

AT THE DAWN OF THE LHC

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

L CRACOW SCHOOL OF TH. PHYSICS

ZAKOPANE, JUNE 11, 2010

LECTURE II

PERTURBATIVE CORRECTIONS

- WHY ARE HIGHER ORDERS IMPORTANT?
- PROGRESS: THEORY AND PHENOMENOLOGY
- DETERMINATION OF α_s

WHY ARE HIGHER ORDERS IMPORTANT?

AN EXAMPLE: HEAVY QUARKS IN DIS

- IN $\overline{\text{MS}}$ scheme, $n_f = 6$ in loops, α_s running and DGLAP eqns at all scales \Rightarrow For $Q^2 >> m_q^2$, neglect the mass
- WHEN $Q^2 << m_q^2$ A DECOUPLING SCHEME MORE CONVENIENT: LOOPS SUBTRACTED AT ZERO MOMENTUM, $n_f = n_l$ IN α_s RUNNING AND DGLAP EQNS \Rightarrow FOR $Q^2 >> m_q^2$, NEGLECT THE HEAVY QUARK
- WHAT HAPPENS WHEN $Q^2 \approx m_q^2$?

MATCHED SCHEMES: ACOT (Aivazis, Collins, Olness, Tung, 1988, 1994)

MATCHED SCHEMES: TR (Thorne, Roberts, 1998, 2008)

- SWITCH OFF HQ FOR $Q^2 < m_q^2$
- USE MASSLESS APPROX FOR $Q^2 > m_q^2$
- ADD MASSIVE TERMS AND ENFORCE CONTINUITY AT THRESHOLD VIA SUBL. TERMS

MATCHED SCHEMES: FONLL

(Cacciari, Greco, Nason, 1998; for DIS s.f., Laenen, Rojo, Nason, 2010)

- USE $\overline{\mathrm{MS}}$ (massless) partons
- Compute massive contributions in the decoupling scheme, but express everything in terms of $\overline{\rm MS}$ partons
- ADD MASSIVE EXPRESSION TO THE MASSLESS ONE, SUBTRACT DOUBLE COUNTING (TRIVIAL, AS EVERYTHING EXPRESSED IN SAME SCHEME)

$$F^{(n_l)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_{i=q,\bar{q},g} B_i\left(\frac{x}{y},\frac{Q^2}{m^2},\alpha_s^{(n_l+1)}(Q^2)\right) f_i^{(n_l+1)}(y,Q^2),$$

$$F^{(n_l,0)}(x,Q^2) \equiv x \int_x^1 \frac{dy}{y} \sum_{i=q,\bar{q},g} B_i^{(0)} \left(\frac{x}{y}, \frac{Q^2}{m^2}, \alpha_s^{(n_l+1)}(Q^2)\right) f_i^{(n_l+1)}(y,Q^2); \quad \lim_{m \to 0} \left[B_i(x, \frac{Q^2}{m^2}) - B_i^{(0)}\left(x, \frac{Q^2}{m^2}\right)\right] = 0$$

$$F^{\text{FONLL}}(x,Q^2) \equiv F^{(d)}(x,Q^2) + F^{(n_l)}(x,Q^2); \qquad F^{(d)}(x,Q^2) \equiv \left[F^{(n_l+1)}(x,Q^2) - F^{(n_l,0)}(x,Q^2)\right]$$

THE PROBLEM OF DAMPING TERMS

- IN ANY SCHEME, DGLAP RESUMMATION PRODUCES TERMS ~ $\alpha_s(Q^2) \ln \frac{Q^2}{m_a^2}$ TO ALL ORDERS IN $\alpha_s(Q^2)$
- MASS CORRECTIONS TO SUCH TERMS ARE PROVIDED AT LOW ORDERS IN $\alpha_s(Q^2)$, BUT NOT TO HIGHER ORDERS
- THESE TERMS ARE COMPLETELY INACCURATE WHEN Q^2 is just above m_q^2 and can be non-negligible in practice
- SOLUTION: KILL THESE TERMS WITH A SUITABLE DAMPING PRESCRIPTION

THE IMPACT ON PHENOMENOLOGY

- MANY FITS (CTEQ<6, NNPDF, ALEKHIN<09) TREAT CHARM AS MASSLESS ABOVE THRESHOLD ⇒ "ZMVFN" SCHEME
- TR/TR' PROCEDURE IMPLEMENTED SINCE '98 IN MRST

THE IMPACT ON PHENOMENOLOGY

- MANY FITS (CTEQ<6, NNPDF, ALEKHIN<09) TREAT CHARM AS MASSLESS ABOVE THRESHOLD \Rightarrow "ZMVFN" SCHEME
- TR/TR' PROCEDURE IMPLEMENTED SINCE '98 IN MRST
- WHEN CTEQ IMPLEMENTED ACOT IN 2008, SURPRISING CHANGE CTEQ61 \rightarrow CTEQ6.5 IN σ_W , & AGREEMENT WITH MRST SPOILED (LATER RESTORED) W^{-h⁰H20L} h⁺H20L

THE IMPACT ON PHENOMENOLOGY

- TR/TR' PROCEDURE IMPLEMENTED SINCE '98 IN MRST
- WHEN CTEQ IMPLEMENTED ACOT IN 2008, SURPRISING CHANGE CTEQ61 \rightarrow CTEQ6.5 IN σ_W , & AGREEMENT WITH MRST SPOILED (LATER RESTORED) $^{W^-h^0H20L}_{tt H71L}$ $ggii h^0H20L$ h^+i200L

(Nadolsky et al., 2008)

RECENT PROGRESS: THE LES HOUCHES 2009 BENCHMARKS

- $O(\alpha_s)$ FONLL, ACOT COINCIDE EXACTLY, TR' DIFFERS BY SUBLEADING $O(\alpha_s^2(m_c)) Q^2$ -INDEP. TERM
- DIFFERENCES BETWEEN DAMPING PRESCRIPTIONS SIZABLE

(Rojo et al., 2010)

[•] TR, FONLL AND ACOT FOR DIS BENCHMARKED AT NLO AND NNLO

THE PROBLEM OF DAMPING TERMS: PHENOMENOLOGY

- IMPACT OF SUBLEADING TERMS SIZABLE CLOSE TO THRESH-OLD
- DIFFERENCE BETWEEN DIFFERENT PRESCRIPTIONS (ACOT- χ -SCALING, FONLL-DAMPING, MSTW-MATCHING) AS LARGE AS DIFFERENCE BETWEEN FFN (NO DGLAP RESUMMATION FOR CHARM) AND ZMVFN (NO CHARM MASS)

THE PROBLEM OF DAMPING TERMS: PHENOMENOLOGY

- IMPACT OF SUBLEADING TERMS SIZABLE CLOSE TO THRESH-OLD
- DIFFERENCE BETWEEN DIFFERENT PRESCRIPTIONS (ACOT- χ -SCALING, FONLL-DAMPING, MSTW-MATCHING) AS LARGE AS DIFFERENCE BETWEEN FFN (NO DGLAP RESUMMATION FOR CHARM) AND ZMVFN (NO CHARM MASS)

THE SOLUTION: GO UP ONE ORDER

- IF EVERYTHING AT ONE EXTRA ORDER IN α_s , DIFFERENCES MINOR
- IN FONLL, CAN COMBINE $O(\alpha_s^2)$ TREATMENT OF HQ WITH STANDARD NLO $O(\alpha_s)$ TREATMENT OF LIGHT QUARKS \Rightarrow EXCELLENT APPROX TO FULL RESULT (s.f., Laenen, Nason, Rojo 2010)
- RECENT PROGRESS: $O(\alpha^3)$ MASSLESS LIMIT OF HQ PRO-DUCTION COEFF. FCTNS. COMPUTED (Bierenbaum, Blümlein, Klein, 2009)

Catani, Ferrera, Grazzini, 2010

- NNLO CORRECTIONS VISIBLY IMPROVE AGREEMENT WITH DATA
- EFFECT ON MATRIX ELEMENT COMPARABLE TO EFFECT ON PDFS, BUT IN DIFFERENT REGIONS

NNLO PARTON DISTRIBUTIONS?

Alekhin, Melnikov, Petriello, 2006

- CURRENT GLOBAL PDF FITS ARE NLO
- MSTW08 NNLO TREATS DIS AT NNLO, JETS AT NLO, DRELL-YAN AT LO+K-factors
- ALEKHIN-SERIES FITS GENUINELY NNLO, BUT ONLY DIS+ TWO FIXED-TARGET DY EXPERIMENTS INCLUDED
- BUT IMPACT NOT NEGLIGIBLE...

PROGRESS: THEORY AND PHENOMENOLOGY

NNLO: HOW IT ALL STARTED (Moch, Vermaseren, Vogt, 2004)

The Results

Anomalous dimensions in Mellin space

- One-loop : Gross, Wilczek '73

—

$$\gamma_{\rm ns}^{(0)}(N) = C_F (2(N_- + N_+)S_1 - 3)$$

- Two-loop : Floratos, Ross, Sachrajda '79; Gonzalez-Arroyo, Lopez, Ynduráin '79

$$\begin{split} \gamma_{\mathrm{ns}}^{(1)+}(N) &= 4C_A C_F \left(2 \,\mathbf{N}_+ S_3 - \frac{17}{24} - 2S_{-3} - \frac{28}{3} S_1 + (\mathbf{N}_- + \mathbf{N}_+) \left[\frac{151}{18} S_1 + 2S_{1,-2} - \frac{11}{6} S_2 \right] \right) \\ &+ 4C_F n_f \left(\frac{1}{12} + \frac{4}{3} S_1 - (\mathbf{N}_- + \mathbf{N}_+) \left[\frac{11}{9} S_1 - \frac{1}{3} S_2 \right] \right) + 4C_F^2 \left(4S_{-3} + 2S_1 + 2S_2 - \frac{3}{8} + \mathbf{N}_- \left[S_2 + 2S_3 \right] - (\mathbf{N}_- + \mathbf{N}_+) \left[S_1 + 4S_{1,-2} + 2S_{1,2} + 2S_{2,1} + S_3 \right] \right) \\ \gamma_{\mathrm{ns}}^{(1)-}(N) &= \gamma_{\mathrm{ns}}^{(1)+}(N) + 16C_F \left(C_F - \frac{C_A}{2} \right) \left((\mathbf{N}_- - \mathbf{N}_+) \left[S_2 - S_3 \right] - 2(\mathbf{N}_- + \mathbf{N}_+ - 2)S_1 \right) \\ \end{split}$$
Compact notation : $\mathbf{N}_{\pm} f(N) = f(N \pm 1)$, $\mathbf{N}_{\pm \mathbf{i}} f(N) = f(N \pm \mathbf{i})$

$$\begin{split} & V_{125}^{22}(N) = 16C_4C_{PM} \Big(\frac{3}{2} s_5 - \frac{5}{4} - \frac{10}{9} s_{13} + \frac{9}{9} s_{11} + \frac{2}{3} s_{11} - \frac{2}{3} s_{12} + \frac{25}{27} s_{11} - \frac{25}{27} s_{12} + \frac{2}{3} s_{13} + \frac{2}{3} s_{21} - \frac{2}{3} s_{13} + \frac{2}{3} s_{21} + \frac{1}{3} s_{22} + \frac{1}{3} s_{21} + \frac{1}{3$$

Three-loop :

S.M., Vermaseren, Vogt '04

$$-165_{1,2}, z_{1} + \frac{103}{3} S_{1,-2,1} - 25_{1,-2,2} - 365_{1,1,-2,1} + 85_{1,1,3} - \frac{109}{9} S_{1,2} - 4S_{1,2}, z_{1} + \frac{43}{3} S_{1,3} - 8S_{1,3,1} - 11S_{1,4} + \frac{11}{3} S_{2,2,3} - 25_{2,3,1} - 4S_{1,2,1} - 11S_{1,4} + \frac{11}{3} S_{2,3,3} - 25_{2,3,1} + \frac{43}{5} S_{1,1} - \frac{103}{5} S_{2,2,3} - \frac{103}{5} S_{1,2} - \frac{103}{5} S_{1,2} - \frac{103}{5} S_{1,2} - \frac{103}{5} S_{1,2} - \frac{103}{5} S_{1,3} - \frac{103}{9} S_{1,1} - \frac{103}{3} S_{2,2,1} - \frac{103}{5} S_{2,1} - \frac{20}{9} S_{2,3} + \frac{127}{9} S_{1,1} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{1,1} - \frac{3}{3} S_{1,1} - \frac{3}{3} S_{1,1} - \frac{3}{3} S_{1,1} - \frac{33}{3} S_{2,1} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{2,1} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{2,1} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{1,2} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{1,2} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{1,2} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{1,1} - \frac{33}{3} S_{1,1$$

THEORETICAL PROGRESS

- MORE LEGS: NLO MULTILEG
- MORE PROCESSES: NNLO PRECISION OBSERVABLES
- MORE LOOPS: BEYOND NNLO

THEORETICAL PROGRESS: NLO MULTILEG

- ONE-LOOP MATRIX ELEMENTS: POLES FROM LOOP INTEGRAL
 - KNOWN FOR ALL $2 \rightarrow 2$ processes
 - Increasing number of $2 \rightarrow 3$ processes
 - $-2 \rightarrow 4$ major challenge
- TREE-LEVEL: POLES FROM SOFT-COLLINEAR EMISSION

METHODOLOGICAL PROGRESS

ANALYTIC AND NUMERICAL METHODS \Rightarrow AUTOMATION

- TENSOR REDUCTION AND FORM FACTOR DECOMPOSITION \Rightarrow GOLEM (T.Binoth, J.P.Guillet et al.)
- UNITARITY AND MULTIPARTICLE CUTS \Rightarrow BLACKHAT (Z.Bern, D.Kosower, L.Dixon et al.)
- REDUCTION AT THE INTEGRAND LEVEL \Rightarrow CUTTOOLS (G.Ossola, C.Papadopoulos, R.Pittau et al.)
- NUMERICAL *D*-DIMENSIONAL UNITARITY \Rightarrow ROCKET (K.Ellis, W.Giele, G.Zanderighi et al.)
- REAL RADIATION BASED ON LO EVENT GENERATORS ⇒ SHERPA(F.Krauss et al.), MADDIPOLE/MADFKS(F.Maltoni, R.Frederix et al.), TEVJET(M.Seymour et al.),...

NLO MULTILEG: RECENT RESULTS

- $2 \rightarrow 3$: - $pp \rightarrow VV + j$ (S.Dittmaier et al., J.Campbell et al.) - $pp \rightarrow H + 2j$ (S.Dittmaier et al., J.Campbell et al., S.Badger & N.Glover, P.Mastrolia & C.Williams) - $pp \rightarrow VVV$ (A.Lazopoulos, K.Melnikov, F.Petriello; G.Bozzi et al.; G.Ossola et al., J.Campbell et al.)
- $2 \rightarrow 4$: W + 3j(Blackhat+Sherpa, Rocket); Z + 3j(Blackhat+Sherpa)
- $2 \rightarrow 5: e^+e^- \rightarrow 5j$ (Madgraph+MadFKS+Rocket)

THEORETICAL PROGRESS: NNLO

ത്തുത്താത്താണ

അഞ്ഞെട്ടഞ്ഞെ

~00000000~0000000000

COLOCION COLOCION COLOCION COLOCION COLOCION COLOCION

- TWO-LOOP MATRIX ELEMENTS: KNOWN FOR ALL MASSLESS $2 \rightarrow 2 \ \mathrm{PROCESSES}$
- ONE-LOOP MATRIX ELEMENTS: USUALLY KNOWN FROM NLO CALCULATIONS
- TREE-LEVEL: POLES FROM TWO PARTONS NONTRIVIAL

- SECTOR DECOMPOSITION TO SEPARATE AUTOMATICALLY OVERLAPPING DIVERGENCES, NUMERICAL INTEGRATION (T.Binoth, G.Heinrich+ C,Anastasiou, K.Melnikov, F.Petriello)
- APPROXIMATION IN UNRESOLVED LIMITS (DIPOLE, ANTENNA SUBTRACTION), ANALYTIC INTEGRATION

(S.Catani and M.Grazzini, T.Gehrmann and N.Glover)

NNLO : RECENT RESULTS

- HIGGS PRODUCTION:
 - gg fusion: fully exclusive including $H \rightarrow \gamma \gamma$, $H \rightarrow VV$ decay
 - (Anastasiou, Melnikov, Petriello; Catani, Grazzini)
 - HIGGS AT TEVATRON INCLUDING FULL FINAL STATE CUTS
 - (Anastasiou, Dissertori, Grazzini, Stöckli, Webber)
 - VECTOR BOSON FUSION
 (P.Bolzoni, F.Maltoni, S.Moch and M.Zaro)
- W/Z PRODUCTION: FULLY EXCLUSIVE INCLUD-ING DECAYS

(Melinikov, Petriello; Catani et al.)

• $e^+e^- - > 3j$; MATCHING OF NNLO AND RESUM-MATION

(T.Gehrmann et al; T.Becher and M.Schwartz)

- PROGRESS TOWARDS JETS AND TOP AT HADRON COLLIDERS
 - TWO-LOOP MATRIX ELEMENTS KNOWN FOR 2j, Vj, partly fot $qq \rightarrow t\bar{t}$, $gg \rightarrow t\bar{t}$
 - PROGRESS TOWARDS CLASSIFICATION AND COMPUTATION OF ANTENNA SUBTRACTIONS (T.Gehrmann et al)
 - PROGRESS TOWARDS TOP PAIRS

BEYOND NNLO INTEGRAL TECHNIQUES

- SECTOR DECOMPOSITION (T.Binoth, G.Heinrich)
- MELLIN-BARNES INTEGRATION (A.V.Smirnov et al.)
- **REDUCTION TO MASTER INTEGRALS** (K. Chetyrkin et al.)
- DIFFERENTIAL EQUATIONS (Kotikov; E.Remmidi and T.Gehrmann)

RESULTS

- THREE-LOOP VERTEX FUNCTIONS (FORM FACTORS): $\gamma^* \to q\bar{q}, H \to gg$ (Baikov, Chetyrkin, Smirnov, Steinhauser; Glover et al.)
- THREE-LOOP STATIC QUARK (COULOMB) POTENTIAL (Smirnov, Steinhauser; Anzai, Kiyo, Sumino)
- FOUR-LOOP TWO-POINT FUNCTIONS: BJORKEN SUM RULE AND R RATIO (Baikov, Chetyrkin, Kühn)

PHENOMENOLOGICAL PROGRESS

Q: WHY IS NNLO NOT INCLUDED IN PARTON FITS?

PHENOMENOLOGICAL PROGRESS

Q: WHY IS NNLO NOT INCLUDED IN PARTON FITS?

A: CONVOLUTIONS ARE HARD!

TOWARDS A SOLUTION: GRID-BASED METHODS

ORIGINAL IDEA EXPANSION OF PDFS ON BASES OF POLYNOMIALS (PASCAUD, ZOMER, 2001

- PRECOMPUTE CONVOLUTION WITH BASIS FUNCTIONS
- EXPAND PDF OVER BASIS
- CONVOLUTIONS REDUCED TO LINEAR COMBINATIONS \rightarrow MATRIX MULTIPLICATION

THE GRID IDEA (CARLI, SALAM, SIEGERT 2005)

- REPRESENT PDFs on interpolated grid
- BASIS FCTNS \leftrightarrow INTERPOLATING FCTNS
- DO CONVOLUTIONS OVER BASIS FUNCTIONS (IF MONTE CARLO USED, BASIS FCTNS \rightarrow WEIGHTS FOR MC INTEGRAL)

• GRID CAN BE OPTIMIZED

$$dx_1 \int_{x_{0,2}}^1 dx_2 f_a(x_1) f_b(x_2) C^{ab}(x_1, x_2) \to \sum_{\alpha, \beta=1}^{N_x} f_a(x_{1,\alpha}) f_b(x_{2,\beta}) \int_{x_{0,1}}^1 dx_1 \int_{x_{0,2}}^1 dx_2 \mathcal{I}^{(\alpha,\beta)}(x_1, x_2) C^{ab}(x_1, x_2) dx_2 \mathcal{I}^{(\alpha,\beta)}(x_1, x_2) C^{ab}(x_1, x_2) dx_2 \mathcal{I}^{(\alpha,\beta)}(x_1, x_$$

GRID-BASED METHODS SOME RECENT NLO IMPLEMENTATIONS:

- FASTNLO: FAST INTERFACE FOR JET CROSS SECTIONS (Kluge, Rabbertz, Wobisch 2006)
- FASTKERNEL: GRID METHOD INTERFACED TO N-SPACE COMPUTATION OF GLAP GREEN FUNCTIONS, INTERFACED TO FASTNLO FOR JETS AND TO SUITABLE FAST-DY (NNPDF, 2010)
- APPLGRID: OPTIMIZED GRID, POTENTIALLY UNIVERSAL INTERFACE, IMPLEMENTED FOR JETS, W AND Z PRODUCTION (Carli et al., 2010)

THE DETERMINATION OF α_s

THE PROBLEM OF α_s :

RECENT EXPERIMENTAL & THEORETICAL PROGRESS HAS LED TO A LARGE NUMBER OF NEW MEASUREMENTS/EXTRACTIONS OF α_s :

- NNLO JET OBSERVABLES: RE-ANALYSIS OF LEP DATA FOR EVENT SHAPES; THREE-JET OBSERVABLES
- NLO JETS IN DIS: NEW COMBINED HERA DATA
- NLO JETS AT THE TEVATRON RUN II

NEW GLOBAL α_s DETERMINATION BY BETHKE (2009):

 $\alpha_s = 0.1184 \pm 0.0007$

ADOPTED BY PDG WEB UPDATE (2009) "older measurements not included because [of]...their large ... uncertainties"

LATTICE

- OBSERVABLE $\Upsilon' \Upsilon$ SPECTRUM (C.Davis et al., HPQCD coll.)
- VERY SMALL UNCERTAINTY GIVEN KNOWN LATTICE SYSTEMATICS ISSUES

Υ decays

- OBSERVABLE $R_{\Upsilon} = \frac{\Upsilon \rightarrow \gamma gg}{\Upsilon \rightarrow ggg}$
- STATE-OF-THE-ART NLO NRQCD (N. Brambilla et al.) AND CLEO DATA

DIS F_2

- OBSERVABLE CLAIMED TO BE NONSINGLET F_2 , ANALYSIS PERFORMED AT N³LO: $\alpha_s = 0.114 \pm 0.002$ (NLO: $\alpha_s = 0.115 \pm 0.002$)
- HOWEVER, NO PURE NONSINGLET DATA AVAILABLE: GLOBAL FIT PERFORMED IN ORDER TO SEPARATE SIN-GLET AND NONSINGLET COMPONENTS (Blümlein, Böttcher, Guffanti, 2006)
- MSTW (2010) FROM A FULL GLOBAL FIT SEE A CHANGE OF 2 SIGMA FROM NLO TO NNLO $\alpha_s = 0.1202^{+0.0012}_{-0.0015}$ TO $\alpha_s = 0.1171 \pm 0.0014$
- IF PURELY NONSINGLET DATA AND TRUNCATED MOMENTS ARE USED (NO ASSUMPTIONS) NLO RESULT FROM NON-SINGLET SCALING VIOLATIONS IS (s.f. et al., 2002) $\alpha_s = 0.124^{+0.005}_{-0.008}$

DIS JETS

- COMBINATION OF ALL ZEUS+H1 NLO JET OBSERVABLES
- WILL BE UPDATED WITH NEW COMBINED DATA

 e^+e^- JETS

- NNLO REANALYSIS OF ALEPH AND JADE DATA
- LARGE DISCREPANCY BETWEEN RESULTS FOUND USING ANALYTIC HADRONIZATION CORRECTIONS (JADE) VS. ESTIMATES BASED ON MONTE CARLOS (ALEPH USING PYTHIA)

GLOBAL ELECTROWEAK FIT

- STATE-OF-THE ART FIT FROM THE GFITTER GROUP
- α_s determined from R ratio, known to N^3LO

GLOBAL ELECTROWEAK FIT

- STATE-OF-THE ART FIT FROM THE GFITTER GROUP
- α_s determined from R ratio, known to N^3LO

SO, WHAT'S THE PROBLEM?

- MANY VERY PRECISE DETERMINATIONS RELY ON DUBIOUS ASSUMPTIONS
- NLO/NNLO CHANGE LARGER THAN EXPECTED
- MANY LESS PRECISE BUT THEORETICALLY RELIABLE DATA NOT USED

GLOBAL ELECTROWEAK FIT

- STATE-OF-THE ART FIT FROM THE GFITTER GROUP
- α_s determined from R ratio, known to N^3LO

SO, WHAT'S THE PROBLEM?

- MANY VERY PRECISE DETERMINATIONS RELY ON DUBIOUS ASSUMPTIONS
- NLO/NNLO CHANGE LARGER THAN EXPECTED
- MANY LESS PRECISE BUT THEORETICALLY RELIABLE DATA NOT USED

A REASSESSMENT IS NEEDED!