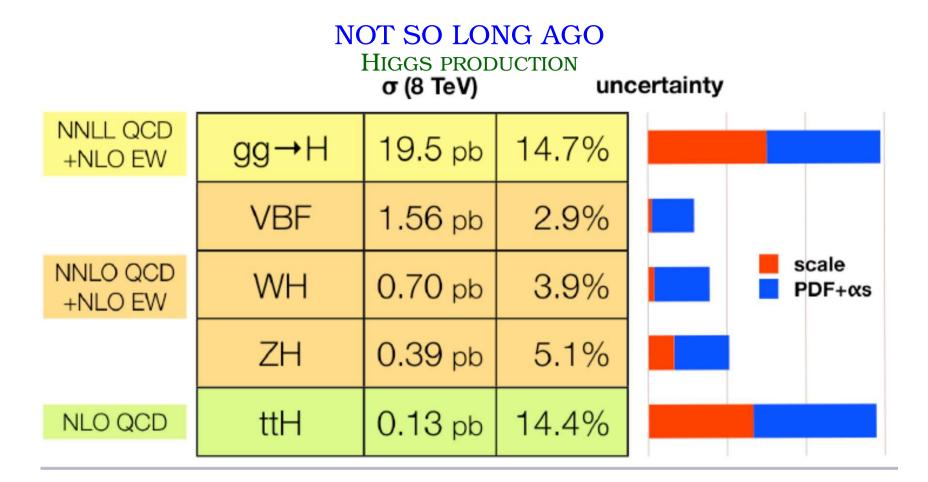


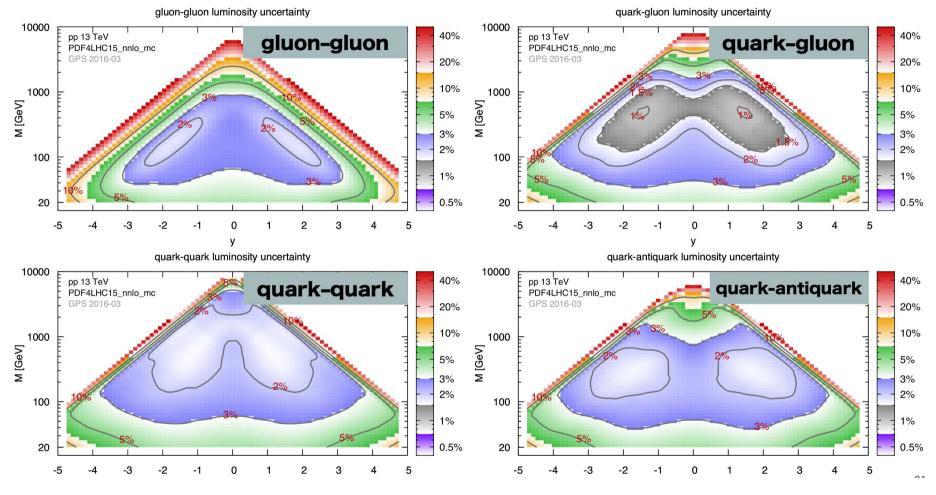
PROBLEMS IN PDF DETERMINATION

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN


UNIVERSITÀ DEGLI STUDI DI MILANO

JANUARY 26, 2017

WÜRZBURG


PROLOGUE

(J. Campbell, HCP2012)

PDF uncertainty either dominant, or very large, or both typical PDF uncertainty $\sim 5-10\%$

NOW: THE PDF4LHC SET LUMINOSITY UNCERTAINTIES VS RAPIDTY & MASS

G.P. Salam, LHCP2016

TYPICAL PDF UNCERTAINTY DOWN TO $\sim 2-5\%$ CAN WE BELIEVE IN 1% PDF UNCERTAINTIES?

- GLOBAL PDF FITS & WHY THE AGREE
- MONTE CARLO, HESSIAN & COMPRESSION
- COMBINED SETS
- QED PDFs

OPEN PROBLEMS

- GLOBAL FITS & WHY THEY DISAGREE
- THE ROLE OF NEW DATA
- COLLIDER PDFs: OPPORTUNITIES & PROBLEMS

NEW PROBLEMS

- THEORETICAL UNCERTAINTIES ON PDFs
- PDFs beyond NNLO QCD
- THE TREATMENT OF HEAVY QUARKS

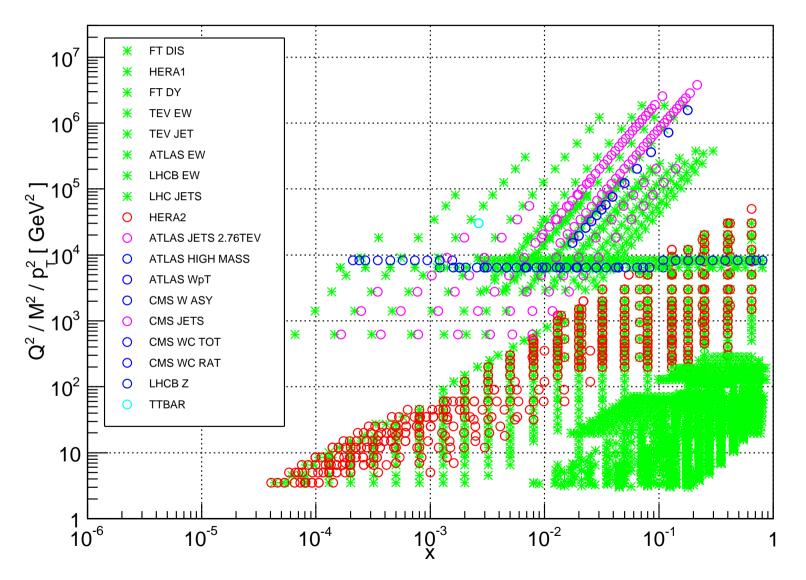
DISCLAIMER

- THIS IS NOT AN UNBIASED REVIEW TALK
- PROBLEMS SOLVED \Rightarrow CONSENSUS OF THE COMMUNITY (PDF4LHC)
- OPEN & NEW PROBLEMS ⇒ MY OWN BIASED OPINION (DOES NOT REPRESENT PDF4LHC, OR EVEN NNPDF)

PROBLEMS SOLVED

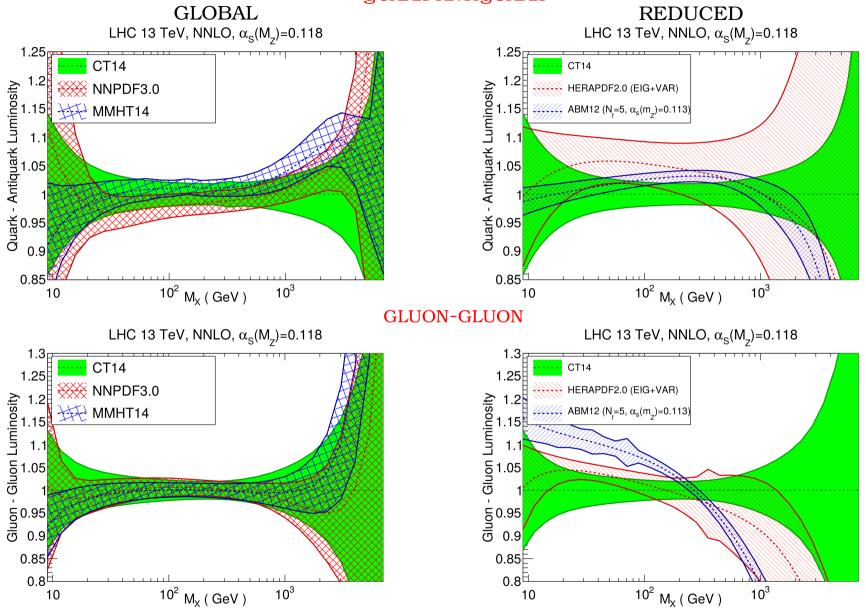
CONTEMPORARY PDF TIMELINE (PUBLISHED ONLY)

	20	08	20	009	201	10	2011	201	12	201		20	14	2015
SET	CT6.6	NN1.0	MSTW	ABKM09	NN2.0	CT10(N			NN2.3	CT10(NN)		NN3.0	MMHT	CT14
MONTH	(02)	(08)	(01)	(08)	(02)	(07)	(07)	(02)	(07)	(02)	(10)	(10)	(12)	(06)
F. T. DIS	~	~	~	 	~	~	 	~	~	~	~	~	~	~
ZEUS+H1-HI	~	~	~	 	~	~	 	~	~	 	~	~	~	~
сомв. НІ	×	×	×	×	~	×	 	×	~	×	~	~	×	×
ZEUS+H1-HII	×	×	×	×	×	×	some	×	×	some	×	~	×	×
HERA JETS	×	×	~	×	×	×	×	×	×	×	×	×	~	×
F. T. DY	~	×	~	v	v	~	v	~	~	 	~	~	~	
TEV. W+Z	~	×	~	×	~	~	~	×	~	 		~	~	
TEV. JETS	~	×	~	×	~	~	×	~	~	 	×	 	~	
LHC W+Z	×	×	×	×	×	×	×	×	~	×	some	 	~	
LHC JETS	×	×	×	×	×	×	×	×	~	×	×	~	~	
TOP	×	×	×	×	×	×	×	×	×	×	~	~	×	×
W+C	×	×	×	×	×	×	×	×	×	×	×	~	×	×
$W p_T$	×	×	×	×	×	×	×	×	×	X	×	 ✓ 	×	×


- INCREASINGLY WIDE DATASET USED FOR PDF DETERMINATION
- HERAPDF: ONLY HERA STRUCTURE FUNCTION DATA \Rightarrow EXTREME CONSISTENCY
- MANY THEORETICAL AND METHODOLOGICAL IMPROVEMENTS:
 - MSTW, ABKM: ALL NNLO; NNPDF NNLO SINCE 07/11 (2.1), CT SINCE 02/13 (CT10)
 - MSTW, CT ALL MATCHED HEAVY QUARK SCHEMES; NNPDF GM-VFN SINCE 01/11 (2.1)

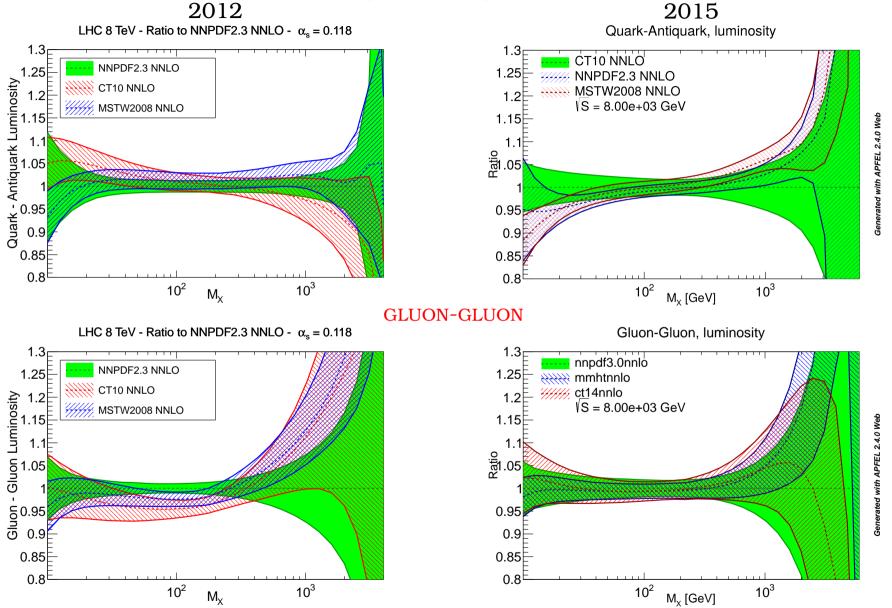
GLOBAL FITS: THE DATASET IN DETAIL

	NNPDF3.0	MMHT14	CT14
SLAC P,D DIS	 ✓ 	 ✓ 	X
BCDMS P,D DIS	✓	 ✓ 	 ✓
NMC P,D DIS	✓		 ✓
E665 p,d DIS	×	 ✓ 	×
CDHSW NU-DIS	×	×	 ✓
CCFR NU-DIS	××	 ✓ 	 ✓
CHORUS NU-DIS		 ✓ 	×
CCFR DIMUON	×	 ✓ 	
NUTEV DIMUON	✓		
HERA I NC,CC	 ✓ 	 ✓ 	v
HERA I CHARM		 ✓ 	V
H1,ZEUS JETS	×		X X X
H1 HERA II	✓	×	×
ZEUS HERA II	 ✓ 	×	×
E605 & E866 FT DY	 ✓ 	 ✓ 	 ✓
CDF & DO W ASYM	×	 ✓ 	 ✓
CDF & D0 Z rap	✓		
CDF RUN-II JETS	✓		
DO RUN-II JETS	××		V
DO RUN-II W ASYM	×	×	 ✓
ATLAS HIGH-MASS DY	 ✓ 	 ✓ 	
CMS 2D DY	✓		×
ATLAS W,Z RAP			
ATLAS W p_T	✓	×	×
CMS W ASY	✓		
CMS W +c	✓	×	×
LHCB W,Z RAP			
ATLAS JETS			
CMS JETS		 ✓ 	
TTBAR TOT XSEC	 ✓ 	 ✓ 	×
TOTAL NLO	4276	2996	3248
TOTAL NNLO	4078	2663	3045


THE NNPDF3.0 DATASET

NNPDF3.0 NLO dataset

PARTON LUMINOSITIES (LHC 13)


QUARK-ANTIQUARK

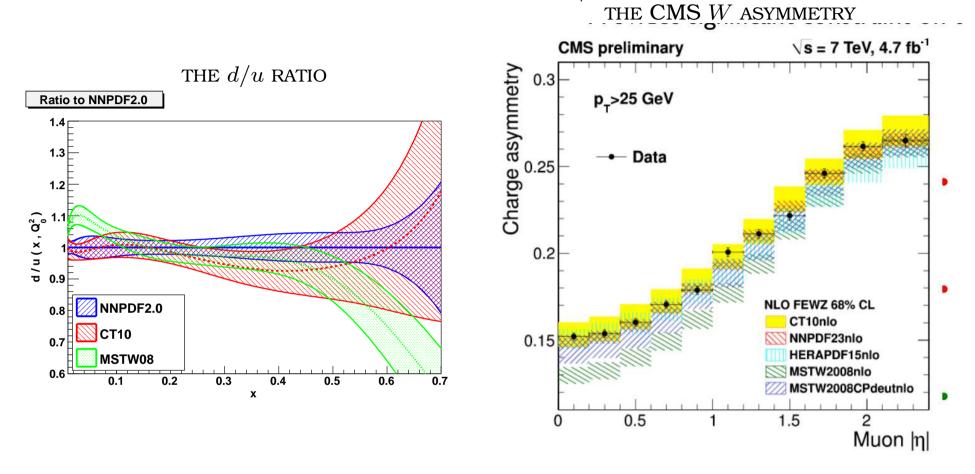
- GLOBAL FITS AGREE WELL
- FITS BASED ON REDUCED DATASET HAVE EITHER LARGE UNCERTAINTIES OR SHOW SIZABLE DEVIATIONS

PARTON LUMINOSITIES (LHC 8)

QUARK-ANTIQUARK

- LONGSTANDING DISCREPANCY BETWEEN GLUON LUMINOSITIES IS GONE \Rightarrow IMPACT ON HIGGS
- Uncertainties blow up for light ($\lesssim 10$ GeV) or heavy ($\gtrsim 1$ TeV) final states \Rightarrow impact on searches

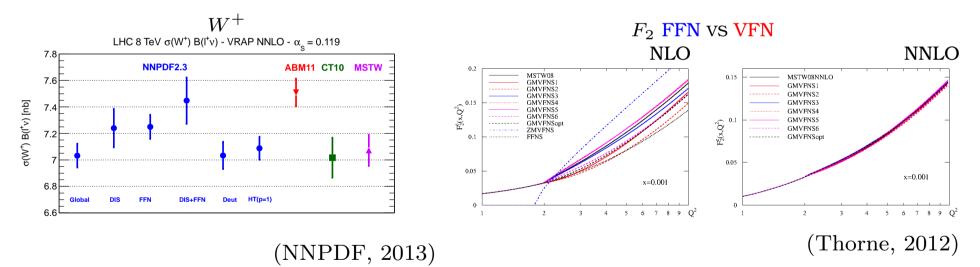
PROGRESS


- Q: WHY ARE PDF UNCERTAINTIES ON GLOBAL FITS OF SIMLAR SIZE?
 - SIMILAR DATASETS
 - BUT DIFFERENT PROCEDURES
- A: UNCERTAINTY TUNED TO DATA THROUGH TOLERANCE (MMHT & CT) OR CLOSURE TESTING (NNPDF)
- Q: WHAT HAS DRIVEN THE IMPROVED AGREEMENT OF GLOBAL FITS
 - SIMILAR DATASETS
 - BUT DIFFERENT PROCEDURES
- A: DATA+METHODOLOGY

METHODOLOGY

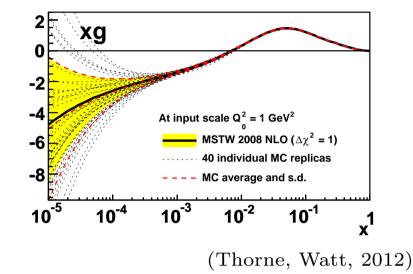
	NNPDF3.0	MMHT14	CT14
NO. OF FITTED PDFS	7	7	6
PARAMETRIZATION	NEURAL NETS	$x^a(1-x)^b \times \text{CHEBYSCHEV}$	$x^{a}(1-x)^{b} imes \text{BERNSTEIN}$
FREE PARAMETERS	259	37	30-35
UNCERTAINTIES	REPLICAS	HESSIAN	HESSIAN
TOLERANCE	NONE	Dynamical	DYNAMICAL
CLOSURE TEST	 ✓ 	×	×
REWEIGHTING	REPLICAS	EIGENVECTORS	EIGENVECTORS

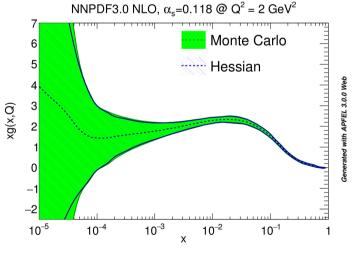
- MMHT, CT10 LARGER # OF PARMS., ORTHOGONAL POLYNOMIALS
- NNPDF CLOSURE TEST


EXAMPLE OF DATA-DRIVEN PROGRESS MSTW/MMHT: THE d/u RATIO

- LONG-STANDING DISCREPANCY IN THE d/u ratio between $\ensuremath{\mathsf{MSTW}}$ and other global fits
- Resolved by W asymmetry data
- EXPLAINED BY INSUFFICIENTLY FLEXIBLE PDF PARAMETRIZATION \Rightarrow FIXED IN MSTW08DEUT/MMHT

WHY DO SOME PDF SETS DISAGREE? FFN PDFS

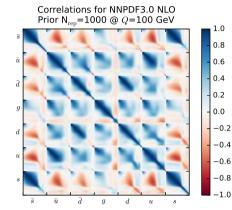

- SOME PDF SETS ADOPT A FFN SCHEME (ABM, JR)
- ABM ALSO INCLUDES HIGHER TWIST & NUCLEAR CORRECTIONS
- ALSO, ABM MOSTLY BASED ON DIS DATA
- NNPDF WITH FFN &DIS DATA SET AGREES WITH ABM; HIGHER TWIST & NUCLEAR CORRECTIONS HAVE SMALL & LOCALIZED EFFECT;
- FFN EVOLUTION WEAKER \Rightarrow GLUON DISTORTED analytic argument by R.Thorne, 2012

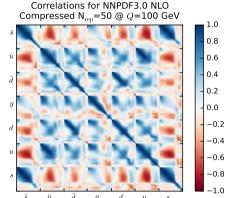


- ABM \Rightarrow no tolerance
- ABM $\Rightarrow \alpha_s(M_z) = 0.113 \pm 0.001$

$MC \Leftrightarrow HESSIAN$

- TO CONVERT HESSIAN INTO MONTECARLO GENERATE MULTIGAUSSIAN REPLICAS IN PA-RAMETER SPACE
- ACCURATE WHEN NUMBER OF REPLICAS SIMILAR TO THAT WHICH REPRODUCES DATA

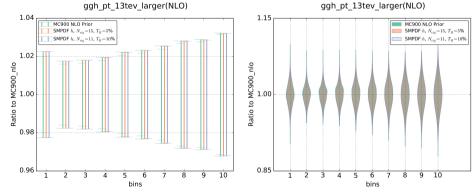




(Carrazza, SF, Kassabov, Rojo, 2015)

- TO CONVERT MONTE CARLO INTO HESSIAN, SAMPLE THE REPLICAS $f_i(x)$ AT A DISCRETE SET OF POINTS & CONSTRUCT THE ENSUING COVARIANCE MATRIX
- EIGENVECTORS OF THE COVARIANCE MATRIX AS A BA-SIS IN THE VECTOR SPACE SPANNED BY THE REPLICAS BY SINGULAR-VALUE DECOMPOSITION
- NUMBER OF DOMINANT EIGENVECTORS SIMILAR TO NUMBER OF REPLICAS \Rightarrow ACCURATE REPRESENTATION

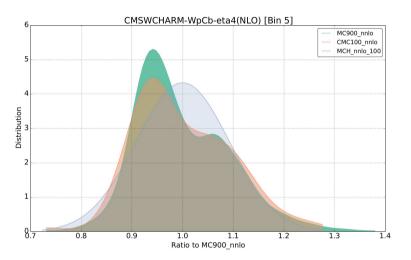
COMPRESSION MONTECARLO



- CONSTRUCT A VERY LARGE REPLICA SAMPLE
- SELECT (BY GENETIC ALGORITHM) A SUBSET OF REPLICAS WHOSE STATISTICAL FEATURES ARE AS CLOSE AS POSSIBLE TO THOSE OF THE PRIOR
- \Rightarrow FOR ALL PDFS ON A GRID OF POINTS // MIN-IMIZE DIFFERENCE OF: FIRST FOUR MOMENTS, CORRELATIONS; OUTPUT OF KOLMOGOROV-SMIRNOV TEST (NUMBER OF REPLICAS BETWEEN MEAN AND σ , 2σ , INFINITY)
- 50 COMPRESSED REPLICA REPRODUCE 1000 REPLICA SET TO PRECENT ACCURACY

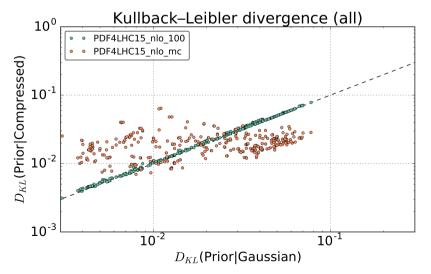
(Carrazza, Latorre, Kassabov, Rojo, 2015) CAN REPRODUCE NONGAUSSIAN FEATURES WITH REASONABLY SMALL REPLICA SAMPLE HESSIAN

- SELECT SUBSET OF THE COVARIANCE MATRIX CORRELATED TO A GIVEN SET OF PROCESSES
- PERFORM SVD ON THE REDUCED COVARI-ANCE MATRIX, SELECT DOMINANT EIGENVEC-TOR, PROJECT OUT ORTHOGONAL SUBSPACE
- ITERATE UNTIL DESIRED ACCURACY REACHED
- CAN ADD PROCESSES TO GIVEN SET; CAN COM-BINE DIFFERENT OPTIMIZED SETS
- 15 EIGENVECTORS DESCRIBE ALL HIGGS MODES + JETS + W, Z production



⁽Carrazza, SF, Kassabov, Rojo, 2016)

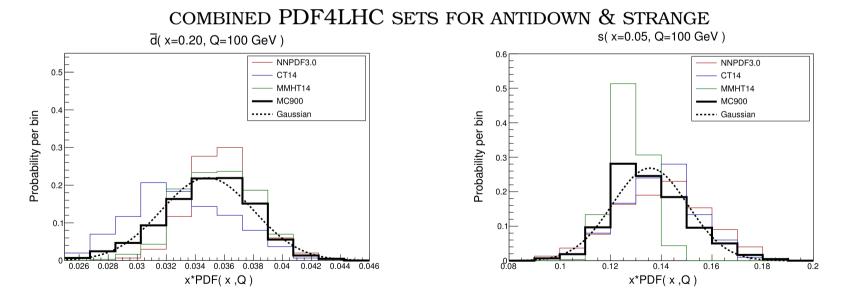
VERY SMALL NUMBER OF EVECS; CAN COMBINE WITH NUISANCE PARMS


NONGAUSSIAN BEHAVIOUR

MONTE CARLO COMPARED TO HESSIAN CMS W + c production

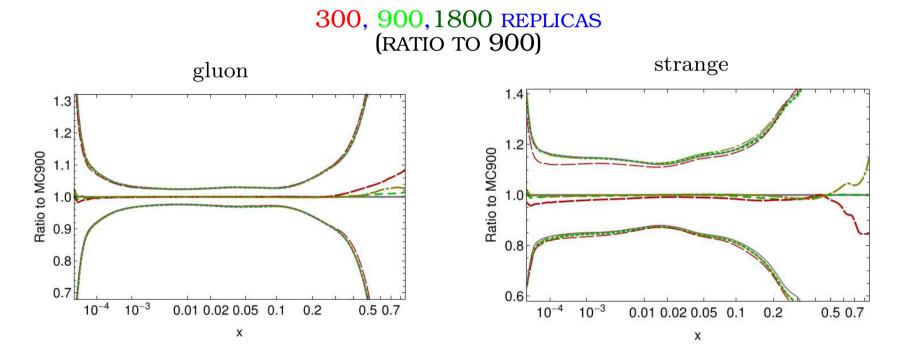
- DEVIATION FROM GAUSSIANITY E.G. AT LARGE x DUE TO LARGE UNCERTAINTY + POSITIVITY BOUNDS \Rightarrow RELEVANT FOR SEARCHES
- CANNOT BE REPRODUCED IN HESSIAN FRAMEWORK
- Well reproduced by compressed MC

- DEFINE KULLBACK-LEIBLER DIVERGENCE $D_{\text{KL}} = \int_{-\infty}^{\infty} P(x) \frac{\ln P(x)}{\ln Q(x)} dx$ BETWEEN A PRIOR P AND ITS REPRESEN-TATION Q
- $D_{\rm KL}$ between prior and hessian depends on degree of Gaussianity
- $D_{\rm KL}$ between prior and compressed MC does not



CAN GAUGE WHEN MC IS MORE ADVANTAGEOUS THAN HESSIAN!

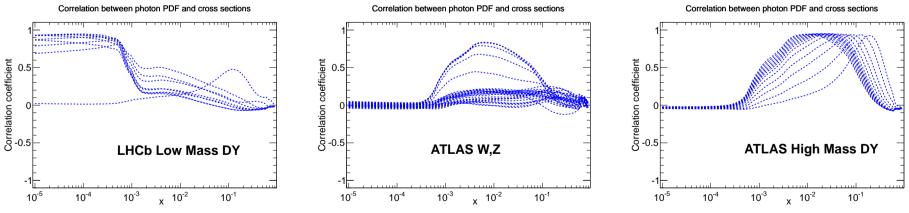
MONTE CARLO COMBINATION


(Watt, S.F., 2010-2013)

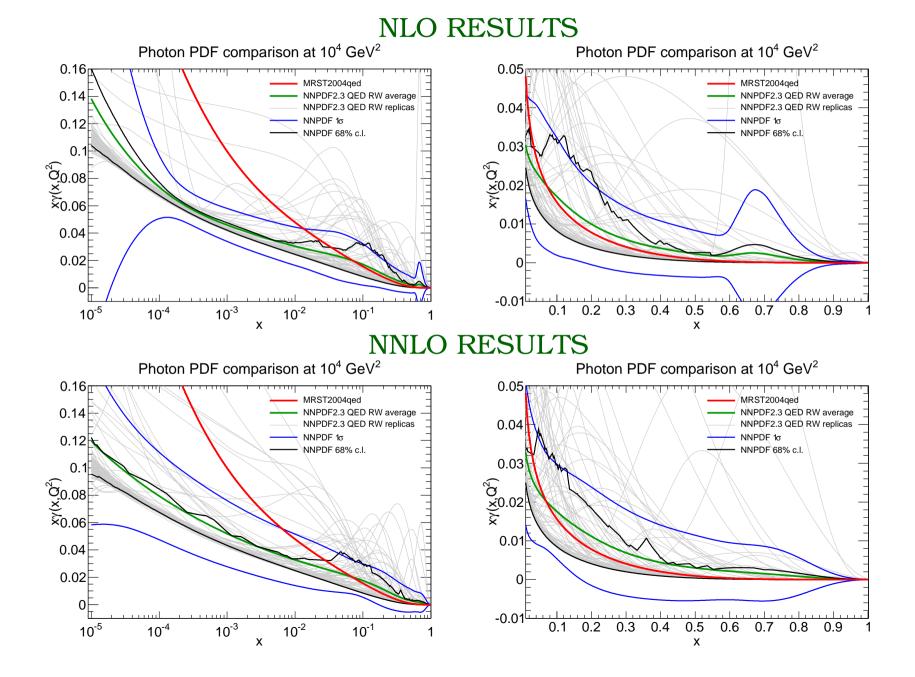
- MAY COMBINE DIFFERENT PDF SETS, AFTER MC CONVERSION OF HESSIAN SETS
- COMBINE MONTE CARLO REPLICAS INTO SINGLE SET
- COMBINED SET APPROXIMATELY GAUSSIAN

PDF4LHC15 COMBINATION

- INCLUDES CT14, MMHT, NNPDF3.0
- 900 REPLICAS (300 FOR EACH SET) ENSURE PRECENTAGE ACCURACY ON ALL QUANTITIES


THE PHOTON PDF

NNPDF2.3QED/NNPDF3.0QED DATASET


Dataset	Observable	$N_{\rm dat}$	$[\eta_{\min},\eta_{\max}]$	$\left[M_{\rm ll}^{\rm min}, M_{\rm ll}^{\rm max} \right]$
LHCb γ^*/Z Low Mass	$d\sigma(Z)/dM_{ll}$	9	[2,4.5]	[5,120] GeV
ATLAS W, Z	$d\sigma(W^{\pm},Z)/d\eta$	30	[-2.5, 2.5]	[60,120] GeV
ATLAS γ^*/Z High Mass	$d\sigma(Z)/dM_{ll}$	13	[-2.5, 2.5]	[116, 1500] GeV

IMPACT

THE PHOTON PDF FROM DATA NNPDF2.3QED-NNPDF3.0QED

THE PHOTON PDF BREAKTHROUGH

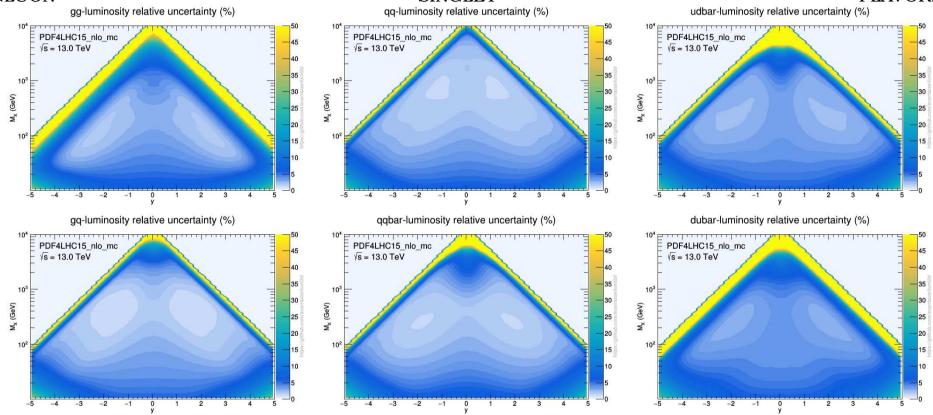
(Manohar, Nason, Salam, Zanderighi, 2016)

- **QED** IS PERTURBATIVE DOWN TO LOW SCALES \Rightarrow THE PHOTON PDF MUST BE COMPUTABLE IF THE INPUT QUARK SUBSTRUCTURE IS KNOWN
- WRITE THE CROSS-SECTION FOR A CHOSEN PROCESS: SUSY PRODUCTION IN EP COLLISION (Drees, Zeppenfeld, 1989)
- COMPUTE IT DIRECTLY, OR USING THE PHOTON PDF
- \Rightarrow PDF expressed in terms of the structure function integrated over All scales, including elastic form factors

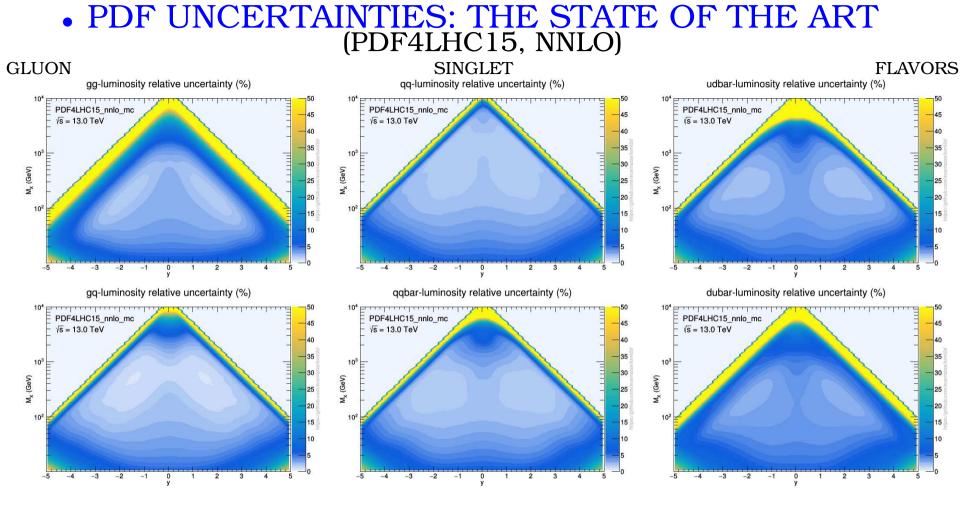
$$\begin{split} xf_{\gamma/p}(x,\mu^2) &= & 10^{-1} \\ \frac{1}{2\pi\alpha(\mu^2)} \int_x^1 \frac{dz}{z} \left\{ \int_{\frac{x^2 m_p^2}{1-z}}^{\frac{\mu^2}{1-z}} \frac{dQ^2}{Q^2} \alpha^2(Q^2) \\ & \left[\left(zp_{\gamma q}(z) + \frac{2x^2 m_p^2}{Q^2} \right) F_2(x/z,Q^2) - z^2 F_L\left(\frac{x}{z},Q^2\right) \right] \right]_{\text{To}}^{\text{Normalized}} \\ & -\alpha^2(\mu^2) z^2 F_2\left(\frac{x}{z},\mu^2\right) \right\}, \end{split}$$

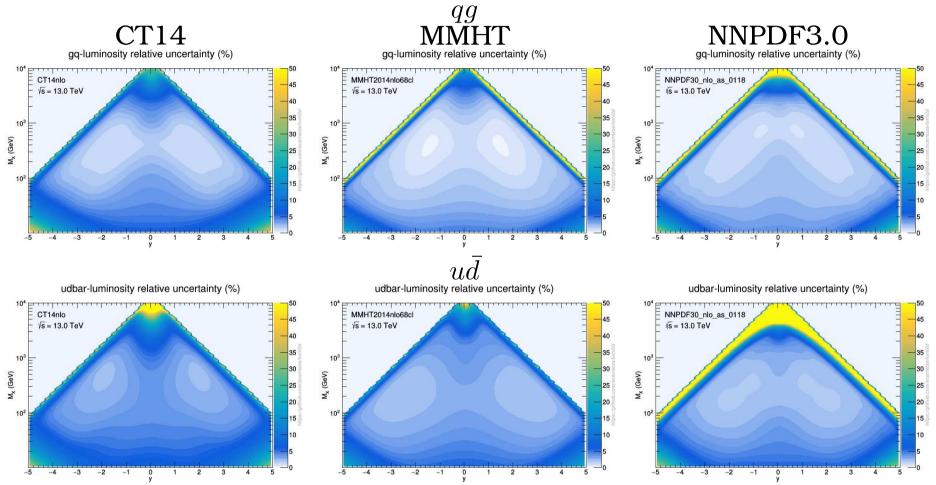
OLD PROBLEMS LESSONS LEARNT

- THE RELIABILITY OF PDF SETS CRUCIALLY DEPENDS ON THE INCLUSION OF A WIDE ENOUGH DATASET
- FFN PDFs unreliable
- CAN FREELY CHOOSE MC OR HESSIAN PDF UNCERTAINTIES:
 - MC ALLOWS REPRODUCING NON-GAUSSIAN BEHAVIOUR
 - HESSIAN ALLOWS FOR OPTIMAL ACCURATE REPRESENTATION OF GAUSSIAN UNCERTAINTIES
 - COMPRESSION METHODS AVAILABLE IN BOTH CASES
 - THE PHOTON PDF CAN BE COMPUTED FROM THE PROTON STRUCTURE
 FUNCTION


OPEN PROBLEMS

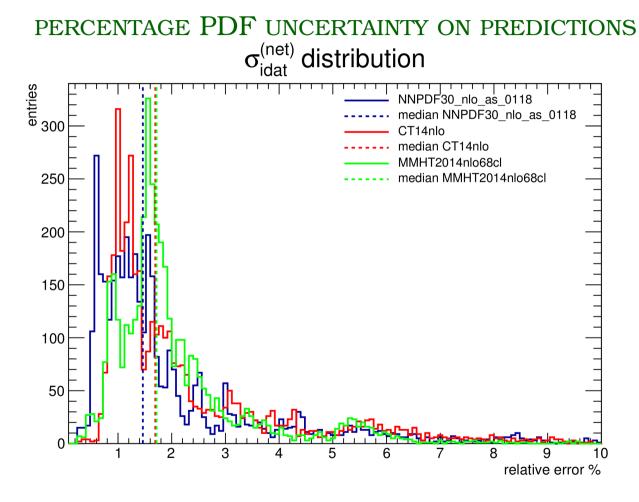
PDF UNCERTAINTIES: THE STATE OF THE ART THE KARLSRUHE PLOTS




- GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- SWEET SPOT: VALENCE Q G; UNCERTAINTIES DOWN TO 1%
- UP BETTER KNOWN THAN DOWN: FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS

CAN WE BELIEVE IN 1% PDF UNCERTAINTIES?

- NO QUALITATIVE DIFFERENCE BETWEEN NLO AND NNLO
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS
- SWEET SPOT: VALENCE Q G; UNCERTAINTIES DOWN TO 1%
- GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN


WHAT'S THE UNCERTAINTY ON THE PDF UNCERTAINTY?

- DIFFERENCES IN UNCERTAINTIES BETWEEN GLOBAL FITS ALWAYS OF ORDER OF SEVERAL PERCENT
- UNCERTAINTY ON UNCERTAINTY SMALLER???

PDF UNCERTAINTIES: HOW MUCH DO THEY VARY?

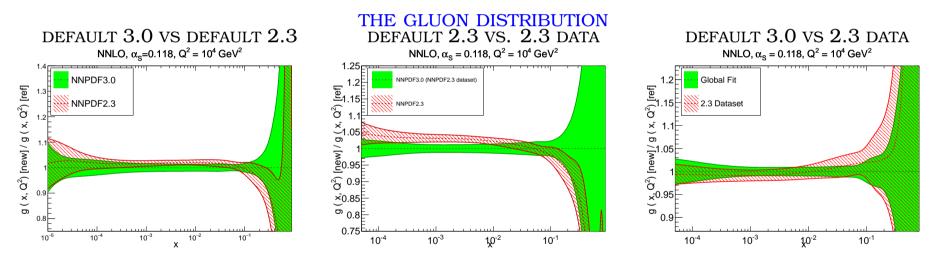
- COMPUTE PERCENTAGE PDF UNCERTAINTY ON ALL DATA INCLUDED IN GLOBAL FIT
- **COMPARE** GLOBAL FITS

MEDIAN SIMILAR

DISTRIBUTION VERY DIFFERENT!

• NNPDF: SMALLER MODE, BUT FAT TAIL \Leftrightarrow GREATER FLEXIBILITY

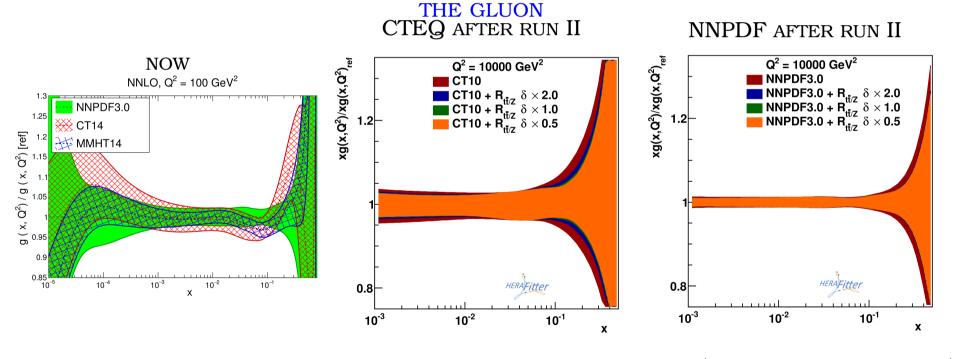
WHY MORE FLEXIBLE IS BETTER



(C. Mascaretti, 2016)

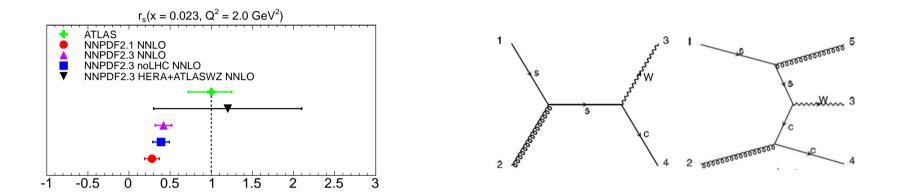
- CLOSURE TEST PERFORMED WITH DATA GENERATED BASED ON MST08 FUNCTIONAL FORM
- **REFITTED** EITHER WITH **NNPDF** OR MSTW FUNCTIONAL FORM
- LEVEL O: VANISHING DATA UNCER-TAINTY
 - MSTW-CT: FIT HAS ZERO UN-CERTAINTY
 - NNPDF: ABOUT HALF OF TOTAL UNCERTAINTY
- LEVEL 1: NOMINAL DATA UNCER-TAINTY, BUT REPLICAS FITTED W/O PSEUDODATA
 - MSTW-CT: FIT HAS SMALL UN-CERTAINTY
 - NNPDF: ABOUT 2/3 OF FINAL UNCERTAINTY
- LEVEL 2
 - NNPDF UNCERTAINTY LARGER THAN MSTW-CT
 - NNPDF UNCERTAINTY SIMILAR TO TRUE MSTW

WHY MORE FLEXIBLE IS MORE DANGEROUS NNPDF: 3.0 vs. 2.3


- REPEAT THE 3.0 FIT BUT WITH 2.3 dataset
- COMPARE WITH 2.3 DATA & METHODOLOGY; 2.3 DATA BUT 3.0 METHODOLOGY; 3.0 DATA & METHODOLOGY

- MAIN METHDOLOGICAL DIFFERENT: MORE EFFICIENT GENETIC MINIMIZATION
- THE METHODOLOGY HAS A DOMINANT EFFECT ON THE GLUON

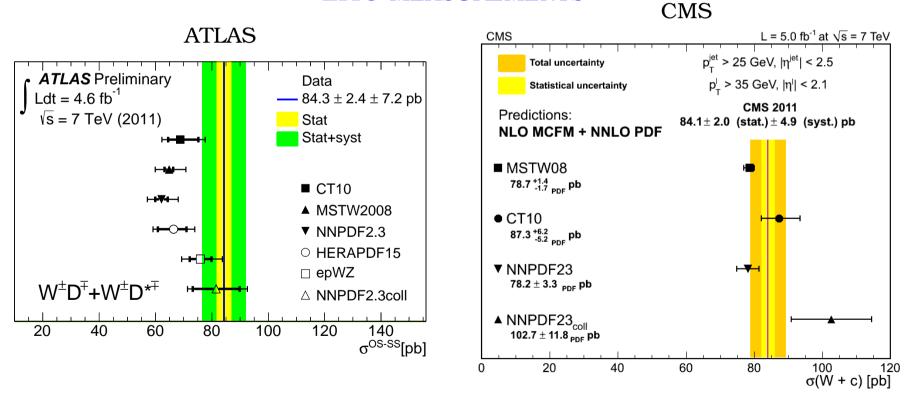
CAN LHC RUN II DATA DATA HELP?


- DATA AT HIGHER CM ENERGY & INFO ON CORRELATION TO LOW ENERGY \rightarrow EXTENDED KINEMATIC COVERAGE & REDUCED SYSTEMATICS
- REDUCED STAT. UNCERTAINTIES
- PDF4LHC STUDY \Rightarrow moderate reduction in PDF uncertainty EXAMPLE: IMPACT on gluon of $t\bar{t}/Z$ ratio

(PDF4LHC: 1507.00556)

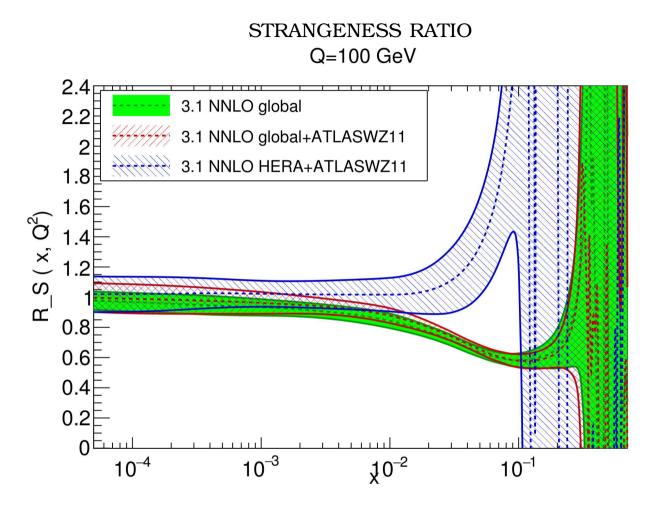
NOT VERY MUCH, IF EVERYTHING IS CONSISTENT

HOW LHC DATA MIGHT HELP STRANGENESS & W PRODUCTION


- ATLAS INCLUSIVE W PRODUCTION DATA (2012) SUGGEST LARGE (≈ 1) STRANGE FRACTION $r_s(x, Q^2) = \frac{s(x, Q^2) + \bar{s}(x, Q^2)}{2\bar{d}(x, Q^2)}$
- HOWEVER LARGE UNCERTAINTIES (NNPDF2.3) \Rightarrow

CONSISTENT WITH PREVIOUS DET. (FROM NEUTRINO DATA) WITHIN UNCERTAINTIES

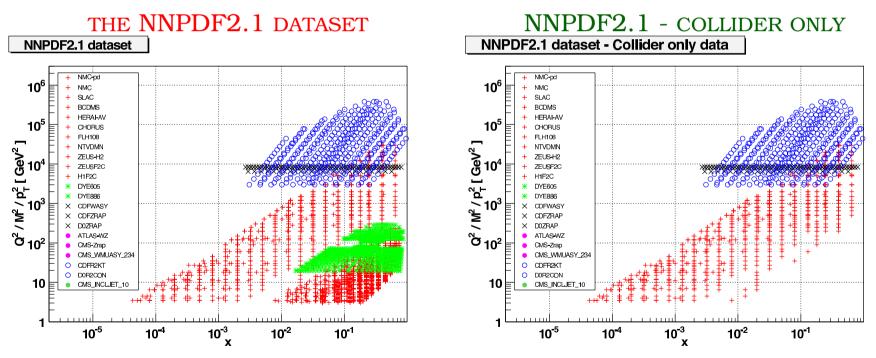
• STRANGENESS PROBED DIRECTLY IN W + c production


W+c production at the ${\rm LHC}$

- MEASUREMENTS BY ATLAS AND CMS CONSISTENT WITHIN UNCERTAINTIES
- COMPARE TO AVAILABLE DEFAULT FITS & TO NNPDF "COLLIDER ONLY" FIT (NO NEUTRINO DATA) \Rightarrow TENSION BETWEEN DY AND NEUTRINO DATA
- ATLAS CENTRAL VAUE FAVORS DY MEASUREMENT, CMS CENTRAL VALUE FAVORS NEUTRINO DATA

LHC MEASUREMENTS

W production at the LHC: 2016


- MORE PRECISE W production data published in 12/2016 tenfold integrated lumi wr to 2012 results
- LEADS TO $R_s(0.023) = 1.19 \pm 0.08$ based on HERA+ATLAS FIT (ATLAS, CONFIRMED BY NNPDF)
- BUT ONLY MINOR IMPACT ON GLOBAL FIT

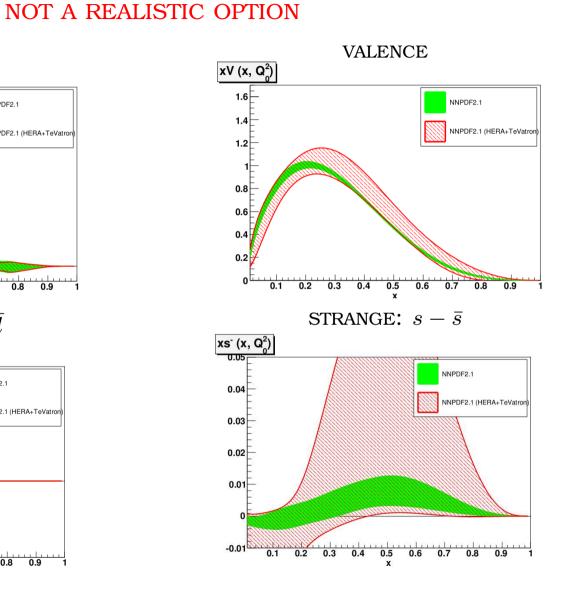
THE ROLE OF NEW DATA: LESSONS LEARNT

- MISTRUST ASSESSMENTS OF THE IMPACT OF NEW DATA X BASED ON A HERA+X FIT
- NEW DATA ARE UNLIKELY TO REDUCE UNCERTAINTIES IF CONSISTENT WITH EXISTING DATA, BUT MAY HAVE A SIZABLE IMPACT IF NOT CONSISTENT WITH THEM
- NEW DATA CAN HELP IN LEAVING BEHIND DATA BASED ON OBSOLETE PHENOMENOLOGY OR LESS RELIABLE THEORY:
 - OLD FIXED TARGET DIS DATA
 - DIS AND DY DATA ON NUCLEAR (DEUTERIUM) TARGETS
 - NEUTRINO DIS DATA (ALL ON NUCLEAR TARGETS)

LHC DATA CAN HAVE A SIGNFICANT IMPACT ON FLAVOR SEPARATION VERY IMPORTANT FOR NEW PHYSICS SEARCHES COLLIDER ONLY PDFS BEFORE THE LHC

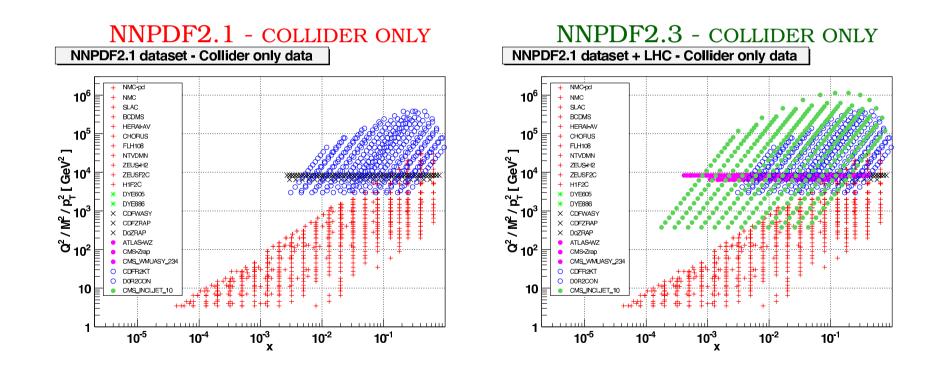
LEAVING BEHIND UNSOUND DATA

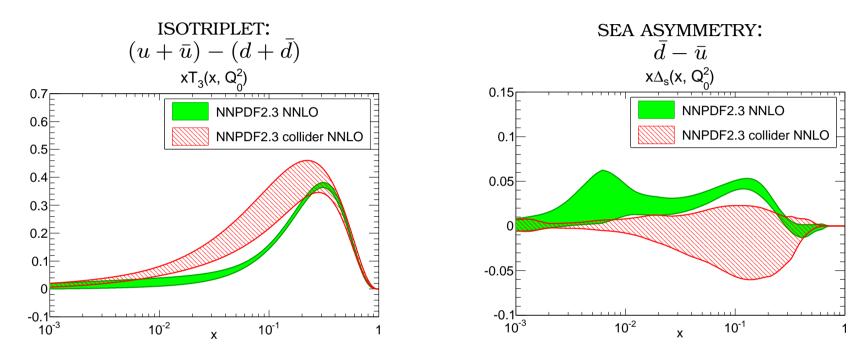



PDFs from HERA+Tevatron data?

• GREAT LOSS OF ACCURACY FOR FLAVOR SEPARATION

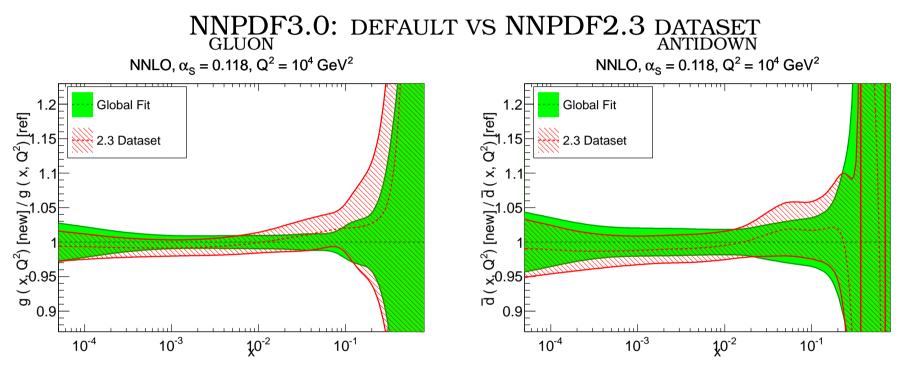
COLLIDER ONLY PDFS BEFORE THE LHC


• GOOD ACCURACY FOR GLUON

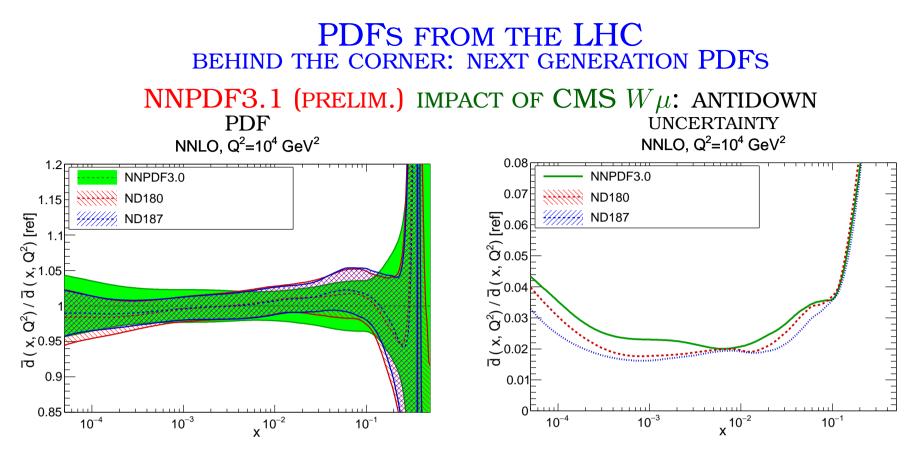


COLLIDER ONLY PDFS AT THE LHC START

2012 data

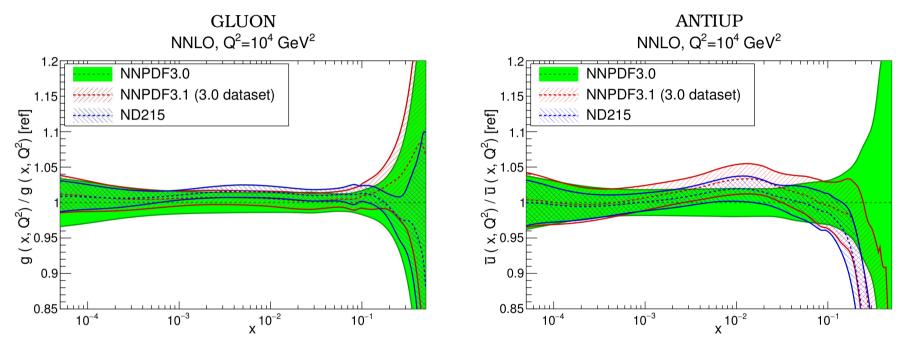

COLLIDER ONLY PDFS AT THE LHC START

BETTER, BUT STILL NOT VIABLE:

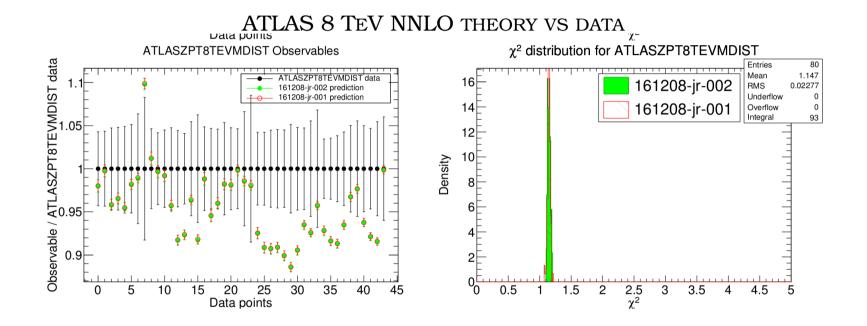

- NNPDF2.3COLLIDER PDFS AFFECTED BY LARGE UNCERTAINTIES
- CRUCIAL MISSING INFORMATION FROM NEUTRINO AND DIS+DY WITH DEUTERON TARGETS
- POOR DETERMINATION OF LIGHT FLAVOR DECOMPOSITION

COLLIDER ONLY PDFS NOW: CURRENT GLOBAL FITS

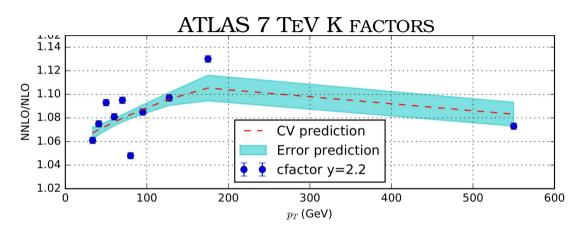
- SOME IMPROVEMENT IN GLUON UNCERTAINTIES DUE TO LHC JET DATA
- NEGLIGIBLE IMPROVEMENT IN FLAVOR DECOMPOSITION FROM EARLY LHC DATA


COLLIDER-ONLY PDFS STILL NOT REALISTIC

- NNPDF3.1 WILL INCLUDE:
 - Tevatron legacy Z rapidity, W asymmetry & jet data
 - ATLAS W, Z rapidity, and total xsect (incl. 13TeV), high and low mass DY, jets
 - CMS W asymmetry, W + c total & ratio, double-differential DY and jets
 - LHCb W and Z rapidity distributions
 - ATLAS and CMS $Z p_T$ distributions
 - $-\,$ ATLAS and CMS top total cross-section & differential rapidity distribution
- NO TENSION \Rightarrow EACH DATASET SMALL IMPACT plot compares effect of adding CMS W μ 8TeV, OVERALL IMPACT NOT NEGLIGIBLE


COLLIDER-ONLY PDFs POSSIBLE?

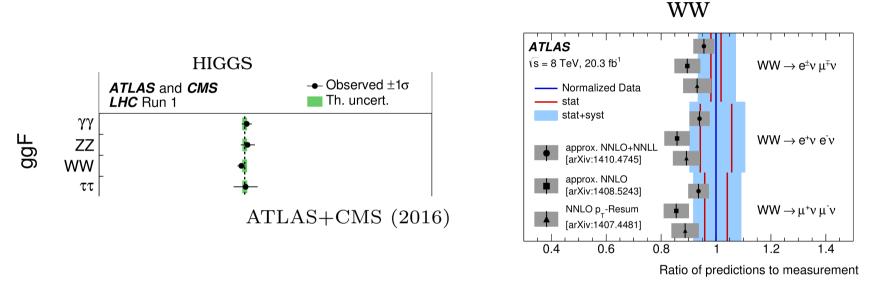
PDFs from the LHC: OPPORTUNITIES THE IMPACT OF THE Z transverse-momentum distributions


- IMPACT BOTH ON GLUON AND QUARKS
- IMPROVEMENT IN PRECISION & IMPACT ON ACCURACY
- CMS AND ATLAS DATA CONSISTENT

PDFs from the LHC: Challenges the Z transverse-momentum distributions at the 1% level

- CORRELATED SYSTEMATICS DOMINATES UNCERTAINTY, OF ORDER ~ 5% \Rightarrow GOOD $\chi^2 \sim 1~{\rm per}~{\rm dof}$ Despite undershoot
- UNCORRELATED UNCERTAINTIES BELOW OR MUCH BELOW 1%
- SIZABLE POINT-TO-POINT FLUCTATIONS IN THEORY PREDICTION

PDFs from the LHC: Challenges the Z transverse-momentum distributions at the 1% level

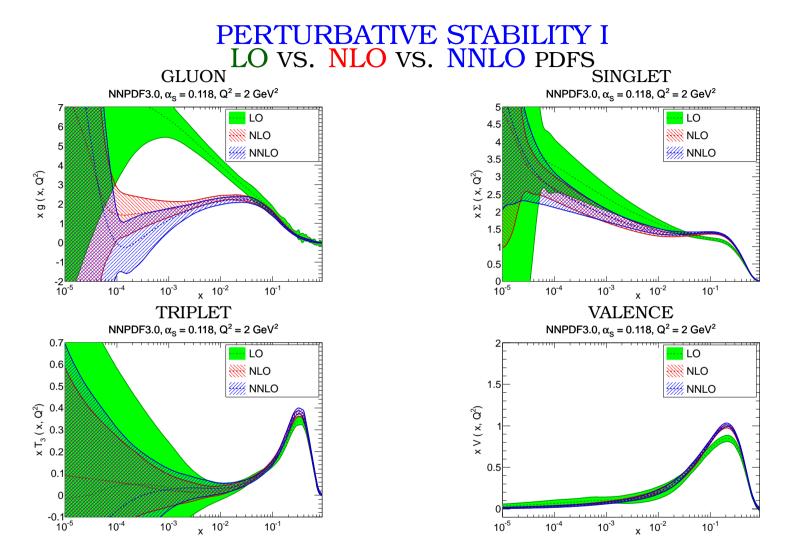


(Boughezal, Liu, Petriello, 2016-2017)

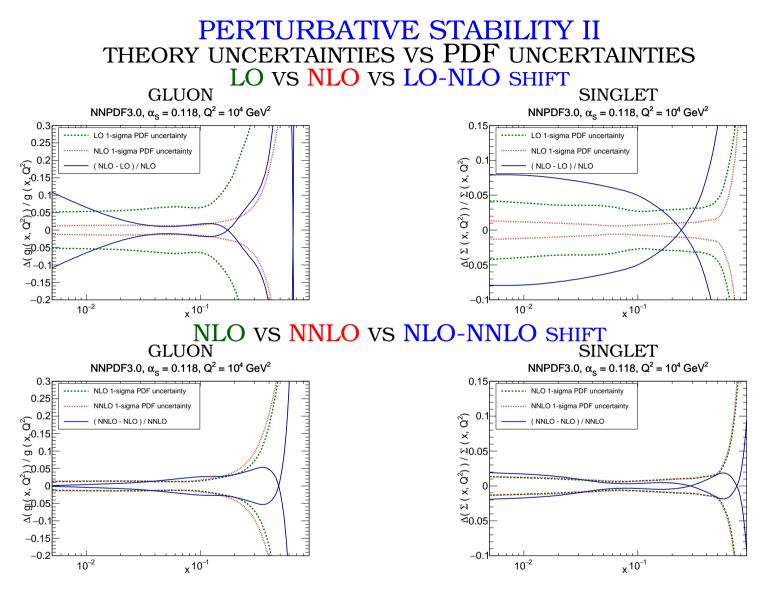
- Large NNLO corrections $\sim 10\%$
- UNCORRELATED UNCERTAINTIES BELOW OR MUCH BELOW 1%
- NOMINAL K-FACTOR UNCERTAINTIES VERY SMALL: UNDERESTIMATED?
- EXTRA 1% THEORY UNCERTAINTY ESTIMATED BASED ON FLUCTUATIONS W.R. TO INTERPOLATION (dashed in plot)

PDFs FROM THE LHC: WHEN DOES A SIGNAL BECOME A STANDARD CANDLE?

- SHOULD WE BE USING DOUBLE GAUGE PRODUCTION OR HIGGS PRODUCTION FOR PDF DETERMINATION?
- EXPERIMENTAL & THEORETICAL ACCURACY ARE OR SOON TO BE COMPETITIVE


PROSPECTS & DESIDERATA

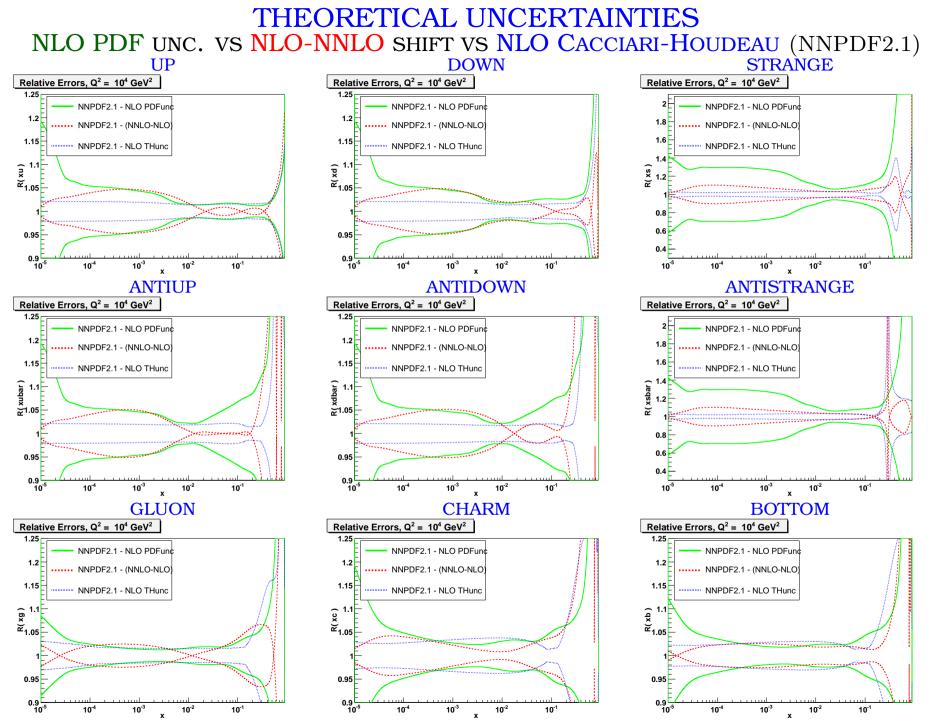
- NNLO JETS!
- NNLO COMPUTATIONS FOR W + c & Z + c (see below)
- K-FACTORS TO 1% ACCURACY OR THEORY UNCERTAINTIES
- PDF DETERMINATION IS LAGGING BEHIND (SINGLE TOP! PROMPT PHOTON!)


COLLIDER PDFS: LESSONS LEARNT

- COLLIDER PDFs are behind the corner
- CORRELATED SYSTEMATICS DOMINATE THE UNCERTAINTY
- MUST CONTROL POINT-TO-POINT FLUCTUATIONS TO BETTER THAN 1%
- MUST INCLUDE AN ACCURATELY ESTIMATES THEORY UNCERTAINTY

NEW PROBLEMS

- PERTURBATIVE ACCURACY OF PREDICTION LIMITED BY PERTURBATIVE ACCURACY OF PDF
- $\alpha_s(M_z) \sim 0.1$, $\alpha_s(M_p) \sim 1/2$; $\alpha_s(Q_1^2) = \alpha_s(Q_2^2)(1 + O(\alpha_s^2))$ \Rightarrow LO: QUALITATIVE; NLO: QUANTITATIVE; NNLO: PRECISION

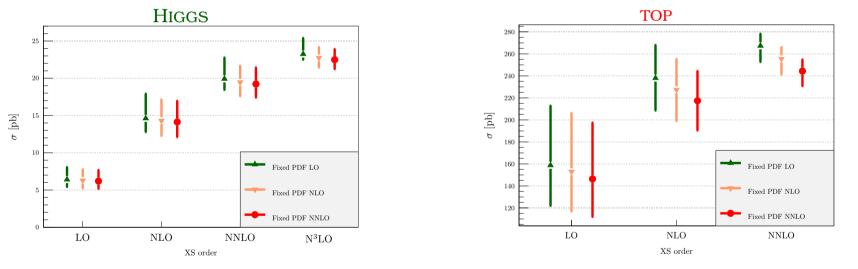

- "DATA" PDF UNCERTAINTY INDEP. OF PERTURBATIVE ORDER
- NLO TH UNCERTAINTY COMPARABLE TO PDF UNCERTAINTY
- TH. UNCERTAINTY (MHOU) VS DATA UNCERTAINTY \Rightarrow LO: DOMINANT; NLO, COMPARABLE; NNLO: SUBDOMINANT

THEORETICAL UNCERTAINTIES ON PDFs:

- PDFs are determined by comparing to data theory at some finite order
- AFFECTED BY THEORETICAL UNCERTAINTY JUST LIKE HARD CROSS-SECTIONS
- NOT INCLUDED IN CURRENT "PDF UNCERTAINTY" (ACCOUNTS ONLY DATA & METHODOLOGY)

CAN WE ESTIMATE THEM?

- SCALE VARIATION DIFFICULT: CORRELATED BETWEEN PROCESSES? HOW DOES IT CORRELATE WITH PROCESSES IN WHICH PDFS ARE USED?
- AT NLO: WE KNOW THE SHIFT TO NNLO
- AT NNLO: LOOK AT THE BEHAVIOUR OF THE PERTURBATIVE EXPANSION (CACCIARI-HOUDEAU)

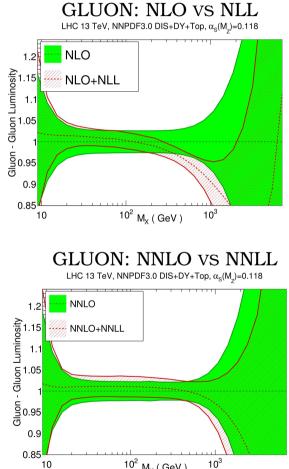


CACCIARI-HOUDEAU PROMISING?

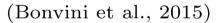
N³LO PDFs:

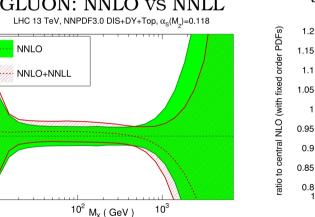
- NEEDED AT THE 1% ACCURACY LEVEL
- IMPACT OF N^3 LO DEPENDS ON PROCESS:
 - Higgs gluon fusion: perturbative dep. of PDF negligible in comparison to matrix element $\Rightarrow N^3LO$ not needed; uncertainty estimated 1% by Anastasiou et al.
 - TOP: PERTURBATIVE DEP. OF PDF SMALLER, BUT NOT NEGLIGIBLE IN COMPARISON TO MATRIX ELEMENT, ANTICORRELATED TO IT $\Rightarrow N^{3}LO$ NECESSARY

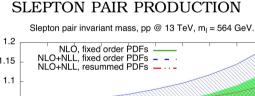
SCALE UNCERTAINTY & DEP. ON PERTURBATIVE ORDER



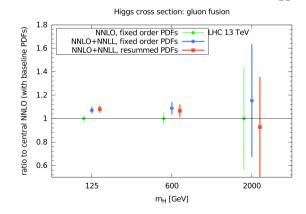
(s.f., Isgrò, Vita, 2014)

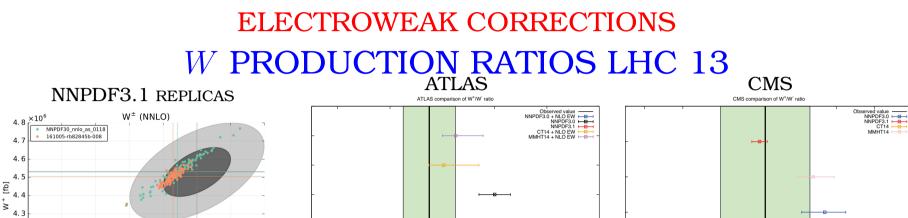

WHEN WILL WE HAVE THEM?


- N³LO DIS COEFFICIENT FUNCTIONS KNOWN
- BOTTLENECK: N^{3} LO ANOMALOUS DIMENSIONS
- ANOMALOUS DIMENSIONS: LO: 1974; NLO: 1981; NNLO: 2004; N³LO: 2030?


RESUMMED PDFs

- SO FAR NO RESUMMED PDF SETS AVAILABLE
- PRELIMINARY STUDY: IF THRESHOLD RESUMMATION INCLUDED IN FIT (DIS, DY, TOP DATA), EFFECTS NOT NEGLIGIGLE AT NLLO, LARGE x, MORE MODER-ATE AT NNLO
- EFFECT ON PDFs comparable to effect on matrix ELEMENT, ANTICORRELATED TO IT
- RELEVANT FOR NEW PHYSICS SEARCHES





1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

M_{II} (GeV)

HIGGS IN GLUON FUSION VS m_H

• GLOBAL PDF SETS OVERSHOOT THE W^+/W^- (and to a lesser extent the W/Z) total cross-section ratios

σ_W+/σ_W- [fb]

1.32

1 34

1.36

1.26

1.28

1.3

• EFFECT STATISTICALLY MARGINAL BUT SUGGESTS POSSIBLE SYSTEMATIC PROBLEM

^{1.32} σ_W+/σ_W [fb] ^{1.34} 1 36

1 38

14

- EW CORRECTIONS ALLEVIATE THE DISCREPANCY (REMOVE IT FOR THE Z CROSS-SECTION)
- EW PS & FSR AT PERCENT OR SUB-PERCENT LEVEL: THEORY CONSISTENTLY TREATED?

1.26

1 28

4. 2 4. 1 4. 0

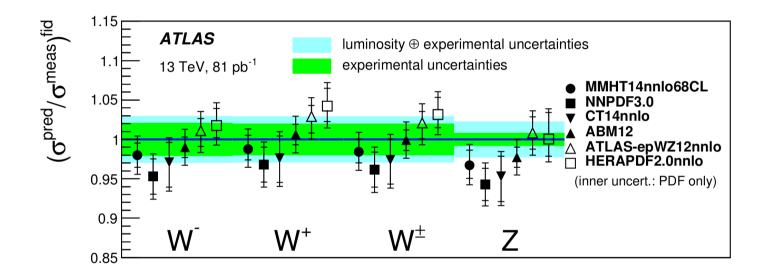
3.1

3.2

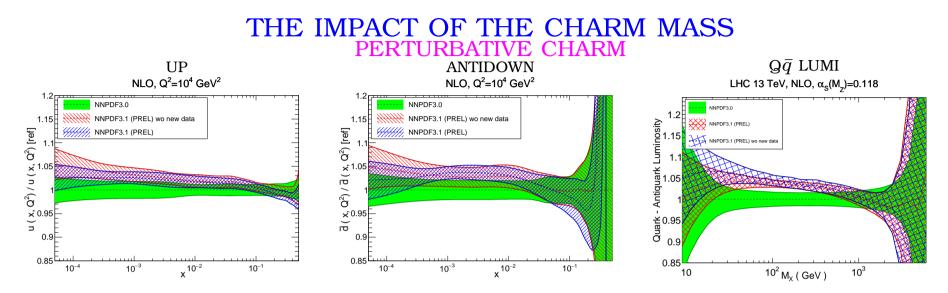
3.3

W⁻ [fb]

3.4

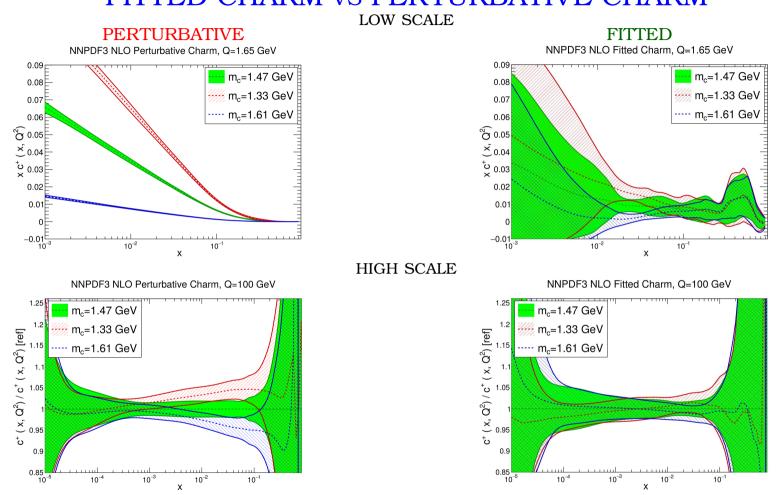

3.5

3.6

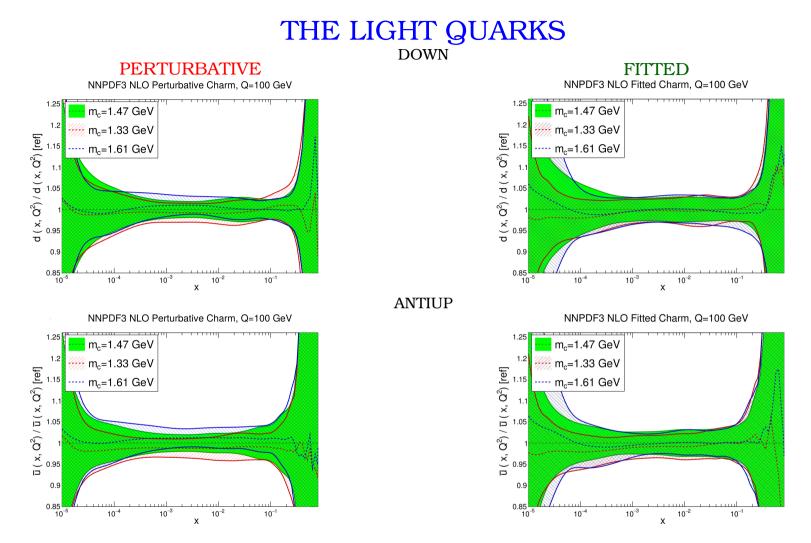

3.7

 $\times 10^{6}$

HEAVY QUARKS W and Z PRODUCTION


- GLOBAL PDF SETS UNDERSHOOT THE Z (AND TO A LESSER EXTENT W^{\pm}) CROSS-SECTION
- EFFECT STATISTICALLY MARGINAL BUT SUGGESTS POSSIBLE SYSTEMATIC PROBLEM

• DIFFERENCE BETWEEN 3.0 AND 3.1 W/. 3.0 DATASET: CHANGE OF THE VALUE OF THE CHARM MASS (POLE) FROM 1.275 GeV (NNPDF3.0) TO 1.47 (NNPDF3.1: PDG)


 \Rightarrow Shift light quark PDFs by one sigma i.e. $\sim 3\%$

- CURRENT GLOBAL PDF SETS HAVE $m_c = 1.275 \text{ GeV}$ (NNPDF3.0) 1.3 GeV (CT14) $m_c = 1.4 \text{ GeV}$ (MMHT), MOSTLY ON HISTORICAL GROUND
- NO CURRENT PDF SET HAS A MASS UNCERTAINTY (PAST SETS AVAILABLE FOR DIFFERENT m_c VALUES)
- WHY SUCH A BIG EFFECT?

FITTED CHARM vs PERTURBATIVE CHARM

- PERTURBATIVE CHARM: DEPENDS SIGNIFICANTLY ON THE MASS WHICH SETS THE PHYSICAL THRESHOLD; DEPENDENCE SEEN BOTH AT LOW AND HIGH SCALE;
- FITTED CHARM: QUITE STABLE AT ALL SCALES

- PERTURBATIVE CHARM: LIGHT QUARKS DEPEND SIGNIFICANTLY ON THE MASS WHICH SETS THE PHYSICAL CHARM THRESHOLD; DEPENDENCE SEEN BOTH AT LOW AND HIGH SCALE;
- FITTED CHARM: LIGHT QUARKS INDEPENDENT OF CHARM MASS
- m_c uncertainty reabsorbed in PDF uncertainty

- DEPENDENCE ON MASS ALMOST DISAPPEARED!
- FIT MUCH CLOSER TO PREVIOUS NNPDF3.0

THEORETICAL UNCERTAINTIES: LESSONS LEARNT

- THEORETICAL UNCERTAINTIES ARE NO LONGER SUBDOMINANT
- PDF UNCERTAINTIES SHOULD INCLUDE SOME ESTIMATE OF MHOU
- THE CHOICE OF HEAVY QUARK MASS VALUES MAY HAVE SIGNIFICANT EFFECTS
- HEAVY QUARK MASS VARIATION SHOULD BE PERFORMED
- FITTED CHARM PDF LEADS TO INCLUSION OF MASS UNCERTAINTY INTO PDF UNCERTAINTY

NO EFFECT THAT REQUIRES MORE THAN 10% ACCURACY IN MEASUREMENT IS WORTH INVESTIGATING Walther Nernst

NO EFFECT THAT REQUIRES MORE THAN 10% ACCURACY IN MEASUREMENT IS WORTH INVESTIGATING Walther Nernst

ACCURACY OF OBSERVATION IS THE EQUIVALENT OF ACCURACY OF THINKING Wallace Stevens