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Monte Carlo Determination of Errors
Neural Network as unbiased and redundant parametrization
Dynamical Stopping Criterion

Monte Carlo errors

m.,m..m... Non-gaussian errors and non triv-
ial error propagation.
lrﬂﬂnhldlh
..,....l..m..m Avoid bias from a restrictive fixed
functional form.
Evnl\mon

—
Dynamical Stopping
m g - No looking for absolute minimum

but learning from data.

(FIFCD =/[Df]~7"[f(X)]7’[f(X)]

Nre
1 k
nn PP FIf = FfR(met)
= o (FIFCN = ; [ &)
= = = E = A
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Monte Carlo errors

Non-gaussian errors and non triv-
ial error propagation.
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Monte Carlo sample

Generate a N;ep Monte Carlo sets of artificial data, or " pseudo-data”

original Ng.:, data points

F% 00, @)= F29W i = 1, Naasa
k = 1,.. Nep

of the

Multi-gaussian distribution centered on each data point:

Nsys
(art)(k) __ (k) exp (k) stat sys
F 5 o N F 1+r, + Z r ,,
Jj=1

If two points have correlated systematic uncertainties

PR — k)

Pd P o

Correlations are properly taken into account.
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Monte Carlo Errors

For each replica () of the experimen-
tal data we fit a set of independent
PDFs

Uncertainties, central values and any other statistical property
(e. g. correlations) of the PDFs (or any function of them) can be evaluated
using standard statistical methods.

Nrep

1
FFRNme ()
Nrep ;

(FIFEAD

orr = FIFCR) — (FIF)?
(fa0a, @)y (2, Q3)) — (01, QD)) {fole, @3))

aa(x1, QF)op(x2, Q3)

plfa(x1, QF), fio(x2, Q3)]
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Monte Carlo Determination of Errors
Neural Network as unbiased and redundant parametrization
Dynamical Stopping Criterion

Monte Carlo vs. Hessian PDF uncertainties

Fit vs HLPDF2000, Q° = 4. GeV?

10

10°

10~

HERA-LHC 2009 PDF
benchmarks

@ H1PDF2000 fit done with
Hessian method and with
Monte Carlo method

@ The standard deviation of
the 100 PDF replicas - MC
method - in perfect
agreement with Hessian
errors with Ax?> =1

@ The Monte Carlo method to
estimate PDF uncertainties
reproduces Hessian result
when global \? is quadratic
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Determination of

the probability density

Avoid bias from a restrictive fixed
functional form

40, 0, p 0
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What are neural networks?

Each independent PDF at the initial scale Q3 = 2GeV? is parameterized by an
individual NN.

6,\} Output
- f @0,
-
D

Hidden
Y
{;ﬂ ) Input

4 o

In a simple case (1-2-1) we have,

Each neuron receives input from neurons in
preceding layer.

Activation determined by weights and
thresholds according to a non linear function:

...Just a convenient functional form
which provides a redundant and flex-
ible parametrization.

3 1
1

7 parameters

—& Wy We want the best fit to be indepen-
dent of any assumption made on the
parametrization.
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Fit vs HIPDF2000, Q = 4. GeV?

=
o

XG(x)

2= 4 Gev?)
o

xg(x Q

10* 10° 107 10" 1
X

@ PDFs parametrized with simple functional forms — May result in systematic underestimation of PDF
uncertainties

@ The use of an universal interpolant like Artificial Neural Networks removes any bias from choice of input
PDF functional form g;(x, Q)
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49,0, p, 89

Dynamical Stopping

No looking for absolute minimum
but learning from data.




We need to train to avoid under-learning ...
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. until we arrive to proper learning ....
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.. but be careful to avoid overlearning!
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Fitting Strategy

Our fitting strategy is very different from that used by other collaborations:
instead of a set of basis functions with a small number of parameters, we have
an unbiased basis of functions parameterized by a very large and redundant set
of parameters.

O(10-20) parm J O(200) parm J

Ingredients of fitting procedure

Q Flexible and redundant
parametrization

Not trivial because ...

A redundant parametrization might
adapt not only to physical behavior but
also to random statistical fluctuations of Q Genetic Algorithm minimization

data. © Dynamical stopping criterion
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Genetic Algorithm

@ Set neural network parameters randomly.
@ Make clones of the parameter vector and mutate them.

@ Evaluate the for each clone:
Error function

Naat

2(k art)(k net)(k ——(k =i art)(k net)(k
EXO] = 3 (FEOW _ plnen ))<(COV( ) ) (FE00 _ pluen)()

iol] u

cov(®) defined from an experimental covariance matrix which to include normal-
ization errors with the t; method (arXiv:0912.2276)

Nsys
COVE-;O) _ UI_Stat,2 ,:f(cxp)2 + Z O?ys,kajys,k,:i(cxp),:j(cxp) + U,NU,N F,-(O)Fj(o),
k

9 Select the best ones and iterate the procedure until a stability is reached.
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Dynamical Stopping Criterion

Monte Carlo Determination of Errors
Neural Network as unbiased and redundant parametrization
Dynamical Stopping Criterion

* Genetic Algorithms are monotonically decreasing by construction.

* The best fit is not given by the absolute minimum.

* The best fit is given by an optimal training beyond which the figure of
merit improves only because we are fitting statistical noise of the data.

Cross-validation method

* Divide data in two sets: training
and validation.

* Random division for each replica
(f =f, =0.5).

* Minimization is performed only on
the training set. The validation x2
for the set is computed.

* When the training x still decreases
while the validation x? stops
decreasing —

#E, and E _ - rep 0003

13|

Ll
)

| -

2}

m Eval

»

|
“‘AfﬂmA )

e
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15 I v
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#iterations
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Dynamical Stopping Criterion

* Genetic Algorithms are monotonically decreasing by construction.
* The best fit is not given by the absolute minimum.

* The best fit is given by an optimal training beyond which the figure of
merit improves only because we are fitting statistical noise of the data.

Cross-validation method

* Divide data in two sets: training
. . 3.3
and validation. S
* Random division for each replica a2sf e
(f =f, =0.5). 3245
o o0 o o o 3.22¢ _E
* Minimization is performed only on 32k E:,r
the training set. The validation 2 a8} LAl
for the set is computed. 316
.. o 3.4
* When the training x” still decreases 1ok
. . . 2 E
while the validation x~ stops sl i R R e
decreasing — . #iterations
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The NNPDF (Unpolarized) Roadmap

Q@ NNPDF1.0 (arxiv:arXiv:0808.1231) — Determination of PDFs from
inclusive DIS data, Nppr =5

Q NNPDF1.2 (arxiv:0906.1958) — Determination of PDFs from inclusive
DIS data and neutrino charm production for s*(x, Q?), Nppr = 7

© NNPDF2.0 (arxiv:1002.4407) — Determination of PDFs from DIS and
hadronic data (Drell-Yan, Weak boson production, inclusive jets)

Q In preparation: NNLO PDFs, PDFs for MCs, implementation of HQ effects

PDFALHC benchmarks - LHC 7 TeV PDF4LHC benchmarks - LHC 7 TeV
6.4 125
63 CTEQ6.6 NNPDF2.0 MSTW08 CTEQ6.6 NNPDF2.0 MSTWO08
270118 2g=0.119 2,=0.119 ag=0.119  a,=0.120 270118 2=0.119 2,=0.119 2=0119 a.=0.120
6.2 T 12
=
g 61 E )l(
Eg 6 & 1s
+§ 'ﬁ‘
T 59 5
T
5.8 ¥ u +
5.7
56 105
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The NNPDF (Unpolarized)

6
1 NNPDF2.0
/ZZ) NNPDF1.0
8 NNPDF1.2
4
>
2 3
w
%
2
1
I Il Il Il
10° 10* 10° , o 10" 1
X
[ NNPDF2.0
045

NNPDFL.0
NNPDF1.2

1 NNPDF2.0
NNPDF1.0
NNPDF1.2

[0 NNPDF2.0
NNPDFL.0
NNPDF1.2




@ No theoretical constraints on s~ (x, Qg) apart from valence sum rule

@ At least one crossing required by sum rule, but some replicas have two crossings

@ Compare with more restrictive parametrizations

Xmstw = A-x2 (1= %)= (1 = x/x0)

0.03

0.02

< 001
>

[}

]

o

N 0
o

94

X

2 -001

-0.02

-0.03




@ No theoretical constraints on s~ (x, Qg) apart from valence sum rule

@ At least one crossing required by sum rule, but some replicas have two crossings

@ Compare with more restrictive parametrizations

Xmstw = A-x2 (1= %)= (1 = x/x0)

0.03

0.02

xs'(%,Q?=20 GeV?)

-0.01 /\\/
-0.02

-0.03

0.01 0.1




neutrino scattering) determinations of sin? 6y

sin? 6y = 0.2223 + 0.0003 l

Determinations of the weak mixing angle sinzew
0.248 NuTeVO01 NuTeV01 NuTeV01
+ NNPDF1.2 [S] + NNPDF2.0 [ST]
0.24
0.235
Nf 0.23
s %
0.225 T
* I
0.22
0.215

NuTeV anomaly: Discrepancy (> 30) between indirect (global fit)and direct (NuTeV

sin? 0y = 0.2277 + 0.0017 l

NuTeV + NNPDF1.2 [S~]

0.0017°*P 4 0.0107FPFs

NuTeV + NNPDF2.0 [S~]




CKM global fit

NNPDFL.2, Ny, = 500, |V4|=0.2256 Ves = 0.9733440.00023, AV,s ~ 0.02%

‘ ‘ NuTeV Dimuon W ‘ ‘
62 1 Parabolic fit (5 points) — — = }#
6 Parabolic fit (3 points) - - - / Direct determination-D and B decays
L S
7
. !.\ /] Ves = 1.04+0.06,  AVes ~ 6%
o X\ /
56 s 7 J
N y
s5a | ‘\\\\. e i Direct det from v—DIS (CCFR)
~}~\ /l
Se==-u
52 | ‘ ‘ ‘ ‘ ‘ r Ves > 074 (90%CL)
08 085 09 095 1 105 11
Vsl

[PDG, Amsler et al, Phys. Lett. B67(2008) 1.]
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Direct det from v—DIS (CCFR)

NNPDFL.2, Nygp = 500, [V4|=0.2256 Ves > 0.74  (90%CL)
62 | ‘ ‘ NuTeV Dimuon B ‘ |
Parabolic fit (5 points) — — =
o0 Parabolic fit (3 points) - - - / Direct determination-D and B decays
I S

7

AVes ~ 6%

Ves = 1.04 = 0.06,

>< \ ,/
56 s ,
\s\ /‘
54 | AN /s | Direct det NNPDF1.2
~ e
~}~\\ /a

52 | Te=—a 1 _ o

. . . . . . . Ves = 0.96 +0.07, AVeq ~ 7%

0.8 0.85 0.9 0.95 1 1.05 11

Vsl

[PDG, Amsler et al, Phys. Lett. B67(2008) 1.]
9 |Ves| determination from neutrino DIS affected by s (x) uncertainties

9 Unbiased parametrizations for PDFs allow to discriminate variations in s (x)

from variations in CKM matrix elements o S

>» «E» = DA™
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NNPDF2.0
FastKernel
@ NLO computation of hadronic observables NNPDF2.0 includes full NLO
too slow for parton global fits. calculation of hadronic observables.
@ MSTWO08 and CTEQ include Drell-Yan Use available fastNLO interface for jet

NLO as (local) K-factors rescaling the LO
cross section

inclusive cross-sections.

Built up our own FastKernel
computation of DY observables.

FastKernel METHOD

@ Both PDFs evolution and double
convolution sped up

. . .
e T e @ Use high-orders polynomial interpolation
10 e M +oeos ] .
@ Precompute all Green Functions
o e
o v
0.00001 1 1 1 1 1 Zp0
o o5 T is 2 25
N
1 1 X 1 1
b 9 b
/ dxl/ i fa(x1)fp(2) € (xg, 30) = S fa(xlya)fb(xzyﬁ)/ dxl/ oo T8 B (1, %) (x115 x2)
x0,1 x0,2 a.B=1 x0,1 x0,2
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@ Inclusive polarized structure func-
tion data g1(x, Q?) on proton, deuteron and neutron targets from spin asymmetries

Fa(x, Q? ) 4M
2 2 2 _
1(x, Q%) = Au(x, @ ( + ) =
g1(x, Q%) (x, )2(1+R(X ) ¥ TE
NNPDFpol1.0 dataset
10°F
E[ e
C| % swc «
= L NG g ® S Faqh + 4G, ® 4
[ &= x o = |2 €8 2, ® 88
+ compass L %
Ul LV, Kinematical cuts:
< N ° @16
310 ¥ x *
S £ T bk @ W2 > 6.25 GeV?
o r X X X * 45
F *
L " XKoot *,ggr}n * Minimize impact of Higher Twist terms while maximizing
’ N ,(i"g*; * X amount of data included (C. Simolo, Ph.D. Thesis,
*
r * LS arXiv:0807.1501)
x L ISR
L Ll . L
10° 10* 10*
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@ Inclusive polarized structure func-
tion data g1(x, Q?) on proton, deuteron and neutron targets from spin asymmetries

ai(x, QZ) = Ai(x, Q Voo

2x(1 + R(x, @2))

Fa(x, @) (+7) 2_4M
QZ

Theoretical constraints:

* Sum rules

[a73(@2)] = /01 dx AT3(x, Q) = a3,

[aT8(09)]

1
/ dx ATa(x, Q) = 2 ,
0

SFs: |g1(x, @%)| < Fi(x, @?) for all targets

NNPDFpol1.0 dataset
10*
E[x ewe
| * smc
[| « e ¥
L| + esa *
* E155 ¥ x
% COMPASS ¥ %
* HERMES * *ox
o . x % )
& *
> X ET,
[ - ¥ x *
o 10¢ ¥ x . ¥ * *+
~ F *
o r L "xﬁfﬁ
C x oo+ ,(**i}** *
*® ooy % L x
wox %
L * * )
x L et
1=
L ol L ol L TR
10° 10? 10"

a
u]
v
a
v
a
i
v
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* Positivity of polarlzed PDFs — Constraints on polarized

o FP, F1 , F{' computed consistently from NNPDF1.0
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Input PDF basis

Polarized PDFs are parametrized at Q2 = 1 GeV? in the basis:
@ Singlet AX(x) = >, (Aqi(x) + Agi(x)),
o Triplet ATs(x) = (Au(x) + Al(x)) — (Ad(x) + Ad(x)),
@ Octet

ATs(x) = (Au(x) + At(x)) + (Ad(x) + Ad(x)) — 2(As(x) + A5(x)),

@ Gluon Ag(x).

PDFs are parametrized with Artificial Neural Networks

AY(x, Q) = (1-x)™*x""*NNag(x) ,
ATs(x, Q ) = Aars(1—x)"Tx "2 T3NNa7y(x) ,
ATg(x, QO) = Aaty(1—x)"Tex""2TeNNaT1,(x) ,

Ag(x, Q) = (1—x)™ex "% NNa,(x) .

Preprocessing makes learning more efficient
AaTy, AaT, determined from sum rules
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Polarized PDF evolution

In Mellin space the DGLAP equations

0 v v v
u28M2Aqﬁs’ (N.i*) = Aypggue’ (N, 1)
M2i( Ae )(N ©) = ( Drygg (N, as(Q%))  Avygg (N, as(Q%)) ) ( Az )
o2 Ag ’ Argg (N,as(Q2)) Age (N,as(Q2)) Ag

Can easily be solved analytically
Agye (N, Q%) = Txe' (N, a5, a0) Agp' (N, @), as = s /27

where at Next-to-Leading order

Ut 1+ ha a\
|—:|:,\/ N s — 1 | s & .
nsavo(N, as,a) = exp { by " (1 + biag a0
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Polarized PDF evolution

x—space Polarized PDFs are typically obtained by Mellin inversion

i dN
Aavs(x, @) = [ SEx " Aaus(N, @)
c—ioco 2mi
Problem: Mellin space expressions gns (N, Q2) only exist for simple parametriza-

tions
FastKernel method — Mellin invert the evolution kernels only
cHeo dN
rNS(XyaS7aO):/ %X NrNS(NyaS7aO)

c—ico

| P%
Baus(x, @) = [ Y E (30 20) B (;, os)

Now any x—space parametrization of g(x, Q3) is allowed
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Polarized PDF evolution

NNPDF NLO polarized PDF evolution (FastKernel method) benchmarked with
the Les Houches PDF benchmarks, G. Salam and A. Vogt, hep-ph/0511119

l X H €rel (AUV) l €rel (AdV) l €rel (AZ) l €rel (Ag) ‘
103 1.1107* 9.2107° 9910 ° [ 1.110°*
1072 1.4107* 1.9107* | 3.5107* | 9.310°°
0.1 1.2107* 1.6107* | 5.4107% | 1.7107*
0.3 2.3107° 1.1107° 75107% | 1.7107°
0.5 5.6107° 9.6107% | 1.6107° | 25107°
0.7 1.2107* 9.210~" 1.6107* | 7.810°°
0.9 351073 1.11072 411073 | 7.810°3

The FastKernel method leads to very fast and accurate PDF evolution also in
the polarized case
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Polarized NNPDFs - Very preliminary results!

INNPOFpol

MINNPOFpor
DSSV0B
AACOB
Lsso6

o

X8 (x Q)

@ The polarized gluon Ag(x) is essentially unconstrained from inclusive
polarized DIS only

@ Reasonable agreement with other PPDF sets

@ Much more work required for quantitative phenomenology (polarized
moments, predictions for RHIC, ...)




Polarized structure functions at @ = 2 GeV?

e+ EXP_DATA
%

o EXP_DATA

« EXP_DATA
NNPDFpol

I
10? 10"

A
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Conclusions

@ The NNPDF approach provides an unbiased determination of parton
distributions with a faithful uncertainty estimation

@ In the unpolarized case, the status of the art is NNPDF2.0, a global PDF
analysis of DIS, DY and jet data with uses NLO QCD through without
K-factors

@ Once PDF uncertainties are statistically meaningful, important

phenomenology is possible — Solution to NuTeV anomaly, | V|
determination, ...

@ The NNPDF approach is being extended to the polarized case — Very
preliminary results indicate the uncertainties on Ag(x, @*) from DIS-only
are larger than hitherto thought
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Conclusions

@ The NNPDF approach provides an unbiased determination of parton
distributions with a faithful uncertainty estimation

@ In the unpolarized case, the status of the art is NNPDF2.0, a global PDF
analysis of DIS, DY and jet data with uses NLO QCD through without
K-factors

@ Once PDF uncertainties are statistically meaningful, important

phenomenology is possible — Solution to NuTeV anomaly, | V|
determination, ...

@ The NNPDF approach is being extended to the polarized case — Very
preliminary results indicate the uncertainties on Ag(x, @*) from DIS-only
are larger than hitherto thought

Thanks for your attention!
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— NNPDF2.0 - 68% CL

1-0

Individual Replicas

—— NNPDF2.0 -

(0 %) Bx

10

10?
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