NNPDF analyses

Maria Ubiali

University of Edinburgh & Université Catholique de Louvain

QCD at LHC, Trento $28^{\rm th}$ September 2010

The NNPDF Collaboration R.D.Ball⁴, V.Bertone³, F.Cerutti⁴, L.Del Debbio¹, S.Forte², A.Guffanti³, J.I.Latorre⁴, J. Rojc², M.U.^{1,5}

PPT Group, School of Physics, University of Edinburgh
 ² Dipartimento di Fisica, Università di Milano
 ³ Physikalisches Institut, Albert-Ludwigs-Universität Freiburg
 ⁴ Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona
 ⁵ CP3, Université Catholique de Louvain, Belgium

イロト イポト イヨト イヨト

Outline

NNPDF method

2 Main points

Theoretical and experimental features

Benchmark of LHC standard candles

Conclusions and outlook

3

イロト イポト イヨト イヨト

NNPDF: What we do deliver? A Monte Carlo set of replicas

- Ensemble of replicas: probability distribution in the space of PDFs.
- Any feature of distribution can be determined using statistical tools.

$$\begin{array}{lll} \langle \mathcal{F}[\{f\}] \rangle & = & \displaystyle \frac{1}{N_{\mathrm{rep}}} \sum_{k=1}^{N_{\mathrm{rep}}} \mathcal{F}[f_k] \\ \\ \sigma_{\mathcal{F}} & = & \displaystyle \left(\frac{N_{\mathrm{rep}}}{N_{\mathrm{rep}} - 1} \left(\left\langle \mathcal{F}[\{f\}]^2 \right\rangle - \left\langle \mathcal{F}[\{f\}] \right\rangle^2 \right) \right)^{1/2} \end{array}$$

Image: A match a ma

- Ensemble of replicas: probability distribution in the space of PDFs.
- Any feature of distribution can be determined using statistical tools.

- * Not only the standard deviation but also the 68% CL.
- * Uncertainties are Gaussian in the data region, less in the extrapolation.

- Ensemble of replicas: probability distribution in the space of PDFs.
- Any feature of distribution can be determined using statistical tools.

- * Mean PDFs extracted from a Monte Carlo set of N_{rep} replicas fluctuates with standard deviation σ/N_{rep}
- * If two Monte Carlo sets are extracted from the same underlying distribution then $d\sim 1$
- * We can quantify the stability and the differences between fits.

◆□▶ ◆□▶ ◆豆▶ ◆豆♪

590

• Generate a N_{rep} Monte Carlo sets of artificial data, or "pseudo-data" of the original N_{data} data points.

$$F_i^{(art)(k)}(x_p, Q_p^2) \equiv F_{i,p}^{(art)(k)}$$
 $i = 1, ..., N_{data}$
 $k = 1, ..., N_{rep}$

• Multi-gaussian distribution centered on each data point:

$$F_{i,\rho}^{(art)(k)} = S_{\rho,N}^{(k)} F_{i,\rho}^{\exp} \left(1 + r_{\rho}^{(k)} \sigma_{\rho}^{\text{stat}} + \sum_{j=1}^{N_{\text{sys}}} r_{\rho,j}^{(k)} \sigma_{\rho,j}^{\text{sys}}
ight)$$

• If two points have correlated systematic uncertainties,

$$r_{p,j}^{(k)} = r_{p',j}^{(k)}$$

• Correlations are properly taken into account using the full covariance matrix.

イロト イポト イヨト イヨト

NNPDF parametrization

- Each independent PDF is described by a large neural network: 259 parameters.
- Normalization is fixed by momentum and valence sum rules.

$$\begin{array}{lll} \Sigma(x,Q_0^2) &=& (1-x)^{m_{\Sigma}}x^{-n_{\Sigma}}\mathrm{NN}_{\Sigma}(x)\,, & \mathrm{NN}_{\Sigma} \to 37\,\mathrm{pars} \\ V(x,Q_0^2) &=& A_V(1-x)^{m_V}x^{-n_V}\mathrm{NN}_V(x)\,, & \mathrm{NN}_V \to 37\,\mathrm{pars} \\ T_3(x,Q_0^2) &=& (1-x)^{m_{T_3}}x^{-n_{T_3}}\mathrm{NN}_{T_3}(x)\,, & \mathrm{NN}_{T_3} \to 37\,\mathrm{pars} \\ \Delta_S(x,Q_0^2) &=& A_{\Delta_S}(1-x)^{m_{\Delta S}}x^{-n_{\Delta S}}\mathrm{NN}_{\Delta_S}(x)\,, & \mathrm{NN}_{\Delta_S} \to 37\,\mathrm{pars} \\ g(x,Q_0^2) &=& A_g(1-x)^{m_g}x^{-n_g}\mathrm{NN}_g(x)\,, & \mathrm{NN}_g \to 37\,\mathrm{pars} \\ s^+(x,Q_0^2) &=& (1-x)^{m_s^+}x^{-n_s^+}NN_{s^+}(x)\,, & \mathrm{NN}_{s^+} \to 37\,\mathrm{pars} \\ s^-(x,Q_0^2) &=& (1-x)^{m_s^-}x^{-n_s^-}NN_{s^-}(x) - A_{s^-}[x^{r_{s^-}}(1-x)^{m_t-}], & \mathrm{NN}_{s^-} \to 37\,\mathrm{pars} \end{array}$$

- The preprocessing helps in speeding up the learning process.
- The preprocessing exponents are randomly set for each replica within a reasonable range.
- Very weak correlation is found: independence of the preprocessing.

$$r\left[\chi^2, m_{\Sigma}\right] \equiv \frac{\langle \chi^2 m_{\Sigma} \rangle_{\rm rep} - \langle \chi^2 \rangle_{\rm rep} \langle m_{\Sigma} \rangle_{\rm rep}}{\sigma_{m_{\Sigma}}^2} \sim 0 \; .$$

イロト イポト イヨト イヨト

- * Set of neural networks at stopping provides our best-fit.
- * No physical interpretation for parameters: most unconstrained or zero.

-

・ロト ・ 日 ・ ・ ヨ ト ・

NNPDF approach

- The figure of merit used in the minimization is the fully correlated χ^2 .
- Normalization is treated according to the t_0 -prescription.

$$\begin{split} E^{(k)}[\omega] &= -\frac{1}{N_{\rm dat}} \sum_{i,j=1}^{N_{\rm dat}} \left(F_i^{(\rm art)(k)} - F_i^{(\rm net)(k)} \right) \left(\cos \binom{k}{t_0} \right)_{ij}^{-1} \left(F_j^{(\rm art)(k)} - F_j^{(\rm net)(k)} \right) \ , \\ \left(\cos \binom{k}{t_0} \right)_{ij} &= -\left(\sum_{l=1}^{N_c} \sigma_{i,l} \sigma_{j,l} + \delta_{ij} \sigma_{i,s}^2 \right) F_i^{(\rm art)(k)} F_j^{(\rm art)(k)} + \left(\sum_{n=1}^{N_a} \sigma_{i,n} \sigma_{j,n} + \sum_{n=1}^{N_r} \sigma_{i,n} \sigma_{j,n} \right) F_i^{(0)} F_j^{(0)} \ , \end{split}$$

Sar

10 / 26

• In a redundant parameter space the minimum is not give by the absolute minimum

3161 data points

OBS	Data set	OBS	Data set	
F_2^p	NMC	σ_{NC}^{-}	ZEUS	
	SLAC		H1	
	BCDMS	σ^+_{CC}	ZEUS	
F_2^d	SLAC		H1	
	BCDMS	σcc	ZEUS	
σ_{NC}^{+}	ZEUS		H1	
	H1	$\sigma_{\nu}, \sigma_{\bar{\nu}}$	CHORUS	
F_2^d/F_2^p	NMC-pd	FL	H1	

- Kinematical cuts: $Q^2 > 2 \text{ GeV}^2$ $W^2 = Q^2(1-x)/x > 12.5 \text{ GeV}^2$
- Target mass corrections included.
- No nuclear corrections.

< □ > < □ > < □ > < □ >

NNPDF features Data sets: NNPDF1.2

- Tested the impact of nuclear corrections (NuTeV, A=49.6; CHORUS, A=206). Effect within statistical fluctuation.
- I-ZMVFN scheme for F_i^c structure functions (ZMVFN scheme for all other data). $\chi_c = x(1 + m_c^2/Q^2)$

$$\begin{split} \tilde{\sigma}^{\nu(\tilde{\nu}),c} &\propto (F_2^{\nu(\tilde{\nu}),c},F_3^{\nu(\tilde{\nu}),c},F_L^{\nu(\tilde{\nu}),c}) \\ F_2^{\nu,c} &= \times \left[C_{2,q} \otimes 2|V_{cs}|^2 s + \frac{1}{n_f} C_{2,g} \otimes g \right] \\ F_2^{\tilde{\nu},c} &= \times \left[C_{2,q} \otimes 2|V_{cs}|^2 \tilde{s} + \frac{1}{n_f} C_{2,g} \otimes g \right] \end{split}$$

- * Neutrino and anti-neutrino dimuon production from NuTeV.
- * HERA-II ZEUS data on NC and CC reduced xsec at large- Q^2 .
- * HERA-II ZEUS data on $xF_3^{\gamma Z}$.

◆□▶ ◆□▶ ◆豆▶ ◆豆♪

- * CCFR $\sigma^{\nu,c}$ not included since less accurate.
- * CHORUS $\sigma^{\nu,c}$ since only LO QCD analysis available.

3

- No cuts on hadronic data.
- ZM-VFN scheme for treatment of heavy quark masses.
- * Included combined HERA data.
- * Included Tevatron Run II and DY fixed target data.

OBS	Data sets			
F_2^p	NMC,SLAC,BDCMS			
F_2^d	SLAC, BCDMS			
F_2^d / F_2^p	NMC-pd			
σ_{NC}	HERA-I AV, ZEUS-H2			
σ_{CC}	HERA-I AV, ZEUS-H2			
F ₁	H1			
$\sigma_{\nu}, \sigma_{\bar{\nu}}$	CHORUS			
dimuon prod.	NuTeV			
$d\sigma^{DY}/dM^2dy$	E605			
$d\sigma^{DY}/dM^2dx_F$	E886			
W asymmetry	CDF			
Z rap. distr.	CDF,D0			
incl. $\sigma^{(jet)}$	D0(cone) Run II			
incl. $\sigma^{(jet)}$	$CDF(k_T)$ Run II			

3477 data points

- * E772 and E886d not included since they do not add information.
- * W lepton asymmetries not included (see re-weighting studies)
- * Tevatron Run I jet data not included due to increased statistics in run II.

イロト イヨト イヨト イヨト

۹	HQ mass effects implemented according to the FastKernel
	method. Exact NLO analysis.

Included F^c₂ data from H1 and ZEUS.

OBS	Data sets			
F_2^p	NMC,SLAC,BDCMS			
F_2^d	SLAC, BCDMS			
F_2^d / F_2^p	NMC-pd			
σ_{NC}	HERA-I AV, ZEUS-H2			
σcc	HERA-I AV, ZEUS-H2			
FL	H1			
$\sigma_{\nu}, \sigma_{\bar{\nu}}$	CHORUS			
dimuon prod.	NuTeV			
$d\sigma^{\mathrm{DY}}/dM^2dy$	E605			
$d\sigma^{DY}/dM^2dx_F$	E886			
W asymmetry	CDF			
Z rap. distr.	CDF,D0			
incl. $\sigma^{(jet)}$	D0(cone) Run II			
incl. $\sigma^{(jet)}$	$CDF(k_T)$ Run II			
F_2^c	ZEUS (99,03,08,09)			
F ₂ ^c	H1 (01,09,10)			

3554 data points

 Does not include F₂^b due to large uncertainties.

◆□▶ ◆□▶ ◆豆▶ ◆豆♪

э

DQC

- A truly NLO analysis (no K-factors).
 - * NNPDF2.0 includes full NLO calculation of hadronic observables.
 - * Use available fastNLO interface for jet inclusive cross-sections.[hep-ph/0609285]
 - * Built up our own FastKernel computation of Drell-Yan observables.
- Both PDFs evolution and double convolution are sped up by:
 - * Use of high-orders polynomial interpolation
 - * Pre-computing all Green Functions

 $\int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} f_{\mathfrak{s}}(x_{1}) f_{\mathfrak{b}}(x_{2}) \mathcal{C}^{\mathfrak{sb}}(x_{1}, x_{2}) \rightarrow \sum_{\alpha,\beta=1}^{N_{x}} f_{\mathfrak{s}}(x_{1,\alpha}) f_{\mathfrak{b}}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) \mathcal{C}^{\mathfrak{sb}}(x_{1}, x_{2}) + \sum_{\alpha,\beta=1}^{N_{x}} f_{\mathfrak{s}}(x_{1,\alpha}) f_{\mathfrak{b}}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) \mathcal{C}^{\mathfrak{sb}}(x_{1}, x_{2}) + \sum_{\alpha,\beta=1}^{N_{x}} f_{\mathfrak{s}}(x_{1,\beta}) f_{\mathfrak{s}}(x_{2,\beta}) \int_{x_{0,1}}^{1} dx_{1} \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{1}, x_{2}) \mathcal{C}^{\mathfrak{sb}}(x_{1}, x_{2}) + \sum_{\alpha,\beta=1}^{N_{x}} f_{\mathfrak{s}}(x_{1,\beta}) f_{\mathfrak{s}}(x_{2,\beta}) \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{2,\beta}) \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{2,\beta}) \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{2,\beta}) \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{2,\beta}) \mathcal{I}^{(\alpha,\beta)}(x_{2,\beta}) \int_{x_{0,2}}^{1} dx_{2} \mathcal{I}^{(\alpha,\beta)}(x_{2,\beta}) \mathcal{I}^{(\alpha,\beta)}(x_{2,\beta}) \mathcal{I}^{(\alpha,\beta)}(x_{2,\beta})$

- Up to NNPDF2.0, the ZM-VFNS is implemented for inclusion of HQ mass effects.
- NNPDF2.1 implements a GM-VFNS based on the FONLL scheme.

$$F^{\text{FONLL}}(x, Q^2) = F^{(n_l)}(x, Q^2) + \theta(Q^2 - m^2) \left(1 - \frac{m^2}{Q^2}\right)^2 \left[F^{(n_l+1)}(x, Q^2) - F^{(n_l, 0)}(x, Q^2)\right]$$

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - の Q @

NNPDF features

Theoretical side: perturbative order and heavy quark treatment

• NNPDF2.1 implements a GM-VFNS based on the FONLL scheme.

$$F^{\text{FONLL}}(x, Q^2) = F^{(n_l)}(x, Q^2) + \theta(Q^2 - m^2) \left(1 - \frac{m^2}{Q^2}\right)^2 \left[F^{(n_l+1)}(x, Q^2) - F^{(n_l, 0)}(x, Q^2)\right]$$

Sac

(日)

 $\alpha_s = NNPDF2.0$ $\alpha_s = NNPDF1.2$

• Study dependency on α_s : stronger than in NNPDF1.2.

◆□▶ ◆□▶ ◆豆▶ ◆豆♪

Study dependency on α_s: still within uncertainty.

3

DQC

NNPDF features

Theoretical side: α_s and m_Q

• With Monte Carlo ensemble one can evaluate combined $PDF + \alpha_s$ uncertainty.

$$\langle \mathcal{F}
angle_{\mathrm{rep}} = rac{1}{N_{\mathrm{rep}}} \sum_{j=1}^{N_{lpha}} \sum_{k_j=1}^{N_{\mathrm{rep}}} \mathcal{F} \left(\mathrm{PDF}^{(k_j,j)}, lpha_s^{(j)}
ight) \,,$$

• $N_{\rm rep}^{\alpha_s^{(j)}}$ are determined by the probability distribution of values of α_s , with the constraint

・ロト ・回ト ・ヨト

$$\mathsf{V}_{\mathrm{rep}} = \sum_{j=1}^{N_{\alpha_s}} \mathsf{N}_{\mathrm{rep}}^{lpha_s^{(j)}}.$$

1

Add 1 or 2 plots about value of mc and mb (overlap with HQ talk!)

E

996

イロト イヨト イヨト イヨト

Benchmark

Observables (NNPDF2.1 Preliminary)

Maria Ubiali (University of Edinburgh & Université Ca

QCD at LHC, Trento 20 / 26

Benchmark Observables (NNPDF2.1 Preliminary)

PDF4LHC benchmarks - LHC 14 TeV

Maria Ubiali (University of Edinburgh & Université Ca

QCD at LHC, Trento 21 / 26

- The benchmark comparison strongly depends on the value of the strong coupling constant.
- For meaningful comparison use the same value of α_s .
- What about the values for m_c and m_b ?
- \bullet Going from NNPDF2.0 to NNPDF2.1 results for LHC standard candles move within 1σ uncertainty.
- NNPDF2.1 closer to MSTW08 but a marginal agreement with CTEQ66.

= nar

イロト イポト イヨト イヨト

BACKUP slides

Maria Ubiali (University of Edinburgh & Université Ca

E

590

イロト イロト イヨト イヨト

Kulagin-Petti parametrization, corrections on structure functions

- Corrections are model-dependent.
- Tested the impact of nuclear corrections (NuTeV, A=49.6; CHORUS, A=206).
- Used both De Florian-Sassot model and Hirai et all model.
- Found that the impact of the nuclear corrections is small, within statistical fluctuations.
- $\bullet\,$ Quantified with computation of distances $d\sim 1$

イロト イボト イヨト イヨ

	ZM		De Florian-Sassot		HKN07	
	Data	Extrapolation	Data	Extrap.	Data	Extrap
$\Sigma(x, Q_0^2)$	$5 \ 10^{-4} \le x \le 0.1$	$10^{-5} \le x \le 10^{-4}$				
$\langle d[q] \rangle$	5.2	1.0	2.3	1.4	2.3	0.9
$\langle d[\sigma] \rangle$	2.5	1.6	1.5	1.2	1.2	1.1
$g(x, Q_0^2)$	$5 \ 10^{-4} \le x \le 0.1$	$10^{-5} \le x \le 10^{-4}$				
$\langle d[q] \rangle$	1.4	1.5	1.2	1.0	1.4	1.1
$\langle d[\sigma] \rangle$	1.8	1.5	1.2	1.2	1.2	1.4
$T_3(x, Q_0^2)$	$0.05 \le x \le 0.75$	$10^{-3} \le x \le 10^{-2}$				
$\langle d[q] \rangle$	1.4	2.0	1.3	1.0	1.0	1.0
$\langle d[\sigma] \rangle$	2.9	0.9	1.4	1.5	1.1	1.1
$V(x, Q_0^2)$	$0.1 \le x \le 0.6$	$3 \ 10^{-3} \le x \le 3 \ 10^{-2}$				
$\langle d[q] \rangle$	1.2	1.2	1.3	1.2	0.8	0.7
$\langle d[\sigma] \rangle$	1.5	1.1	1.3	1.5	1.3	0.9
$\Delta_S(x, Q_0^2)$	$0.1 \le x \le 0.6$	$3 \ 10^{-3} \le x \le 3 \ 10^{-2}$				
$\langle d[q] \rangle$	2.1	2.3	0.8	1.0	1.1	1.0
$\langle d[\sigma] \rangle$	1.1	1.1	1.2	1.3	1.0	1.3
$s^+(x, Q_0^2)$	$5 \ 10^{-4} \le x \le 0.1$	$10^{-5} \le x \le 10^{-4}$				
$\langle d[q] \rangle$	9.4	1.1	2.1	1.5	1.6	1.1
$\langle d[\sigma] \rangle$	3.4	1.6	1.5	1.0	1.5	1.0
$s^{-}(x, Q_0^2)$	$0.1 \le x \le 0.6$	$3 \ 10^{-3} \le x \le 3 \ 10^{-2}$				
$\langle d[q] \rangle$	0.9	0.9	1.0	1.1	1.3	1.1
$\langle d[\sigma] \rangle$	1.4	1.2	1.0	1.0	1.4	0.9

Maria Ubiali (University of Edinburgh & Université Ca

QCD at LHC, Trento 25 / 26

E 990

メロト メポト メヨト メヨト

Э

590

イロト イヨト イヨト イヨト