Progress in neural parton distributions

Juan Rojo Chacón LPTHE - Université Paris VI et Paris VII

Deep Inelastic Scattering 2007 Workshop, April 18th 2007.

LPTHE - Université Paris VI et Paris VII

Juan Rojo-Chacón

The NNPDF Collaboration: Luigi Del Debbio, Stefano Forte, José I. Latorre, Andrea Piccione and Juan Rojo, (2007: +) Richard D. Ball, Alberto Guffanti and Maria Ubiali. Resuls based on:

- 1. JHEP 02 (2002) 062 [arXiv:hep-ph/0204232].
- 2. JHEP 05 (2005) 080 [arXiv:hep-ph/0501067].
- 3. Neural network determination of parton distributions: the nonsinglet case, JHEP 07 (2007) 039 [arXiv:hep-ph/0701127].

Introduction

Methodological issues

Stopping criterion Stability estimators

The nonsinglet case

Status of the singlet case

Conclusions and outlook

LPTHE - Université Paris VI et Paris VII

Juan Rojo-Chacón

Basic Idea: Monte Carlo sampling coupled to Neural Network interpolation

- Generate a set of Monte Carlo replicas σ^(k)(p_i) of the original data set σ^(data)(p_i), representation of P[σ(p_i)] at discrete set of points p_i
- Train a neural net for each pdf on each replica, obtaining a representation of the pdfs q_i^{(net)(k)}
- The set of neural nets is a representation of the probability density:

LPTHE - Université Paris VI et Paris VII

Progress in neural parton distributions

Basic Idea: Monte Carlo sampling coupled to Neural Network interpolation

- Generate a set of Monte Carlo replicas σ^(k)(p_i) of the original data set σ^(data)(p_i), representation of P[σ(p_i)] at discrete set of points p_i
- Train a neural net for each pdf on each replica, obtaining a representation of the pdfs q_i^{(net)(k)}
- The set of neural nets is a representation of the probability density:

$$\left\langle \sigma\left[q_{i}
ight]
ight
angle = rac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\sigma\left[q_{i}^{(\mathrm{net})(k)}
ight]$$

LPTHE - Université Paris VI et Paris VII

Progress in neural parton distributions

Basic Idea: Monte Carlo sampling coupled to Neural Network interpolation

- Generate a set of Monte Carlo replicas σ^(k)(p_i) of the original data set σ^(data)(p_i), representation of P[σ(p_i)] at discrete set of points p_i
- Train a neural net for each pdf on each replica, obtaining a representation of the pdfs q_i^{(net)(k)}
- The set of neural nets is a representation of the probability density:

$$\left\langle \sigma\left[q_{i}
ight]
ight
angle = rac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\sigma\left[q_{i}^{(\mathrm{net})(k)}
ight]$$

LPTHE - Université Paris VI et Paris VII

Progress in neural parton distributions

Basic Idea: Monte Carlo sampling coupled to Neural Network interpolation

- Generate a set of Monte Carlo replicas σ^(k)(p_i) of the original data set σ^(data)(p_i), representation of P[σ(p_i)] at discrete set of points p_i
- Train a neural net for each pdf on each replica, obtaining a representation of the pdfs q_i^{(net)(k)}
- The set of neural nets is a representation of the probability density:

$$\left\langle \sigma\left[q_{i}
ight]
ight
angle = rac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\sigma\left[q_{i}^{(\mathrm{net})(k)}
ight]$$

LPTHE - Université Paris VI et Paris VII

Progress in neural parton distributions

What is a neural net? Just a particular choice of function

$$\xi_i^{(l+1)} = g\left(\sum_{j=1}^{n(l)} \omega_{ij}^{(l)} \xi_j^{l}\right), \quad g(x) = \frac{1}{1+e^x}, \quad l=2,\ldots,L$$

where $\omega_{ii}^{(l)}$ are the *weights* and $\xi_i^{(l+1)}$ the *activation state* of each neuron.

- Functional form $q(x) = f[x, \{A_i\}] = A_1 x^{A_2} (1-x)^{A_3}$
- Neural net $q(x) = f[x, \{\omega_{ij}\}] = g\left(\sum_{j=1}^{n(L-1)} \omega_{ij}^{(L-1)} \xi_j^{(L-1)}\right), \ \xi_1^{(1)} = x$

Simple net: Architecture 2-1 $\rightarrow \xi_1^{(2)} = \left[1 + \exp\left(\omega_{11}^{(1)}\xi_1^{(1)} + \omega_{12}^{(1)}\xi_2^{(1)}\right)\right]^{-1}$

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

What is a neural net? Just a particular choice of function

$$\xi_i^{(l+1)} = g\left(\sum_{j=1}^{n(l)} \omega_{ij}^{(l)} \xi_j^l\right), \quad g(x) = \frac{1}{1+e^x}, \quad l=2,\ldots,L$$

where $\omega_{ii}^{(l)}$ are the weights and $\xi_i^{(l+1)}$ the activation state of each neuron.

- Functional form $q(x) = f[x, \{A_i\}] = A_1 x^{A_2} (1-x)^{A_3}$
- Neural net $q(x) = f[x, \{\omega_{ij}\}] = g\left(\sum_{j=1}^{n(L-1)} \omega_{ij}^{(L-1)} \xi_j^{L-1}\right), \, \xi_1^{(1)} = x$

Simple net: Architecture 2-1 $\rightarrow \xi_1^{(2)} = \left[1 + \exp\left(\omega_{11}^{(1)}\xi_1^{(1)} + \omega_{12}^{(1)}\xi_2^{(1)}\right)\right]^{-1}$

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

What is a neural net? Just a particular choice of function

$$\xi_i^{(l+1)} = g\left(\sum_{j=1}^{n(l)} \omega_{ij}^{(l)} \xi_j^l\right), \quad g(x) = \frac{1}{1+e^x}, \quad l=2,\ldots,L$$

where $\omega_{ii}^{(l)}$ are the *weights* and $\xi_i^{(l+1)}$ the *activation state* of each neuron.

• Functional form $q(x) = f[x, \{A_i\}] = A_1 x^{A_2} (1-x)^{A_3}$

• Neural net
$$q(x) = f[x, \{\omega_{ij}\}] = g\left(\sum_{j=1}^{n(L-1)} \omega_{ij}^{(L-1)} \xi_j^{L-1}\right), \xi_1^{(1)} = x$$

Simple net: Architecture 2-1 $\rightarrow \xi_1^{(2)} = \left[1 + \exp\left(\omega_{11}^{(1)}\xi_1^{(1)} + \omega_{12}^{(1)}\xi_2^{(1)}\right)\right]^{-1}$

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

What is a neural net? Just a particular choice of function

$$\xi_{i}^{(l+1)} = g\left(\sum_{j=1}^{n(l)} \omega_{ij}^{(l)} \xi_{j}^{l}\right), \quad g(x) = \frac{1}{1+e^{x}}, \quad l = 2, \dots, L$$

where $\omega_{ij}^{(l)}$ are the weights and $\xi_i^{(l+1)}$ the activation state of each neuron.

- Functional form $q(x) = f[x, \{A_i\}] = A_1 x^{A_2} (1-x)^{A_3}$
- Neural net $q(x) = f[x, \{\omega_{ij}\}] = g\left(\sum_{j=1}^{n(L-1)} \omega_{ij}^{(L-1)} \xi_j^{(L-1)}\right), \xi_1^{(1)} = x$

Simple net: Architecture 2-1 $\rightarrow \xi_1^{(2)} = \left[1 + \exp\left(\omega_{11}^{(1)}\xi_1^{(1)} + \omega_{12}^{(1)}\xi_2^{(1)}\right)\right]^{-1}$

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

Many different ingredients in the neural Monte Carlo approach to parton distributions: artificial data generation, neural network training, genetic minimization, preprocessing, result validation ...

Let us concentrate on a couple of the newest ones:

- Stopping criterion
- Stability estimators

N.B. Unless otherwise specified, results shown belong to hep-ph/0701127

Many different ingredients in the neural Monte Carlo approach to parton distributions: artificial data generation, neural network training, genetic minimization, preprocessing, result validation ... Let us concentrate on a couple of the newest ones:

- Stopping criterion
- Stability estimators

N.B. Unless otherwise specified, results shown belong to hep-ph/0701127

Many different ingredients in the neural Monte Carlo approach to parton distributions: artificial data generation, neural network training, genetic minimization, preprocessing, result validation ... Let us concentrate on a couple of the newest ones:

- Stopping criterion
- Stability estimators

N.B. Unless otherwise specified, results shown belong to hep-ph/0701127

Many different ingredients in the neural Monte Carlo approach to parton distributions: artificial data generation, neural network training, genetic minimization, preprocessing, result validation ... Let us concentrate on a couple of the newest ones:

- Stopping criterion
- Stability estimators

N.B. Unless otherwise specified, results shown belong to hep-ph/0701127

In a standard fit, look for minimum χ^2 for given parametrization. However ...

- If basis too large \rightarrow convergence never reached
- ▶ If basis too small → parametrization bias

How can one obtain an unbiased compromise? For neural nets, smoothness decreases as fit quality improves...

 \rightarrow Stop before fitting statistical noise (overlearning).

I PTHE - Université Paris VI et Paris VII

Juan Rojo-Chacón

In a standard fit, look for minimum χ^2 for given parametrization. However \ldots

- If basis too large \rightarrow convergence never reached
- ▶ If basis too small → parametrization bias

How can one obtain an unbiased compromise? For neural nets, smoothness decreases as fit quality improves...

 \rightarrow Stop before fitting statistical noise (overlearning).

I PTHE - Université Paris VI et Paris VII

Juan Rojo-Chacón

In a standard fit, look for minimum χ^2 for given parametrization. However \ldots

- ▶ If basis too large → convergence never reached
- ▶ If basis too small → parametrization bias

How can one obtain an unbiased compromise? For neural nets, smoothness decreases as fit quality improves...

→ Stop before fitting statistical noise (overlearning).

I PTHE - Université Paris VI et Paris VII

Juan Rojo-Chacón

In a standard fit, look for minimum χ^2 for given parametrization. However ...

- ▶ If basis too large → convergence never reached
- ▶ If basis too small → parametrization bias

How can one obtain an unbiased compromise? For neural nets, smoothness decreases as fit quality improves...

 \rightarrow Stop before fitting statistical noise (overlearning).

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

In a standard fit, look for minimum χ^2 for given parametrization. However ...

- ▶ If basis too large → convergence never reached
- ▶ If basis too small → parametrization bias

How can one obtain an unbiased compromise? For neural nets, smoothness decreases as fit quality improves...

 \rightarrow Stop before fitting statistical noise (overlearning).

 \rightarrow Stop before fitting statistical noise (overlearning).

Ex.: fitting a neural net to signal+noise pseudodata.

Underlearning

(Gross features of data already captured)

Juan Rojo-Chacón

Progress in neural parton distributions

	Methodological issues	The nonsinglet case	Status of the singlet case	Conclusions and outlook
Stopping criterion				

 \rightarrow Stop before fitting statistical noise (overlearning).

Proper learning

LPTHE - Université Paris VI et Paris VII

Juan Rojo-Chacón

	Methodological issues 000●00000000	The nonsinglet case	Status of the singlet case	Conclusions and outlook
Stopping criterion				

 \rightarrow Stop before fitting statistical noise (overlearning).

LPTHE - Université Paris VI et Paris VII

Overlearning

Juan Rojo-Chacón

So stop the fit before overlearning sets in … How does this work in practice? At each Genetic Algorithm iteration, χ^2 either decreases or unchanged

- 1. Divide the data set into training and validation sets
- 2. Minimize χ^2 of training set, monitor χ^2 of validation set
- 3. Stop minimization when validation χ^2 begins to rise

The transition from the underlearning to the overlearning regime monotonic with neural networks.

N.B. This stopping criterion could also be applied using standard polynomials (but impractical, a very large number of parameters required + non monotonic transition to overlearning regime).

So stop the fit before overlearning sets in … How does this work in practice? At each Genetic Algorithm iteration, χ^2 either decreases or unchanged

- 1. Divide the data set into training and validation sets
- 2. Minimize χ^2 of training set, monitor χ^2 of validation set
- 3. Stop minimization when validation χ^2 begins to rise

The transition from the underlearning to the overlearning regime monotonic with neural networks.

N.B. This stopping criterion could also be applied using standard polynomials (but impractical, a very large number of parameters required + non monotonic transition to overlearning regime).

▲ 同 ▶ → 三 ▶

So stop the fit before overlearning sets in … How does this work in practice? At each Genetic Algorithm iteration, χ^2 either decreases or unchanged

- 1. Divide the data set into training and validation sets
- 2. Minimize χ^2 of training set, monitor χ^2 of validation set
- 3. Stop minimization when validation χ^2 begins to rise

The transition from the underlearning to the overlearning regime monotonic with neural networks.

N.B. This stopping criterion could also be applied using standard polynomials (but impractical, a very large number of parameters required + non monotonic transition to overlearning regime).

So stop the fit before overlearning sets in ... How does this work in practice? At each Genetic Algorithm iteration, χ^2 either decreases or unchanged

- 1. Divide the data set into training and validation sets
- 2. Minimize χ^2 of training set, monitor χ^2 of validation set
- 3. Stop minimization when validation χ^2 begins to rise

The transition from the underlearning to the overlearning regime monotonic with neural networks.

N.B. This stopping criterion could also be applied using standard polynomials (but impractical, a very large number of parameters required + non monotonic transition to overlearning regime).

So stop the fit before overlearning sets in … How does this work in practice? At each Genetic Algorithm iteration, χ^2 either decreases or unchanged

- 1. Divide the data set into training and validation sets
- 2. Minimize χ^2 of training set, monitor χ^2 of validation set
- 3. Stop minimization when validation χ^2 begins to rise

The transition from the underlearning to the overlearning regime monotonic with neural networks.

N.B. This stopping criterion could also be applied using standard polynomials (but impractical, a very large number of parameters required + non monotonic transition to overlearning regime).

So stop the fit before overlearning sets in … How does this work in practice? At each Genetic Algorithm iteration, χ^2 either decreases or unchanged

- 1. Divide the data set into training and validation sets
- 2. Minimize χ^2 of training set, monitor χ^2 of validation set
- 3. Stop minimization when validation χ^2 begins to rise

The transition from the underlearning to the overlearning regime monotonic with neural networks.

N.B. This stopping criterion could also be applied using standard polynomials (but impractical, a very large number of parameters required + non monotonic transition to overlearning regime).

Let us see in practice how the overlearning stopping criterion works:

On your marks, get ready ...

LPTHE - Université Paris VI et Paris VII

Juan Rojo-Chacón

Let us see in practice how the overlearning stopping criterion works: Compare training and validation χ^2 .

(*N.B.* With GA, the network fit quality improves monotonically with the number of iterations)

Underlearning, continue the minimization

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

Let us see in practice how the overlearning stopping criterion works:

Stop!

Onset of overlearning, stop the minimization.

Juan Rojo-Chacón

Progress in neural parton distributions

Let us see in practice how the overlearning stopping criterion works:

Too late!

Deep in the overlearning region, fitting statistical noise ...

Juan Rojo-Chacón

Progress in neural parton distributions

	Methodological issues	The nonsinglet case	Status of the singlet case	Conclusions and outlook
Stopping criterior	1			

Does it work?

1. Poissonian distribution of training lenghts

- 2. For best fit, average χ^2 of replicas \sim 2, while when averaging over replicas $\chi^2 \sim$ 1.
- 3. Total training time is optimized (never underlearn nor overlearn) \rightarrow efficient neural fitting.

Juan Rojo-Chacón

	Methodological issues	The nonsinglet case	Status of the singlet case	Conclusions and outlook
Stopping criterior	1			

Does it work?

- 1. Poissonian distribution of training lenghts
- 2. For best fit, average χ^2 of replicas \sim 2, while when averaging over replicas $\chi^2 \sim$ 1.
- 3. Total training time is optimized (never underlearn nor overlearn) \rightarrow efficient neural fitting.
| | Methodological issues
000000000000000 | The nonsinglet case | Status of the singlet case | Conclusions and outlook |
|-------------------|--|---------------------|----------------------------|-------------------------|
| Stopping criterio | 1 | | | |

Does it work?

- 1. Poissonian distribution of training lenghts
- 2. For best fit, average χ^2 of replicas \sim 2, while when averaging over replicas $\chi^2 \sim$ 1.
- 3. Total training time is optimized (never underlearn nor overlearn) \rightarrow efficient neural fitting.

Juan Rojo-Chacón

Progress in neural parton distributions

	Methodological issues ○○○○○○○○●○	The nonsinglet case	Status of the singlet case	Conclusions and outlook
Stability estimato	rs			

Check stability and accuracy of our results (both for central values and for errors) when parameters of fit modified

Define RMS distance

$$\langle d[q]
angle = \sqrt{\left\langle \frac{\left(\langle q_i
angle_{(1)} - \langle q_i
angle_{(2)}
ight)^2}{\sigma^2[q_i^{(1)}] + \sigma^2[q_i^{(2)}]}
ight
angle_{
m dat}}$$

where $\sigma[q_i] = \text{error on } \langle q_i \rangle = \text{error on } q_i / \sqrt{N_{\text{rep}}}$. Compute $\langle d[q] \rangle$ and $\langle d[\sigma] \rangle$ both in data region and in extrapolation region. Statistical expectations:

- For statistically equivalent fits (different set of MC replicas, different net architecture) we expect ⟨d[q]⟩ ~ 1, ⟨d[σ]⟩ ~ 1.
- For statistically nonequivalent fits (different perturbative order, different α_s value) we expect (e.g. for central values)

$$\langle d[q]
angle \sim \sqrt{rac{N_{
m rep}}{2}} \left\langle rac{|\langle q_i
angle_{(1)} - \langle q_i
angle_{(2)}|}{\sigma[q_i]}
ight
angle_{a}$$

	Methodological issues ○○○○○○○○●○	The nonsinglet case	Status of the singlet case	Conclusions and outlook
Stability estimato	rs			

Check stability and accuracy of our results (both for central values and for errors) when parameters of fit modified Define RMS distance

$$\langle d[q]
angle = \sqrt{\left\langle rac{\left(\langle q_i
angle_{(1)} - \langle q_i
angle_{(2)}
ight)^2}{\sigma^2 [q_i^{(1)}] + \sigma^2 [q_i^{(2)}]}
ight
angle_{ ext{dat}}}$$

where $\sigma[q_i] = \text{error on } \langle q_i \rangle = \text{error on } q_i / \sqrt{N_{\text{rep}}}$.

Compute $\langle d[q] \rangle$ and $\langle d[\sigma] \rangle$ both in data region and in extrapolation region. Statistical expectations:

- For statistically equivalent fits (different set of MC replicas, different net architecture) we expect (d[q]) ~ 1, (d[σ]) ~ 1.
- For statistically nonequivalent fits (different perturbative order, different α_s value) we expect (e.g. for central values)

$$\langle d[q]
angle \sim \sqrt{rac{N_{
m rep}}{2}} \left\langle rac{|\langle q_i
angle_{(1)} - \langle q_i
angle_{(2)}|}{\sigma[q_i]}
ight
angle_{c}$$

I PTHE - Université Paris VI et Paris VII

Juan Rojo-Chacón

	Methodological issues ○○○○○○○○●○	The nonsinglet case	Status of the singlet case	Conclusions and outlook
Stability estimato	rs			

Check stability and accuracy of our results (both for central values and for errors) when parameters of fit modified Define RMS distance

$$\langle d[\boldsymbol{q}]
angle = \sqrt{\left\langle rac{\left(\langle \boldsymbol{q}_i
angle_{(1)} - \langle \boldsymbol{q}_i
angle_{(2)}}{\sigma^2 [\boldsymbol{q}_i^{(1)}] + \sigma^2 [\boldsymbol{q}_i^{(2)}]}
ight
angle_{ ext{dat}}}$$

where $\sigma[q_i] = \text{error on } \langle q_i \rangle = \text{error on } q_i / \sqrt{N_{\text{rep}}}$. Compute $\langle d[q] \rangle$ and $\langle d[\sigma] \rangle$ both in data region and in extrapolation region. Statistical expectations:

- For statistically equivalent fits (different set of MC replicas, different net architecture) we expect ⟨d[q]⟩ ~ 1, ⟨d[σ]⟩ ~ 1.
- For statistically nonequivalent fits (different perturbative order, different α_s value) we expect (e.g. for central values)

$$d[q]
angle \sim \sqrt{\frac{N_{
m rep}}{2}} \left\langle \frac{|\langle q_i \rangle_{(1)} - \langle q_i \rangle_{(2)}|}{\sigma[q_i]} \right\rangle$$

	Methodological issues ○○○○○○○○●○	The nonsinglet case	Status of the singlet case	Conclusions and outlook
Stability estimato	rs			

Check stability and accuracy of our results (both for central values and for errors) when parameters of fit modified Define RMS distance

$$\langle d[\boldsymbol{q}]
angle = \sqrt{\left\langle rac{\left(\langle \boldsymbol{q}_i
angle_{(1)} - \langle \boldsymbol{q}_i
angle_{(2)}}{\sigma^2 [\boldsymbol{q}_i^{(1)}] + \sigma^2 [\boldsymbol{q}_i^{(2)}]}
ight
angle_{ ext{dat}}}$$

where $\sigma[q_i] = \text{error on } \langle q_i \rangle = \text{error on } q_i / \sqrt{N_{\text{rep}}}$. Compute $\langle d[q] \rangle$ and $\langle d[\sigma] \rangle$ both in data region and in extrapolation region. Statistical expectations:

- For statistically equivalent fits (different set of MC replicas, different net architecture) we expect ⟨d[q]⟩ ~ 1, ⟨d[σ]⟩ ~ 1.
- For statistically nonequivalent fits (different perturbative order, different α_s value) we expect (e.g. for central values)

$$\langle d[q]
angle \sim \sqrt{rac{N_{
m rep}}{2}} \left\langle rac{|\langle q_i
angle_{(1)} - \langle q_i
angle_{(2)}|}{\sigma[q_i]}
ight
angle_{q_i}$$

	Methodological issues ○○○○○○○○●○	The nonsinglet case	Status of the singlet case	Conclusions and outlook
Stability estimato	rs			

Check stability and accuracy of our results (both for central values and for errors) when parameters of fit modified Define RMS distance

$$\langle d[\boldsymbol{q}]
angle = \sqrt{\left\langle rac{\left(\langle \boldsymbol{q}_i
angle_{(1)} - \langle \boldsymbol{q}_i
angle_{(2)}}{\sigma^2 [\boldsymbol{q}_i^{(1)}] + \sigma^2 [\boldsymbol{q}_i^{(2)}]}
ight
angle_{ ext{dat}}}$$

where $\sigma[q_i] = \text{error on } \langle q_i \rangle = \text{error on } q_i / \sqrt{N_{\text{rep}}}$. Compute $\langle d[q] \rangle$ and $\langle d[\sigma] \rangle$ both in data region and in extrapolation region. Statistical expectations:

- For statistically equivalent fits (different set of MC replicas, different net architecture) we expect ⟨d[q]⟩ ~ 1, ⟨d[σ]⟩ ~ 1.
- For statistically nonequivalent fits (different perturbative order, different α_s value) we expect (e.g. for central values)

$$\langle d[q]
angle \sim \sqrt{rac{\mathcal{N}_{ ext{rep}}}{2}} \left\langle rac{|\langle q_i
angle_{(1)} - \langle q_i
angle_{(2)}|}{\sigma[q_i]}
ight
angle_{ ext{d}}$$

	Methodological issues ○○○○○○○○●○	The nonsinglet case	Status of the singlet case	Conclusions and outlook
Stability estimato	rs			

Check stability and accuracy of our results (both for central values and for errors) when parameters of fit modified Define RMS distance

$$\langle d[\boldsymbol{q}]
angle = \sqrt{\left\langle rac{\left(\langle \boldsymbol{q}_i
angle_{(1)} - \langle \boldsymbol{q}_i
angle_{(2)}}{\sigma^2 [\boldsymbol{q}_i^{(1)}] + \sigma^2 [\boldsymbol{q}_i^{(2)}]}
ight
angle_{ ext{dat}}}$$

where $\sigma[q_i] = \text{error on } \langle q_i \rangle = \text{error on } q_i / \sqrt{N_{\text{rep}}}$. Compute $\langle d[q] \rangle$ and $\langle d[\sigma] \rangle$ both in data region and in extrapolation region. Statistical expectations:

- For statistically equivalent fits (different set of MC replicas, different net architecture) we expect ⟨d[q]⟩ ~ 1, ⟨d[σ]⟩ ~ 1.
- For statistically nonequivalent fits (different perturbative order, different α_s value) we expect (e.g. for central values)

$$\langle d[q]
angle \sim \sqrt{rac{N_{
m rep}}{2}} \left\langle rac{|\langle q_i
angle_{(1)} - \langle q_i
angle_{(2)}|}{\sigma[q_i]}
ight
angle_{
m dat}$$

	Methodological issues ○○○○○○○○●○	The nonsinglet case	Status of the singlet case	Conclusions and outlook
Stability estimato	rs			

Check stability and accuracy of our results (both for central values and for errors) when parameters of fit modified Define RMS distance

$$\langle d[q]
angle = \sqrt{\left\langle rac{\left(\langle q_i
angle_{(1)} - \langle q_i
angle_{(2)}
ight)^2}{\sigma^2 [q_i^{(1)}] + \sigma^2 [q_i^{(2)}]}
ight
angle_{ ext{dat}}}$$

where $\sigma[q_i] = \text{error on } \langle q_i \rangle = \text{error on } q_i / \sqrt{N_{\text{rep}}}$. Compute $\langle d[q] \rangle$ and $\langle d[\sigma] \rangle$ both in data region and in extrapolation region. Statistical expectations:

- For statistically equivalent fits (different set of MC replicas, different net architecture) we expect ⟨d[q]⟩ ~ 1, ⟨d[σ]⟩ ~ 1.
- For statistically nonequivalent fits (different perturbative order, different α_s value) we expect (e.g. for central values)

$$\langle d[q]
angle \sim \sqrt{rac{N_{
m rep}}{2}} \left\langle rac{|\langle q_i
angle_{(1)} - \langle q_i
angle_{(2)}|}{\sigma[q_i]}
ight
angle_{
m dat}$$

Indeed we observe the expected behavior:

Architecture	2-4-3-1 vs. 2-5-3-1	Perturbative order	LO vs. NLO
$\langle d[q] \rangle_{\rm dat}$	0.9	$\langle d[q] \rangle_{\rm dat}$	10.2
$\left< d\left[q\right] \right>_{\mathrm{extra}}$	0.9	$\left< d\left[q ight] \right>_{ m extra}$	1.2
$\langle d\left[\sigma_q\right] angle_{\mathrm{dat}}$	0.9	$\langle d\left[\sigma_{q} ight] angle_{\mathrm{dat}}$	2.2
$\left\langle d\left[\sigma_{q}\right] \right\rangle_{\mathrm{extra}}$	1.4	$\left\langle d\left[\sigma_{q} ight] ight angle_{\mathrm{extra}}$	1.3

Independence of the net architecture

 \rightarrow Explicit confirmation of parametrization invariance : stability of both central values and errors!

< 17 ▶

Indeed we observe the expected behavior:

Architecture	2-4-3-1 vs. 2-5-3-1	Perturbative order	LO vs. NLO
$\langle d[q] \rangle_{\rm dat}$	0.9	$\langle d[q] \rangle_{\rm dat}$	10.2
$\left< d\left[q\right] \right>_{\mathrm{extra}}$	0.9	$\left< d\left[q ight] \right>_{ m extra}$	1.2
$\langle d \left[\sigma_q \right] \rangle_{\text{dat}}$	0.9	$\langle d \left[\sigma_q \right] \rangle_{\text{dat}}$	2.2
$\left\langle d\left[\sigma_{q}\right] \right\rangle_{\mathrm{extra}}$	1.4	$\left\langle d\left[\sigma_{q} ight] ight angle_{\mathrm{extra}}$	1.3

Independence of the net architecture

 \rightarrow Explicit confirmation of parametrization invariance : stability of both central values and errors!

LPTHE - Université Paris VI et Paris VII

P.

Indeed we observe the expected behavior:

Architecture	2-4-3-1 vs. 2-5-3-1	Perturbative order	LO vs. NLO
$\langle d[q] \rangle_{\rm dat}$	0.9	$\langle d[q] \rangle_{\rm dat}$	10.2
$\left\langle d\left[q\right] \right\rangle_{\mathrm{extra}}$	0.9	$\left< d\left[q ight] \right>_{ m extra}$	1.2
$\langle d\left[\sigma_{q}\right] angle_{\mathrm{dat}}$	0.9	$\langle d \left[\sigma_q \right] \rangle_{\text{dat}}$	2.2
$\left\langle d\left[\sigma_{q}\right] \right\rangle_{\mathrm{extra}}$	1.4	$\left\langle d\left[\sigma_{q} ight] ight angle_{\mathrm{extra}}$	1.3

Independence of the net architecture

 \rightarrow Explicit confirmation of parametrization invariance : stability of both central values and errors!

Indeed we observe the expected behavior:

Architecture	2-4-3-1 vs. 2-5-3-1	Perturbative order	LO vs. NLO
$\langle d[q] \rangle_{\rm dat}$	0.9	$\langle d[q] \rangle_{\rm dat}$	10.2
$\left\langle d\left[q\right] \right\rangle_{\mathrm{extra}}$	0.9	$\left< d\left[q ight] \right>_{ m extra}$	1.2
$\langle d\left[\sigma_{q}\right] angle_{\mathrm{dat}}$	0.9	$\langle d \left[\sigma_q \right] \rangle_{\text{dat}}$	2.2
$\left\langle d\left[\sigma_{q}\right] \right\rangle_{\mathrm{extra}}$	1.4	$\left\langle d\left[\sigma_{q} ight] ight angle_{\mathrm{extra}}$	1.3

Independence of the net architecture

 \rightarrow Explicit confirmation of parametrization invariance : stability of both central values and errors!

The nonsinglet case

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

- 1. Data: $F_2^p(x, Q^2) F_2^d(x, Q^2)$ from NMC and BCDMS (483 points with $Q^2 \ge 3 \text{ GeV}^2$)
- 2. Determination of $q^{NS}(x, Q_0^2) \equiv (u + \bar{u} (d + \bar{d}))(x, Q_0^2)$ at $Q_0^2 = 2$ GeV² at LO, NLO, NNLO, and for different values of $\alpha_s(M_Z^2)$.
- 3. New fast and efficient implementation of NNLO parton evolution (mixed x/N space), benchmarked with the LH tables (Salam/Vogt, 2006).

$$F_2^{\rm NS}(x,Q^2) = \frac{1}{6} x \int_x^1 \frac{dy}{y} \tilde{\Gamma}(y,\alpha_s\left(Q^2\right),\alpha_s\left(Q_0^2\right)) q_{\rm NS}\left(\frac{x}{y},Q_0^2\right) \ .$$

Results available from http://sophia.ecm.ub.es/nnpdf

See hep-ph/0701127 for all the technical details ...

Juan Rojo-Chacón

Progress in neural parton distributions

- 1. Data: $F_2^p(x, Q^2) F_2^d(x, Q^2)$ from NMC and BCDMS (483 points with $Q^2 \ge 3 \text{ GeV}^2$)
- 2. Determination of $q^{NS}(x, Q_0^2) \equiv (u + \bar{u} (d + \bar{d}))(x, Q_0^2)$ at $Q_0^2 = 2$ GeV² at LO, NLO, NNLO, and for different values of $\alpha_s(M_Z^2)$.
- 3. New fast and efficient implementation of NNLO parton evolution (mixed x/N space), benchmarked with the LH tables (Salam/Vogt, 2006).

$$F_2^{\rm NS}(x,Q^2) = \frac{1}{6} x \int_x^1 \frac{dy}{y} \tilde{\Gamma}(y,\alpha_s\left(Q^2\right),\alpha_s\left(Q_0^2\right)) q_{\rm NS}\left(\frac{x}{y},Q_0^2\right) \ .$$

Results available from http://sophia.ecm.ub.es/nnpdf

See hep-ph/0701127 for all the technical details ...

Juan Rojo-Chacón

Progress in neural parton distributions

- 1. Data: $F_2^p(x, Q^2) F_2^d(x, Q^2)$ from NMC and BCDMS (483 points with $Q^2 \ge 3 \text{ GeV}^2$)
- 2. Determination of $q^{NS}(x, Q_0^2) \equiv (u + \bar{u} (d + \bar{d}))(x, Q_0^2)$ at $Q_0^2 = 2$ GeV² at LO, NLO, NNLO, and for different values of $\alpha_s(M_Z^2)$.
- 3. New fast and efficient implementation of NNLO parton evolution (mixed x/N space), benchmarked with the LH tables (Salam/Vogt, 2006).

$$F_2^{\rm NS}(x,Q^2) = \frac{1}{6} x \int_x^1 \frac{dy}{y} \tilde{\Gamma}(y,\alpha_s\left(Q^2\right),\alpha_s\left(Q_0^2\right)) q_{\rm NS}\left(\frac{x}{y},Q_0^2\right) \ .$$

Results available from http://sophia.ecm.ub.es/nnpdf

See hep-ph/0701127 for all the technical details ...

Juan Rojo-Chacón

Progress in neural parton distributions

- 1. Data: $F_2^p(x, Q^2) F_2^d(x, Q^2)$ from NMC and BCDMS (483 points with $Q^2 \ge 3 \text{ GeV}^2$)
- 2. Determination of $q^{NS}(x, Q_0^2) \equiv (u + \bar{u} (d + \bar{d}))(x, Q_0^2)$ at $Q_0^2 = 2$ GeV² at LO, NLO, NNLO, and for different values of $\alpha_s(M_Z^2)$.
- 3. New fast and efficient implementation of NNLO parton evolution (mixed x/N space), benchmarked with the LH tables (Salam/Vogt, 2006).

$$F_2^{\rm NS}(x,Q^2) = \frac{1}{6} x \int_x^1 \frac{dy}{y} \tilde{\Gamma}(y,\alpha_s\left(Q^2\right),\alpha_s\left(Q_0^2\right)) q_{\rm NS}\left(\frac{x}{y},Q_0^2\right) \ .$$

Results available from http://sophia.ecm.ub.es/nnpdf

See hep-ph/0701127 for all the technical details ...

Juan Rojo-Chacón

Progress in neural parton distributions

A (1) > A (2) >

I PTHE - Université Paris VI et Paris VII

Summary of the analysis

- 1. Data: $F_2^p(x, Q^2) F_2^d(x, Q^2)$ from NMC and BCDMS (483 points with $Q^2 \ge 3 \text{ GeV}^2$)
- 2. Determination of $q^{NS}(x, Q_0^2) \equiv (u + \bar{u} (d + \bar{d}))(x, Q_0^2)$ at $Q_0^2 = 2$ GeV² at LO, NLO, NNLO, and for different values of $\alpha_s(M_Z^2)$.
- 3. New fast and efficient implementation of NNLO parton evolution (mixed x/N space), benchmarked with the LH tables (Salam/Vogt, 2006).

$$F_2^{\rm NS}(x,Q^2) = \frac{1}{6} x \int_x^1 \frac{dy}{y} \tilde{\Gamma}(y,\alpha_s\left(Q^2\right),\alpha_s\left(Q_0^2\right)) q_{\rm NS}\left(\frac{x}{y},Q_0^2\right) \ .$$

Results available from http://sophia.ecm.ub.es/nnpdf

See hep-ph/0701127 for all the technical details ...

Juan Rojo-Chacón

A (1) > A (2) >

I PTHE - Université Paris VI et Paris VII

Summary of the analysis

- 1. Data: $F_2^p(x, Q^2) F_2^d(x, Q^2)$ from NMC and BCDMS (483 points with $Q^2 \ge 3 \text{ GeV}^2$)
- 2. Determination of $q^{NS}(x, Q_0^2) \equiv (u + \bar{u} (d + \bar{d}))(x, Q_0^2)$ at $Q_0^2 = 2$ GeV² at LO, NLO, NNLO, and for different values of $\alpha_s(M_Z^2)$.
- 3. New fast and efficient implementation of NNLO parton evolution (mixed x/N space), benchmarked with the LH tables (Salam/Vogt, 2006).

$$F_2^{\rm NS}(x,Q^2) = \frac{1}{6} x \int_x^1 \frac{dy}{y} \tilde{\Gamma}(y,\alpha_s\left(Q^2\right),\alpha_s\left(Q_0^2\right)) q_{\rm NS}\left(\frac{x}{y},Q_0^2\right) \ .$$

Results available from http://sophia.ecm.ub.es/nnpdf

See hep-ph/0701127 for all the technical details ...

Juan Rojo-Chacón

1. Underestimated uncertainties in existing fits (both global and NS fits)

- 2. Larger uncertainties both in data and in extrapolation region: absence of functional form bias.
- 3. Clear effect of error increase in extrapolation region

Juan Rojo-Chacón

Progress in neural parton distributions

- 1. Underestimated uncertainties in existing fits (both global and NS fits)
- 2. Larger uncertainties both in data and in extrapolation region: absence of functional form bias.
- 3. Clear effect of error increase in extrapolation region.

Juan Rojo-Chacón

Progress in neural parton distributions

- 1. Underestimated uncertainties in existing fits (both global and NS fits)
- 2. Larger uncertainties both in data and in extrapolation region: absence of functional form bias.
- 3. Clear effect of error increase in extrapolation region.

- 1. Underestimated uncertainties in existing fits (both global and NS fits)
- 2. Larger uncertainties both in data and in extrapolation region: absence of functional form bias.
- 3. Clear effect of error increase in extrapolation region.

- 1. Underestimated uncertainties in existing fits (both global and NS fits)
- 2. Larger uncertainties both in data and in extrapolation region: absence of functional form bias.
- 3. Clear effect of error increase in extrapolation region.

Theoretical uncertainties

1. Same quality of the fit ($\chi^2/\textit{N}_{\rm dat}\sim$ 0.75) at LO, NLO, NNLO

- 2. NNLO terms negligible within errors
- 3. LO/NLO differ within 3 σ : NLO terms absorbed in BC.

Juan Rojo-Chacón

Progress in neural parton distributions

Theoretical uncertainties

1. Same quality of the fit ($\chi^2/\textit{N}_{\rm dat}\sim$ 0.75) at LO, NLO, NNLO

- 2. NNLO terms negligible within errors
- 3. LO/NLO differ within 3 σ : NLO terms absorbed in BC.

Theoretical uncertainties

1. Same quality of the fit ($\chi^2/\textit{N}_{\rm dat}\sim$ 0.75) at LO, NLO, NNLO

- 2. NNLO terms negligible within errors
- 3. LO/NLO differ within 3 σ : NLO terms absorbed in BC.

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

I PTHE - Université Paris VI et Paris VII

Determination of $\alpha_s(M_Z^2)$ - I

We do not fit $\alpha_s(M_Z^2)$ together with $q_{\rm NS}(x, Q_0^2)$ but take it from world average: $\alpha_s(M_Z^2)_{\rm NLO} = 0.118 \pm 0.002$.

$\alpha_s(M_Z^2)$	0.116	0.118	0.120
χ^2	0.743	0.750	0.744
$\left< d\left[q\right] \right>_{\mathrm{dat}}$	3.8	-	4.1
$\left< d\left[q\right] \right>_{ m extra}$	0.8	-	0.7
$\langle d \left[\sigma_q \right] \rangle_{\text{dat}}$	1.6	-	2.4
$\left\langle d\left[\sigma_{q}\right] \right\rangle_{\mathrm{extra}}$	1.4	-	1.5

Fit results suggest that $\alpha_s(M_Z^2)$ from NS data has larger uncertainties than those of world average.

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

Kinematical cuts

Uncertainty in extrapolation region (small x) increases when kinematical cut in Q^2 is raised (as it should be!).

Juan Rojo-Chacón

The nonsinglet case: Applications (preliminary)

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

I PTHE - Université Paris VI et Paris VII

Determination of $\Delta \chi^2$

Many hints that some data sets used in global fits inconsistent \rightarrow Some uncertainties underestimated \rightarrow The $\Delta \chi^2$ which corresponds to $1 - \sigma$ errors on PDFs no longer textbook value $\Delta \chi^2 = 1$.

In our approach $\Delta \chi^2$ can be quantitatively determined \rightarrow The result will tell whether inconsistent data are present. Compute variance σ_{χ^2} of the χ^2 when fit repeated many times. For reference fit (preliminary result):

$$\Delta\chi^2\equiv\sqrt{N_{
m rep}}\sigma_{\chi^2}\sim 1.7$$

The result implies that most Non Singlet world data form a consistent data set, but some subset inconsistent (subset of NMC data).

Juan Rojo-Chacón

・ロッ ・同 ・ ・ ヨ ・ ・

I PTHE - Université Paris VI et Paris VII

Determination of $\Delta \chi^2$

Many hints that some data sets used in global fits inconsistent \rightarrow Some uncertainties underestimated \rightarrow The $\Delta \chi^2$ which corresponds to $1 - \sigma$ errors on *PDFs* no longer textbook value $\Delta \chi^2 = 1$.

In our approach $\Delta\chi^2$ can be quantitatively determined \rightarrow The result will tell whether inconsistent data are present.

Compute variance σ_{χ^2} of the χ^2 when fit repeated many times. For reference fit (preliminary result):

 $\Delta\chi^2 \equiv \sqrt{N_{
m rep}}\sigma_{\chi^2} \sim 1.7$

The result implies that most Non Singlet world data form a consistent data set, but some subset inconsistent (subset of NMC data).

Juan Rojo-Chacón

I PTHE - Université Paris VI et Paris VII

Determination of $\Delta \chi^2$

Many hints that some data sets used in global fits inconsistent \rightarrow Some uncertainties underestimated \rightarrow The $\Delta \chi^2$ which corresponds to $1 - \sigma$ errors on *PDFs* no longer textbook value $\Delta \chi^2 = 1$.

In our approach $\Delta \chi^2$ can be quantitatively determined \rightarrow The result will tell whether inconsistent data are present. Compute variance σ_{χ^2} of the χ^2 when fit repeated many times. For reference fit (preliminary result):

 $\Delta\chi^2 \equiv \sqrt{N_{
m rep}}\sigma_{\chi^2} \sim 1.7$

The result implies that most Non Singlet world data form a consistent data set, but some subset inconsistent (subset of NMC data).

Juan Rojo-Chacón

Determination of $\Delta \chi^2$

Many hints that some data sets used in global fits inconsistent \rightarrow Some uncertainties underestimated \rightarrow The $\Delta \chi^2$ which corresponds to $1 - \sigma$ errors on *PDFs* no longer textbook value $\Delta \chi^2 = 1$.

In our approach $\Delta \chi^2$ can be quantitatively determined \rightarrow The result will tell whether inconsistent data are present. Compute variance σ_{χ^2} of the χ^2 when fit repeated many times. For reference fit (preliminary result):

$$\Delta \chi^2 \equiv \sqrt{N_{
m rep}} \sigma_{\chi^2} \sim 1.7$$

The result implies that most Non Singlet world data form a consistent data set, but some subset inconsistent (subset of NMC data).

I PTHE - Université Paris VI et Paris VII

Determination of $\Delta \chi^2$

Many hints that some data sets used in global fits inconsistent \rightarrow Some uncertainties underestimated \rightarrow The $\Delta \chi^2$ which corresponds to $1 - \sigma$ errors on *PDFs* no longer textbook value $\Delta \chi^2 = 1$.

In our approach $\Delta \chi^2$ can be quantitatively determined \rightarrow The result will tell whether inconsistent data are present. Compute variance σ_{χ^2} of the χ^2 when fit repeated many times. For reference fit (preliminary result):

$$\Delta \chi^2 \equiv \sqrt{N_{\rm rep}} \sigma_{\chi^2} \sim 1.7$$

The result implies that most Non Singlet world data form a consistent data set, but some subset inconsistent (subset of NMC data).

Juan Rojo-Chacón

Aethodological issues

Status of the singlet case

Conclusions and outlook

Determination of $\alpha_s(M_Z^2)$ - II

 $\alpha_s(M_Z^2)$ can be determined from NS data \rightarrow uncertainty larger than 0.002. Due to lack of param. bias? Compare with parametrization-independent determination from NS truncated moments \rightarrow $\alpha_s(M_Z^2)_{\rm NLO} = 0.124 + 0.004 - 0.007$ (exp.), S. Forte et al., hep-ph/0205286.

Juan Rojo-Chacón
1ethodological issues

Status of the singlet case

Conclusions and outlook

Determination of $\alpha_s(M_Z^2)$ - II

 $\alpha_s(M_Z^2)$ can be determined from NS data \rightarrow uncertainty larger than 0.002. Due to lack of param. bias? Compare with parametrization-independent determination from NS truncated moments $\rightarrow \alpha_s(M_Z^2)_{\rm NLO} = 0.124 + 0.004 - 0.007$ (exp.), S. Forte et al., hep-ph/0205286.

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

1ethodological issues

Status of the singlet case

Conclusions and outlook

Determination of $\alpha_s(M_Z^2)$ - II

 $\alpha_s(M_Z^2)$ can be determined from NS data \rightarrow uncertainty larger than 0.002. Due to lack of param. bias? Compare with parametrization-independent determination from NS truncated moments $\rightarrow \alpha_s(M_Z^2)_{\rm NLO} = 0.124 + 0.004 - 0.007$ (exp.), S. Forte et al., hep-ph/0205286.

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

Status of the singlet case

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

The singlet case

▶ Data sets: SLAC, NMC, BCDMS structure function F₂(x, Q²) and HERA reduced cross sections σ̃^{NC}(x, Q²) and σ̃^{CC}(x, Q²).

Fitted parton distributions (neural nets):

$$\Sigma(x, Q_0^2)$$
, $q_{\rm NS}(x, Q_0^2)$, $g(x, Q_0^2)$

- ZM-VFN treatment of heavy flavors.
- Dynamical stopping criterion, weighted Genetic Algorithms minimization.

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

The singlet case

- ▶ Data sets: SLAC, NMC, BCDMS structure function F₂(x, Q²) and HERA reduced cross sections σ̃^{NC}(x, Q²) and σ̃^{CC}(x, Q²).
- Fitted parton distributions (neural nets):

 $\Sigma(x, Q_0^2)$, $q_{\rm NS}(x, Q_0^2)$, $g(x, Q_0^2)$

- ZM-VFN treatment of heavy flavors.
- Dynamical stopping criterion, weighted Genetic Algorithms minimization.

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

I PTHE - Université Paris VI et Paris VII

The singlet case

▶ Data sets: SLAC, NMC, BCDMS structure function F₂(x, Q²) and HERA reduced cross sections σ̃^{NC}(x, Q²) and σ̃^{CC}(x, Q²).

Fitted parton distributions (neural nets):

$$\Sigma(x, Q_0^2)$$
, $q_{\rm NS}(x, Q_0^2)$, $g(x, Q_0^2)$

- ZM-VFN treatment of heavy flavors.
- > Dynamical stopping criterion, weighted Genetic Algorithms minimization.

Juan Rojo-Chacón

I PTHE - Université Paris VI et Paris VII

The singlet case

▶ Data sets: SLAC, NMC, BCDMS structure function F₂(x, Q²) and HERA reduced cross sections σ̃^{NC}(x, Q²) and σ̃^{CC}(x, Q²).

Fitted parton distributions (neural nets):

$$\Sigma(x, Q_0^2)$$
, $q_{\rm NS}(x, Q_0^2)$, $g(x, Q_0^2)$

- ZM-VFN treatment of heavy flavors.
- Dynamical stopping criterion, weighted Genetic Algorithms minimization.

Juan Rojo-Chacón

Increased manpower of the NNPDF collaboration (RDB, AG, MU)

- October 2006 February 2007: Nonsinglet code extended to the singlet sector (data generation, evolution, neural parton fitting, validation)
- Expected timescale for full NLO DIS fit: Summer 2007.
- Expected timescale for full NLO global neural parton fit: Before end 2007.

Juan Rojo-Chacón

- Increased manpower of the NNPDF collaboration (RDB, AG, MU)
- October 2006 February 2007: Nonsinglet code extended to the singlet sector (data generation, evolution, neural parton fitting, validation)
- Expected timescale for full NLO DIS fit: Summer 2007.
- Expected timescale for full NLO global neural parton fit: Before end 2007.

- Increased manpower of the NNPDF collaboration (RDB, AG, MU)
- October 2006 February 2007: Nonsinglet code extended to the singlet sector (data generation, evolution, neural parton fitting, validation)
- Expected timescale for full NLO DIS fit: Summer 2007.
- Expected timescale for full NLO global neural parton fit: Before end 2007.

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

- Increased manpower of the NNPDF collaboration (RDB, AG, MU)
- October 2006 February 2007: Nonsinglet code extended to the singlet sector (data generation, evolution, neural parton fitting, validation)
- Expected timescale for full NLO DIS fit: Summer 2007.
- Expected timescale for full NLO global neural parton fit: Before end 2007.

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

< 17 ▶

Deeper understanding of neural parton fitting achieved (overlearning) stopping criterion, stability estimators ...)

Juan Roio-Chacón Progress in neural parton distributions

- Deeper understanding of neural parton fitting achieved (overlearning stopping criterion, stability estimators ...)
- Non-singlet parton fitting completed.
- Be prepared for first neural parton set by summer 2007!

LPTHE - Université Paris VI et Paris VI

Juan Rojo-Chacón

- Deeper understanding of neural parton fitting achieved (overlearning stopping criterion, stability estimators ...)
- Non-singlet parton fitting completed.
- Be prepared for first neural parton set by summer 2007!

LPTHE - Université Paris VI et Paris VII

Progress in neural parton distributions

Juan Roio-Chacón

EXTRA SLIDES

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

▲ 同 ▶ → ● 三

Statistical estimators

	Total	NMC	BCDMS
$\chi^2_{ m tot}$	0.75	0.72	0.78
$\langle E \rangle$	2.27	1.99	2.52
$r [F_2^{NS}]$	0.81	0.66	0.95
$\left\langle \sigma^{(\exp)} \right\rangle_{\rm dat}$	0.011	0.017	0.006
$\left\langle \sigma^{(\text{net})} \right\rangle_{\text{dat}}$	0.006	0.009	0.004
$r\left[\sigma^{(\mathrm{net})} ight]$	0.59	-0.04	0.86
$\left< \rho^{(\exp)} \right>_{dat}$	0.11	0.39	0.16
$\left< \rho^{(\text{net})} \right>_{\text{dat}}$	0.46	0.42	0.50
$r\left[ho^{(m net)} ight]$	0.15	0.25	0.04
$\left< \operatorname{cov}^{(exp)} \right>_{\operatorname{dat}}$	8.6 10 ⁻⁶	$1.0 10^{-5}$	7.2 10^{-6}
$\left\langle \text{cov}^{(\text{net})} \right\rangle_{\text{dat}}$	$2.1 \ 10^{-5}$	$3.8 \ 10^{-5}$	$6.9 \ 10^{-6}$
$r \left[\operatorname{cov}^{(\operatorname{net})} \right]$	0.24	0.23	0.57

Juan Rojo-Chacón

LPTHE - Université Paris VI et Paris VII

3

Higher Twist

No evidence for Higher Twist found in experimental data:

Fit	$Q_{\min}^2 = 3 \text{ GeV}^2 + \text{HT}$	$Q_{\min}^2 = 5 \text{ GeV}^2$	$Q_{\min}^2 = 5 \text{ GeV}^2 + \text{HT}$
χ^2	0.76	0.79	0.78
$\left< d\left[q\right] \right>_{ m dat}$	2.9	0.8	3.2
$\left< d\left[q ight] ight>_{ m extra}$	1.4	0.8	0.9
$\langle d \left[\sigma_q \right] \rangle_{\text{dat}}$	1.2	1.5	1.9
$\left\langle d\left[\sigma_{q}\right] \right\rangle_{\mathrm{extra}}$	1.3	1.8	2.3

LPTHE - Université Paris VI et Paris VII

∃ >

< 17 ▶

Juan Rojo-Chacón

Comparison to other approaches

1. Underestimated uncertainties in existing fits (both global and NS fits)

- 2. Larger uncertainties both in data and in extrapolation region
- 3. Clear effect of error increase in extrapolation region

Juan Rojo-Chacón

Progress in neural parton distributions

- 1. Underestimated uncertainties in existing fits (both global and NS fits)
- 2. Larger uncertainties both in data and in extrapolation region
- 3. Clear effect of error increase in extrapolation region

Juan Rojo-Chacón

Progress in neural parton distributions

- 1. Underestimated uncertainties in existing fits (both global and NS fits)
- 2. Larger uncertainties both in data and in extrapolation region
- 3. Clear effect of error increase in extrapolation region.

Juan Rojo-Chacón

- 1. Underestimated uncertainties in existing fits (both global and NS fits)
- 2. Larger uncertainties both in data and in extrapolation region
- 3. Clear effect of error increase in extrapolation region.

Juan Rojo-Chacón

- 1. Underestimated uncertainties in existing fits (both global and NS fits)
- 2. Larger uncertainties both in data and in extrapolation region
- 3. Clear effect of error increase in extrapolation region.

Juan Rojo-Chacón