^{+}(x, Q^{2})}{\int_{0}^{1} dx \times (\bar{u}(x, Q^{2}) + \bar{d}(x, Q^{2}))}$$

Highly asymmetric distribution \rightarrow Requires proper treatment of non-gaussian effects No theoretical prejudice on shape of s^+ , unlike other analysis (*Ex.* MSTW08)

$$\begin{split} \mathsf{x}S_{\mathrm{mstw08}} &= \mathsf{x}\left(2\left(\bar{u}+\bar{\mathfrak{s}}\right)+\mathsf{s}^{+}\right) &= & A_{\mathsf{S}}\mathsf{x}^{\delta_{\mathsf{S}}}\left(1-\mathsf{x}\right)^{\eta_{\mathsf{S}}}\left(1+\epsilon_{\mathsf{S}}\sqrt{\mathsf{s}}+\gamma_{\mathsf{S}}\mathsf{x}\right)\\ & \mathsf{x}\mathsf{s}^{+}_{\mathrm{mstw08}} &= & A_{+}\mathsf{x}^{\delta_{\mathsf{S}}}\left(1-\mathsf{x}\right)^{\eta_{+}}\left(1+\epsilon_{\mathsf{S}}\sqrt{\mathsf{s}}+\gamma_{\mathsf{S}}\mathsf{x}\right) \end{split}$$

Analysis	$K_{S}\left(Q^{2}=20\mathrm{GeV}^{2} ight)$
NNPDF1.2 MSTW08 CTEQ6.6 AKP08	$\begin{array}{c} 0.71\substack{+0.20\\-0.31}\\ 0.56\pm0.03\\ 0.72\pm0.05\\ 0.59\pm0.08\end{array}$

Central value for K_S in perfect agreement with CTEQ6.6, uncertainties larger by factor 4

Strange sea fraction Strange asymmetry

Strange asymmetry PDF: $s^{-}(x, Q^{2})$

Strange asymm: log scale \downarrow , individual reps \searrow

Strange sea fraction Strange asymmetry

Strange asymmetry PDF: $s^{-}(x, Q^{2})$

- No theoretical constraints on $s^{-}(x, Q_0^2)$ apart from valence sum rule
- At least one crossing required by sum rule, but some replicas have two crossings
- Compare with more restrictive parametrizations

$$x s_{mstw}^{-} = A_{-} x^{0.2} (1-x)^{\eta_{-}} (1-x/x_{0})^{\eta_{-}}$$

Strange sea fraction Strange asymmetry

Strange asymmetry PDF: $s^{-}(x, Q^{2})$

- No theoretical constraints on $s^{-}(x, Q_0^2)$ apart from valence sum rule
- At least one crossing required by sum rule, but some replicas have two crossings
- Compare with more restrictive parametrizations

$$x s_{mstw}^{-} = A_{-} x^{0.2} (1-x)^{\eta_{-}} (1-x/x_{0})$$

NuTeV anomaly $|V_{CS}|$ and $|V_{Cd}|$ determination

Outline

Motivation

- Data and theoretical input
 - Experimental data
 - Theoretical input
- The proton strangeness content
 Strange sea fraction
 - Strange asymmetry

Determination of EW parameters

- NuTeV anomaly
- $\bullet~|V_{\rm cs}|$ and $|V_{\rm cd}|$ determination

Conclusions

NuTeV anomaly $|V_{CS}|$ and $|V_{CC}|$ determination

Impact on NuTeV anomaly

• NuTeV anomaly: Discrepancy ($\geq 3\sigma$) between indirect (global fit)and direct (NuTeV neutrino scattering) determinations of $\sin^2 \theta_W$

• NuTeV assumes $[S^-] = 0$. Releasing this assumption

$$\begin{split} \delta_{s} \sin^{2} \theta_{W} &\sim -0.240 \frac{[S^{-}]}{[Q^{-}]} \\ \text{NNPDF1.2} &\longrightarrow \delta_{s} \sin^{2} \theta_{W} &= \left(0 \pm 9^{\text{PDFs}} \pm 3^{\text{theo}}\right) \cdot 10^{-3} \end{split}$$

- Central value for [S⁻] consistent with vanishing strange asymmetry → Not enough information from NuTeV dimuons to pin down [S⁻]
- PDF uncertainties more than enough to completely remove the NuTeV anomaly

[PDG, Amsler et al, Phys. Lett. B67(2008) 1.]

イロト イポト イヨト イヨト

3

Sac

- $|V_{cs}|$ determination from neutrino DIS affected by $s^+(x)$ uncertainties
- Unbiased parametrizations for PDFs allow to discriminate variations in $s^+(x)$ from variations in CKM matrix elements

[PDG, Amsler et al, Phys. Lett. B67(2008) 1.]

しゃ 4回 * 4 日 * 4 日 * 4 回 * 4 回

- Unbiased parametrizations for PDFs allow to discriminate variations in light-quark PDFs from variations in CKM matrix elements
- $\bullet\,$ NNPDF1.2 direct determination of $|V_{\rm cd}|$ comparable uncertainties with PDG
- \bullet Work in progress: correlation between $|V_{\rm cd}|$ and $|V_{\rm cs}|$

Outline

Motivation

- Data and theoretical input
 - Experimental data
 - Theoretical input
- 3 The proton strangeness content
 - Strange sea fraction
 - Strange asymmetry
- Determination of EW parameters
 NuTeV anomaly
 |V_{cs}| and |V_{cd}| determination

5 Conclusions

イロト イポト イヨト イヨト

Conclusions

- NNPDF1.2: Unbiased determination of strange PDFs from NuTeV data without theoretical prejudices
- In particular, no fixed number of nodes imposed for $s^{-}(x)$
- Uncertainties in $[S^-]$ large enough to completely cancel the NuTeV anomaly
- $\bullet\,$ Most precise direct determination of the $|V_{\rm cs}|$ CKM matrix element from neutrino DIS
- ${f \circ}$ Uncertainty in $|V_{\rm cd}|$ determination comparable to PDG average
- The NNPDF approach faithfully disentangles between strange PDF uncertainties (large) and $|V_{cs}|$, $|V_{cd}|$ uncertainties (small)

Thanks for your attention!

- NNPDF1.2: Unbiased determination of strange PDFs from NuTeV data without theoretical prejudices
- In particular, no fixed number of nodes imposed for $s^-(x)$
- Uncertainties in [S⁻] large enough to completely cancel the NuTeV anomaly
- $\bullet\,$ Most precise direct determination of the $|V_{\rm cs}|$ CKM matrix element from neutrino DIS
- \bullet Uncertainty in $|V_{\rm cd}|$ determination comparable to PDG average
- The NNPDF approach faithfully disentangles between strange PDF uncertainties (large) and |V_{cs}|, |V_{cd}| uncertainties (small)

Thanks for your attention!

- NNPDF1.2: Unbiased determination of strange PDFs from NuTeV data without theoretical prejudices
- In particular, no fixed number of nodes imposed for $s^-(x)$
- \bullet Uncertainties in $\left[S^{-}\right]$ large enough to completely cancel the NuTeV anomaly
- $\bullet\,$ Most precise direct determination of the $|V_{\rm cs}|$ CKM matrix element from neutrino DIS
- \bullet Uncertainty in $|V_{\rm cd}|$ determination comparable to PDG average
- The NNPDF approach faithfully disentangles between strange PDF uncertainties (large) and $|V_{cs}|$, $|V_{cd}|$ uncertainties (small)

Thanks for your attention!

- NNPDF1.2: Unbiased determination of strange PDFs from NuTeV data without theoretical prejudices
- In particular, no fixed number of nodes imposed for $s^{-}(x)$
- \bullet Uncertainties in $\left[S^{-}\right]$ large enough to completely cancel the NuTeV anomaly
- $\bullet\,$ Most precise direct determination of the $|V_{\rm cs}|$ CKM matrix element from neutrino DIS
- ${f \bullet}$ Uncertainty in $|V_{\rm cd}|$ determination comparable to PDG average
- The NNPDF approach faithfully disentangles between strange PDF uncertainties (large) and $|V_{cs}|$, $|V_{cd}|$ uncertainties (small)

Thanks for your attention!

イロト イポト イヨト イヨト

- NNPDF1.2: Unbiased determination of strange PDFs from NuTeV data without theoretical prejudices
- In particular, no fixed number of nodes imposed for $s^{-}(x)$
- \bullet Uncertainties in $\left[S^{-}\right]$ large enough to completely cancel the NuTeV anomaly
- $\bullet\,$ Most precise direct determination of the $|V_{\rm cs}|$ CKM matrix element from neutrino DIS
- $\bullet\,$ Uncertainty in $|V_{\rm cd}|$ determination comparable to PDG average
- The NNPDF approach faithfully disentangles between strange PDF uncertainties (large) and $|V_{\rm cs}|$, $|V_{\rm cd}|$ uncertainties (small)

Thanks for your attention!

- NNPDF1.2: Unbiased determination of strange PDFs from NuTeV data without theoretical prejudices
- In particular, no fixed number of nodes imposed for $s^{-}(x)$
- \bullet Uncertainties in $\left[S^{-}\right]$ large enough to completely cancel the NuTeV anomaly
- $\bullet\,$ Most precise direct determination of the $|V_{\rm cs}|$ CKM matrix element from neutrino DIS
- \bullet Uncertainty in $|\textit{V}_{\rm cd}|$ determination comparable to PDG average
- The NNPDF approach faithfully disentangles between strange PDF uncertainties (large) and $|V_{\rm cs}|$, $|V_{\rm cd}|$ uncertainties (small)

Thanks for your attention!

- NNPDF1.2: Unbiased determination of strange PDFs from NuTeV data without theoretical prejudices
- In particular, no fixed number of nodes imposed for $s^{-}(x)$
- \bullet Uncertainties in $\left[S^{-}\right]$ large enough to completely cancel the NuTeV anomaly
- $\bullet\,$ Most precise direct determination of the $|V_{\rm cs}|$ CKM matrix element from neutrino DIS
- \bullet Uncertainty in $|\textit{V}_{\rm cd}|$ determination comparable to PDG average
- The NNPDF approach faithfully disentangles between strange PDF uncertainties (large) and $|V_{\rm cs}|$, $|V_{\rm cd}|$ uncertainties (small)

Thanks for your attention!

- NNPDF1.2: Unbiased determination of strange PDFs from NuTeV data without theoretical prejudices
- In particular, no fixed number of nodes imposed for $s^{-}(x)$
- \bullet Uncertainties in $\left[S^{-}\right]$ large enough to completely cancel the NuTeV anomaly
- $\bullet\,$ Most precise direct determination of the $|V_{\rm cs}|$ CKM matrix element from neutrino DIS
- \bullet Uncertainty in $|\textit{V}_{\rm cd}|$ determination comparable to PDG average
- The NNPDF approach faithfully disentangles between strange PDF uncertainties (large) and $|V_{\rm cs}|$, $|V_{\rm cd}|$ uncertainties (small)

Thanks for your attention!

EXTRA MATERIAL

NNPDF1.2: Normalization and Sum Rules

$$\begin{split} \Sigma(x,Q_0^2) &= (1-x)^{m_{\Sigma}}x^{-n_{\Sigma}}\mathrm{NN}_{\Sigma}(x) ,\\ V(x,Q_0^2) &= A_V(1-x)^{m_V}x^{-n_V}\mathrm{NN}_V(x) ,\\ T_3(x,Q_0^2) &= (1-x)^{m_{T_3}}x^{-n_{T_3}}\mathrm{NN}_{T_3}(x) ,\\ \Delta_S(x,Q_0^2) &= A_{\Delta_S}(1-x)^{m_{\Delta S}}x^{-n_{\Delta S}}\mathrm{NN}_{\Delta_S}(x) ,\\ g(x,Q_0^2) &= A_g(1-x)^{m_g}x^{-n_g}\mathrm{NN}_g(x) \\ s^+(x,Q_0^2) &= (1-x)^{m_s^+}x^{-n_s^+}NN_{s^+}(x) \\ s^-(x,Q_0^2) &= (1-x)^{m_s^-}x^{-n_s^-}NN_{s^-}(x) - A_{s^-}[x^{r_{s^-}}(1-x)^{m_t^-}] \end{split}$$

Normalization \rightarrow Fixed by valence and momentum sum rules

$$\int_{0}^{1} dx \, x \, (\Sigma(x) + g(x)) = 1$$

$$\int_{0}^{1} dx \, (u(x) - \bar{u}(x)) = 2$$

$$\int_{0}^{1} dx \, (d(x) - \bar{d}(x)) = 1$$

$$\int_{0}^{1} dx \, (s(x) - \bar{s}(x)) = 0$$

$$\lim_{x \to \infty} \sum_{x \to \infty} \sum$$

NNPDF1.2: Sum Rules

• For instance

$$A_{V} = \frac{3}{\int_{0}^{1} dx \left((1-x)^{m_{V}} x^{-n_{V}} \mathrm{NN}_{V}(x) \right)}$$

• For the strange sum rule it is slightly different:

$$A_{s^{-}} = \frac{\Gamma(r_{s^{-}} + t_{s^{-}} + 2)}{\Gamma(r_{s^{-}} + 1)\Gamma(t_{s^{-}} + 1)} \int_{0}^{1} dx \left((1 - x)^{m_{s^{-}}} x^{-n_{s^{-}}} \operatorname{NN}_{s^{-}}(x) \right)$$

ヘロト 人間ト 人団ト 人団ト

1

• When $A_{s^-} = 0$ the valence sum rule constraint is removed.

Preprocessing exponents

- Polynomial preprocessing functions are introduced in order to speed up the training but should not affect final results.
- Default values for the preprocessing exponents, $\chi^2 = 1.34$.

	m	n
Σ	3	1.2
g	4	1.2
T_3	3	0.3
V	3	0.3
Δ_S	3	0.

• Stability checks under variation of exponents:

Valence sector	Singlet sector		
	χ^2		χ^2
$n_{T_3} = n_V = 0.1$	1.38	$n_{\Sigma} = n_g = 0.8$	1.39
$n_{T_3} = n_V = 0.5$	1.34	$n_{\Sigma} = n_{g} = 1.6$	1.52
$m_{T_3} = m_V = 2$	1.55	$m_{\Sigma} = m_{g} - 1 = 2$	1.37
$m_{T_3} = m_V = 4$	1.28	$m_{\Sigma} = m_g - 1 = 4$	1.41

NNPDF1.2: Randomized preprocessing

- Remarkable stability: in most cases variations are within 90% C.L.
- Exception given by valence and triplet: deviation $\sim 1.4\sigma$ from central value when varying exponents.
- Uncertainty on V and T_3 underestimated by factor between 1 and 2.
- Note that we have full control on that!
- NNPDF1.2: Randomized preprocessing!

• Bigger uncertainty on \bar{u} and u_v ! Will be reduced by DY data.

A T >>

NNPDF1.2: Strangeness determination

- Individual replicas for strange an anti-strange.
- Bigger uncertainty for \bar{s} due to larger uncertainties of anti-neutrino data.

Sac

- T