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Abstract

This thesis is dedicated to the construction and applications of Parton Distribution
Functions (PDFs), which are precise enough that are suitable for comparison with high-
precision collider data from the LHC. We first review the theoretical framework and
explain how PDFs should be used in practice, presenting tools that allow to seemingly
convert between different representations of PDF uncertainties. We then discuss how
these tools are used to construct the PDF4LHC15 combined sets, which implement
the recommendation of the PDF4LHC group, and provide detailed benchmarks of
each of the combined sets. We describe NNPDF 3.1, the first global PDF analysis to
provide percent level uncertainties for many relevant observables while being validated
by a closure test, with particular emphasis to the issues that appeared during its
preparation and the resources used solve them. Finally we present a determination
of the strong coupling constant based on the global NNPDF3.1 fit. We use a new
methodology that correctly propagates all the uncertainties from the PDFs to the
result.
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Chapter 1

Introduction

After the discovery of the Higgs Boson [1, 2] the main focus of the Large Hadron Col-
lider (LHC) and indeed of the field of Particle Physics Phenomenology is to determine
the properties of the Standard Model with enough precision that small deviations from
it can be discovered in the experimental data. Since the most stringent tests of the
Standard Model currently from experiments involving proton-proton collisions, it is
of vital importance to attain a precise and accurate description of the structure of
the proton, which in turn cannot be determined from first principles with the cur-
rent understanding of the underlying theory, Quantum Chromodynamics (QCD). The
structure of the proton is described in terms of Parton Distribution Functions (PDFs),
which at the lowest order in perturbation theory constitute probability densities to
find a given constituent of the proton (called parton, for example a quark or a gluon)
carrying a given momentum fraction.

The techniques used to determine Parton Distribution Functions have evolved
greatly since the early eighties, when PDFs were based on simple ad-hoc models with
significative differences among themselves and no way to estimate uncertainties [3].
Nowadays the standard is analyses based on the fit to all physical processes where ex-
perimental data exists and the corresponding theoretical description to elucidate their
implant on the PDFs is available. These analyses feature advanced theoretical treat-
ments required to account for the effect of the heavy quark masses, and uncertainty
estimates that take into account both the uncertainties of the input experimental data
and those related to the selection of the model used to fit them (which is not given
from first principles). The PDF sets constructed that fulfil all these criteria agree
well within uncertainties [4], which are furthermore small enough to allow for quanti-
tative tests of allow for rigorous quantitative tests of the Standard Model in collider
experiments.

An important contribution to the progress made is due to the NNPDF collabo-
ration [7]. NNPDF analyses parametrize the PDFs in terms of neural networks, and
employ a methodology that propagates the uncertainties in a conceptually simple way
while minimizing the assumptions on the parametrization. The methodology is tuned
to satisfy a closure tests that ensures its self consistency under very general assump-
tions [8]. The software used in the fits allows to perform the convolution operation in a
quick way [9], allowing to tackle problems that would otherwise be computationally in-
tractable. The heavy quark mass scheme used to implement the partonic evolution, so

1
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Comparison between some early characterizations of parton densities [5, 6], from
Ref. [3] (up) and the latest results from the NNPDF determination (down)

called FONLL [10], can be extended to account for charm initiated contributions and
fit them explicitly [11]. The latest iteration of the NNPDF global analysis, NNPDF
3.1 [12], combines these features with the addition of new high precision data from the
LHC experiments, resulting in significative improvements in precision and accuracy.

Some open problems in PDF determinations include:

• The consistent treatment of theoretical uncertainties (related to the fact that the
theory used to analyse the data is only known in a perturbative approximation),
and that are currently not included in the determinations.

• Characterization of experimental systematics in precise measurements: When
the systematic uncertainties dominate over the statistical ones, the experimental
covariance matrices can become near singular, so that a small change in the
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treatment of the systematics (consistent with the precision at which they are
determined) has a great impact on the result.

• Search for better fitting procedures: The recent development in Machine Learn-
ing to deal with problems that have similarities with PDF fitting suggests that
more advances procedures can be developed allowing for faster fits and better
control of the procedure.

Overview

Chapter 2: Review of the theoretical framework
We discuss shortly the main theoretical results that underpin a PDF determina-
tion. While the treatment is superficial, it aims to provide a more formal, yet
intuitive, understanding of what is a PDF and how is it constructed from theory.

Chapter 3: PDFs for practical uses
The main motivation for developing precise PDFs is their usage in the context
of experimental analyses to measure properties of the Standard Model, possi-
bly finding deviations from it, that may indicate New Physics. To that end,
the PDFs must be packaged in a way that facilitates the computation of PDF
depended quantities and their uncertainties. In particular, it is preferable that
PDFs provide the so called Hessian Uncertainties in many experimental settings.
In Sec. 3.3, we discuss a method [13, 14] to transform the Monte Carlo PDFs
that are obtained natively in the NNPDF fitting procedure into equivalent Hes-
sian PDF sets. A further challenge is that frequently, the same computation
has to be repeated for all of the error sets that characterize the uncertainties of
the PDFs. The Hessian conversion algorithm has the side effect of reducing the
number of error sets of the resulting PDF, compared to the starting Monte Carlo
one for an equivalent statistical accuracy (at least when some assumptions on the
Gaussianity of the starting error set hold). However the prospective reduction of
error sets is interesting enough to be developed further: It may be a worthwhile
trade-off to construct some specialized PDF sets that make some assumptions on
which use cases they will be employed for in exchange for a speedup in the com-
putations. This idea is implemented by the SM-PDF algorithm [14], discussed
in Sec 3.4.

Chapter 4: The PDF4LHC recommendation
Apart from NNPDF, several other groups regularly perform PDF determina-
tions. In practice, it is often recommended that the predictions from several
PDFs from different collaborations are used when assessing the uncertainty of a
results such as the Higgs Cross section. A natural question is then which PDF
sets to consider and how to combine their predictions. The PDF4LHC working
group produces guidelines on how to treat PDFs. The 2015 recommendation [4]
recognized the improved understanding of the determinations of PDFs and the
consequent improvement in the agreement between the results from several inde-
pendent collaborations. As a result, it provided a less conservative prescription
for the uncertainty computation based on the delivery of combined PDF sets.
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The Monte Carlo conversion method introduced in the previous subsection and
described in Sec. 3.3 was used in the elaboration of these combined sets, which
were benchmarked in detail in Ref. [15].
The improved agreement between collaborations and the altered prescription for
the combination had the combined effect of bringing down the PDF uncertainties
(e.g. by a factor of two for the Higgs production in gluon fusion [16]).

Chapter 5: NNPDF 3.1
The NNPDF 3.1 PDF set [12] builds upon the methodology constructed for
the NNPDF 3.0 sets [8], and specifically on the fact that it is optimized based
on closure tests. The new features in NNPDF 3.1 include the addition of new
high precision collider data, that collectively constrain significatively the results
(thereby increasing the precision), includes a consistent theoretical treatment of
the charm PDF (thereby increasing the theoretical accuracy). As a consequence
of the more stringent precision targets, the numerics have also been tested more
carefully and verified to not distort the results.
All these improvements make NNPDF 3.1 able to reliably predict phenomeno-
logically relevant physical observables like the W and Z total cross sections with
PDF uncertainties below 1%. As the NNPDF project grows more complex the
software tools that underpin it need to by upgraded to handle it appropriately.
The required improvements include enhanced flexibility of the code so that the
different parts of the methodology can be verified to function correctly and to
the required precision, better performance or easier deployment in diverse High
Performance Computing facilities. In 5.5, we discuss the development from the
ground of a programming framework that is suited to the particular characteris-
tics of scientific computing, together with an NNPDF-specific application based
on it. This framework was used extensively in NNPDF 3.1 and the determination
of αs.

Chapter 6: A determination of the strong coupling constant
The improvements leading to the NNPDF 3.1 set make it unprecedented in terms
of the precision and accuracy it achieves. This progress can then be translated
to other quantities that depend on the PDFs. A prime example is the strong
coupling constant, αs. A determination of αs based on NNPDF 3.1 and featuring
a new methodology is presented here.

Original research in this thesis

Much of the research has been done in collaboration with other colleagues, particularly
from the NNPDF collaboration. This makes it hare. In general, wherever results are
presented, I have reported here in more detail the research where I feel I have made
a significative contribution, and discussed parts of our research where I contributed
less as necessary for context. In particular I believe I made a large contribution to
the design, implementation and benchmarking of the PDF transformation methods
discussed in Sec. 3.3 and Sec. 3.4, the benchmarks presented Sec. 4.4, the analyses in
Sec. 5.4, the development of coding framework in Sec 5.5, as well as several other parts
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of the NNPDF code which were helpful to obtain the results in Chapter 5, and the
determination of αs presented in 6. On the other hand, several more technical results
in already published work (particularly in Refs. [13, 4, 14, 15, 12]) were not included
here if they would have implied merely transcribing the, without providing additional
useful context to the discussion.

I have produced all the figures where the source is not explicitly stated in the
caption.





Chapter 2

Review of the theoretical framework

We review some fundamental aspects of Quantum Chromodynamics (QCD), particu-
larly those related with the determination of PDFs.

2.1 Fundamentals of QCD

QCD is a gauge field theory where the gauge group is SU(3). The gauge bosons of the
theory are called gluons and are massless. The fermions are called quarks and have
fractional electric charge (either 2/3 or −1/3 for the quarks, and the opposite sign for
the antiquarks). There are three families each containing a pair of quarks with their
corresponding antiquarks. The corresponding classical Lagrangian, which is invariant
under SU(3) transformations is given in terms Yang-Mill Lagrangian density

Lclassical =
∑

flavours

ψ̄a(iγµD
µ −m)abψb − 1

4
GA

µνG
µν
A , (2.1.1)

where ψa are the quark fields, Dµ is the covariant derivative

Dµ = ∂µ + igtaAµ
a , (2.1.2)

where in turn we have introduced the gluon field, Aµ
a and the matrices ta, correspond-

ing to the eight generators of the SU(3) color group in the fundamental representation.
Arbitrarily, we define their norm to satisfy tr(tatb) = 1

2δ
ab. Ga

µν is the field strength
tensor, which can be defined in terms of the gluon fields and the structure constants
of the SU(3) group, fabc as

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
cν . (2.1.3)

The parameter g is the bare coupling of the theory.
There exist multiple pieces of experimental evidence that such theory can in fact

explain the strong interactions. Starting from 1963 Gell-Mann, Ne’eman and Zweig
showed that a model exhibiting the symmetries of QCD could be used to explain
compactly the then puzzling proliferation of new particles that were being found in
nuclear experiments [17, 18, 19, 20]. In the following sections, we shall recognize the
quantitative features of perturbative QCD that have been tested experimentally to
a high degree of precision, particularly regarding the description of Deep Inelastic
Scattering (DIS).

7
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2.2 The QCD coupling constant

We define the strong coupling constant in terms of the coupling from Eq. 2.1.1

αs = g2

4π
(2.2.1)

As we depart from the classical Lagrangian and consider the quantum version of the
theory, the couplings must be altered so that they absorb the unphysical dependence
of the renormalization scale; thus, the renormalization of implies that strength of
the coupling runs; that is, it depends on the energy scale of the process in which it
enters, given by the parameter µ2, with units of squared energy. The dependence is
determined by the renormalization group equation (Callan-Symanzik):

µ2 d

dµ2αs(µ2) = β(αs(µ2)) , (2.2.2)

where the β function admits a perturbative expansion in αs, of the form

β(αs) = −α2
s(β0 + β1αs + β2α

2
s + ...) (2.2.3)

At leading order, the running is determined by the β0 coefficient, which is

β0(αs) = 33 − 2nf

12π
, (2.2.4)

where nf is the number of flavours that are light at the scale µ2. Since nf < 17 at
any scale in QCD, β function is negative, implying that the strength of the coupling
increases as the scale of the interaction decreases. This property of QCD is known as
asymptotic freedom [21, 22].

At leading order, the solutions to the Renormalization Group Equation are given
in terms of one parameter, Λ, known as the QCD scale.

αs = 1
b0 log µ2

Λ2

(2.2.5)

The value of Λ is not given by the theory and must therefore be determined experimen-
tally. Since it marks the energy scale at which Eq. 2.2.5 becomes infinity (note that
leading order approximation is entirely inadequate as a consequence), it can be used
as a rough estimate of the scale at which the perturbative description of the theory
breaks down. Equivalently, it is possible to parametrize the running in Eq. 2.2.5 in
terms of the value of the coupling constant at some arbitrary fixed scale Q2

0. We have
then:

αs(µ2) = αs(Q2
0)
(

1 − αs(Q2
0)β0 log µ2

Q2
0

+ O(α2
s)
)

(2.2.6)

thus, in principle it is enough to measure the strong coupling at one scale, and it
can then be related to any other trough renormalization scaling. The values of the
strong coupling are usually tabulated at the scale of the mass of the Z boson, M2

Z ≈
91.2GeV 2. This parametrization is more useful than the one in Eq. 2.2.5 beyond
leading order, since Λ becomes dependent on the choice of renormalization scheme.

The scaling of the strong coupling constant has been measured in the range of
around 1 − 200GeV and found to agree with the experimental data. A review of the
determinations of αs and evidence can be found in Ref. [23]. I present an updated
determination based on the NNPDF framework in Chapter 6.
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2.3 Characterization Deep Inelastic Scattering

q

l k

k′

h

p

l'

X

p'

Figure 2.1: The DIS process. An incoming lepton l and four momentum k scatters off
an hadron h, that is broken into the arbitrary final state X. The measured leptonic
final state is l′.

The history of the quantitative predictions of QCD begins in the 1970s with the
establishment of the approximate scaling behaviour in Deep Inelastic Scattering (DIS).
Given its particular importance in the determination of PDFs, as well as in establishing
the concept in the first place, we revise it here in enough detail , but making simplifying
assumptions where they won’t affect the argument.

A deep inelastic scattering experiment consists on the measurement of the scatter-
ing of a beam of leptons off an hadronic target (that is, the process l+ h −→ l′ +X).
A lepton interacts with an hadron though the exchange of a virtual vector boson. In
what follows, we assume that the interaction is mediated by a photon, for simplic-
ity (in particular, we assume that the interaction conserves parity since it is purely
electromagnetic). The target hadron absorbs the virtual particle and produces a final
state X. If the target hadron remains intact after the interaction (that is X = h),
the process is said to be elastic. Instead, the deep inelastic regime occurs when the
hadron is fragmented into many particles. Usually the final state of the lepton l′ is
measured, but not that of the hadron.

Assuming we are considering the rest frame of the target hadron and neglecting
the masses of the incoming and outgoing leptons, compared to the other energy scales
in the process, the kinematics, depicted in Figure. 2.1 are described in terms of the
following variables:

M The mass of the target hadron.

E The energy of the incoming lepton.

k The momentum of the incoming lepton.

E′ The energy of the outgoing lepton l′.

k′ The momentum of the outgoing lepton.

p The momentum of the target hadron.

q = k − k′, the momentum transfer.
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ν = E − E′, the energy loss of the lepton.

y = ν/E, the fractional energy loss of the lepton.

Q2 = −q2 = −(k − k′)2

M2
X = (p+ q)2, the invariant mass of the final hadronic state.

x = Q2/2Mν = Q2/2pq = Q2/2ME

The kinematic characterization of the process can be found in e.g. Ref. [24]. The
variable x was introduced by Bjorken [25] and is central to the understanding of the
DIS process in QCD, as we shall see. In particular, QCD predicts that at leading
order, the cross section is a function of x and independent of Q2, in the large Q2 limit.
This property is known as scaling. We note that we can write x as

x = 1 − M2
X −M2

2pq
, (2.3.1)

thus, x = 1 implies M2
X = M2, and therefore elastic scattering. Since the baryon

number is conserved, we must have that M2
X > M , and consequently x ≤ 1. But since

both Q2 and ν are positive, x must be positive as well, so x ≥ 0. Similar arguments
apply to y (i.e. noting that E′ ≤ E). Therefore, we have

0 ≤ x ≤ 1; 0 ≤ y ≤ 1 . (2.3.2)

Since most experiments are performed with no sensitivity to the polarization of
the incoming and outgoing leptons, we will restrict ourselves to the discussion of the
spin averaged case. Thus, neglecting spin labels, and in the Feynaman gauge, the
amplitude of the process is given by

M = ie2ū(k′)γµu(k)
(
i
gµν

Q2

)
⟨X|Jν

h |P ⟩ , (2.3.3)

where Jν
h is the hadronic current. The fundamental difficulty in the computation of

the process is the fact that we ignore the wavefunctions for the hadronic initial and
final states (|X⟩ |P ⟩), since they are non computable in perturbation theory, due to
the large value of the strong coupling constant at energy scales comparable to the mass
of the hadrons. We can study the problem better by factorizing it into a part that
is computable in perturbation theory (Lµν) and a part that depends on the hadronic
structure (Wµν); so that we can write∣∣M̄∣∣2 = 1

Q2LµνW
µν . (2.3.4)

It is easy to obtain the leptonic tensor from Eq.2.3.3 under the assumptions we are
using (including all the spin contributions and neglecting the masses of the leptons):

Lµν = e2
∑
spin

ū(k′)γµu(k)ū(k)γνu(k′) , (2.3.5)

= e2tr[��k′γµ�kγν ] (2.3.6)
= 4e2[kµk

′
ν + kνk

′
µ − gµν(kk′)] . (2.3.7)
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The hadronic part is formally given by summing over all possible final states:

Wµν ∼
∑
X

⟨
P (p)|Jµ†

h |X
⟩

⟨X|Jν
h |P (p)⟩ , (2.3.8)

∼
⟨
P (p)|Jµ†

h Jν
h |P (p)

⟩
(2.3.9)

While Wµν it is not computable from first principles, its tensor structure is con-
strained by the symmetries of the theory. In particular, by requiring that the tensor is
symmetric under parity transformations and imposing the conservation of the hadronic
current, qµW

µν = qνW
µν = 0, it is possible to find that the most general tensor struc-

ture is:

Wµν = F1

(
−gµν + qµqν

q2

)
+ F2

pq

(
pµ − qµ

p.q

q2

)(
pν − qν

p.q

q2

)
(2.3.10)

where the (Lorentz scale) coefficients F1 and F2 are called structure functions. More
general structures are possible if we consider a parity violating interaction (mediated
by a W boson), giving rise to a third F3 structure function. Also when the spin of
the incoming and outgoing leptons is determined, spin dependent structure functions
contribute to the polarized cross section [24].

We can isolate the different components of the hadronic tensor by making suitable
projections that yield a specific dependence on the structure functions. For example
we may make the projection pµpνWµν (equivalent to assuming that the absorbed
virtual photon is longitudinally polarized). We use the result to define the longitudinal
structure function,

FL = F2 − 2xF1 = Q4

(pq)3 p
µpνWµν (2.3.11)

As we shall see explicitly, at leading order we have that FL = 0. This is the
Callan-Gross relation [26] and provides evidence that the quarks are spin 1/2 particles.

We can similarly extract F2 by projecting in the direction of a vector n satisfying
p.n = 1 n.q = 0, n2 = 0. Neglecting the mass of the proton, we also have p2 = 0.
Then

F2 = (p.q)nµnνWµν (2.3.12)

2.4 DIS in the parton model

The argumentation in this section is based on Ref. [27].
So far we have only made simplifying assumptions on the form of the hadronic

tensor, Wµν . We now introduce some model assumptions based on QCD, which will
allow us to establish some elemental properties. In particular, one of the elemental
components in the establishment of the QCD as a theory for the strong interactions
was the proposal of the parton model [28]. Fundamentally, it states that the hadron is
made of individual components, called "partons", and that an interaction at sufficiently
high energy probes directly an interaction with the partons, which can be considered
approximately free and on-shell (indeed a more precise characterization of the phrase
"sufficiently high energy" is "high enough that the binding energy that holds the partons
inside the hadrons can be neglected").
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The parton model suggests that the hadronic tensor admits a probabilistic inter-
pretation. It is given in terms of Parton Distribution Functions (PDFs) which encode
the probability of the hard boson interacting with a parton. That is, instead of inter-
acting with the "whole" hadron with momentum p we are interacting with a parton of
type i and momentum ξp with infinitesimal probability fi(ξ,Q2)dξ. Here ξ is a mo-
mentum fraction (thus 0 < ξ < 1), and we are neglecting the transverse components
of the momentum of the parton on the grounds that we are studying an interaction
in the limit where the transferred energy is much higher than the binding transverse
momentum. By definition, the total longitudinal momentum of the hadron is the sum
of the momenta of the individual partons (since we assume they are non interacting)

partons∑
i

∫ 1

0
dξξfi(ξ,Q) = 1 . (2.4.1)

PDFs must also yield the quantum numbers that characterize the hadron. For a
proton, we have: ∫ 1

0
dξ(u(ξ,Q) − ū(ξ,Q)) = 2 , (2.4.2)∫ 1

0
dξ(d(ξ,Q) − d̄(ξ,Q)) = 1 , (2.4.3)∫ 1

0
dξ(q(ξ,Q) − q̄(ξ,Q)) = 0, q = s, c, b, t . (2.4.4)

Relations 2.4.1-2.4.4 are known as sum rules and hold to all orders in perturbation
theory.

Now we can view the hadronic interaction as a probabilistic sum of the possible
parton level interactions with the total proton momentum p is replaced by ξp:

Wµν =
∫ 1

0

dξ

ξ

partons∑
i

fi(ξ,Q2)W̃ i
µν(ξ,Q2) , (2.4.5)

where we have introduced the parton tensors W̃ i
µν . The factor 1/ξ is necessary be-

cause the proton states are conventionally normalized to 2p0 while the hadron states
are normalized to 2ξp0. Thus the factor 1/ξ converts the parton flux to the correct
normalization for the proton flux.

The parton level tensor must obey the same symmetries as the hadron level tensor
Wµν . Therefore, under the same assumptions that were made in Eq. 2.3.10, the form
of W̃ i

µν is

W̃ i
µν = F̃ i

1

(
−gµν + qµqν

q2

)
+ ξ2 F̃

i
2
pq

(
pµ − p.qqµ

q2

)(
pν − p.qqν

q2

)
. (2.4.6)

We have now introduced the parton level structure functions F̃ i
1(x,Q2) and F̃ i

2(x,Q2).
They are also related to the hadron level structure functions F1 and F2 trough the
PDFs,

FJ (x,Q2) =
∫ 1

0

dξ

xi

partons∑
i

F̃ J
1 (x,Q2), J = 1, 2, L . (2.4.7)
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The crucial advantage in this characterization is that the parton level structure func-
tions are now computable in perturbation theory. The parton level tensor W̃ i

µν is
the spin-averaged squared amplitude for the partonic subprocess in Fig. 2.1. The
corresponding matrix element is

Mµ = −ieqi ū(l)γµu(ξp) . (2.4.8)

We note that this is now analogous to the leptonic tensor from Eq. 2.3.5, with the
replacements k → ξp, k′ → l′, q → −q, and e2 → e2

qi
. Then, by comparing the

tensor structures in Equations 2.3.5 and 2.4.6, neglecting again the quark masses and
applying the projections Eqs. 2.3.12 and 2.3.11, it is possible to arrive at

F̃ i
2 = 2e2

qi
δ(l2) . (2.4.9)

The above is only non-zero when

l2 = (ξp+ q)2 = 2ξpq −Q2 = 0 , (2.4.10)

and therefore
ξ = Q2/2pq = x . (2.4.11)

We have found that at leading order, we can identify the Bjorken variable x as the
momentum fraction of an incoming parton.

Similarly, we find
F̃ i

L = 0 , (2.4.12)

and
F̃ i

1 = 2e2
qi

ξ2

x
δ(ξ − x) . (2.4.13)

We have now studied all the parts needed to write the electromagnetic structure
functions of a proton at leading order: Combining Eq. 2.4.7 with Eqs. 2.4.13 and 2.4.9,
and inserting the correct phase space factor, we arrive at

F2(x,Q2) = 2x
partons∑

i

fi(x)e2
qi
, (2.4.14)

F1(x,Q2) =
partons∑

i

fi(x)e2
qi
. (2.4.15)

As we anticipated, we find the Callan-Gross relation at leading order, F2 = 2xF1 since
FL = 0. The result that FL = 0 encodes the fact that a spin 1/2 particle cannot absorb
a longitudinally polarized vector boson.

2.5 Higher order corrections and factorization

The results in Equations. 2.4.13, 2.4.9 and 2.4.12 can be interpreted as the contribu-
tions to the coefficient functions Cij(x,Q2) at leading order. The coefficient functions
encode the partonic cross sections and admit expansions in perturbative QCD,

Cij(x,Q2) = F̃i(x,Q2)δij + αsC
(1)
ij (x,Q2) + α2

sC
(2)
ij (x,Q2) + . . . (2.5.1)
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When accounting for higher order corrections in QCD, we have to consider both loop
("virtual") corrections and additional emissions of new partons ("real corrections").
The QCD corrections have both ultraviolet (UV) and infrared (IR) divergences. In
particular, the loop diagrams are affected by both; the ultraviolet divergences are dealt
with following some renormalization procedure. The IR loop divergences exist because
of the assumption that the partons are massless. These IR singularities cancel out when
combined with real emission diagrams. This result holds for all the Standard Model,
and is known as the Kinoshita-Lee-Nauenberg theorem [29, 30]. However real emission
diagrams also introduce collinear singularities (that is, the transverse momentum of the
new emitted particle tends to zero), that do not cancel out trivially. We can postulate
that it is possible to treat these infinites in a similar way as the renormalization cures
the UV divergences: by reabsorbing them into a redefinition of some bare quantity. In
this case, the bare quantities are the PDFs, and they are modified in such a way that
they correspond to finite measurable quantities. The PDFs now depend on an new
energy scale µ (like we had already written but not described) and we can define the
structure functions to all orders in perturbation theory as finite quantities given by

F (i)(x,Q2) =
partons∑

j

∫ 1

x

dy

y
Cij(x

y
, αs(Q2), µ2)fj(y, µ2) . (2.5.2)

We can express this more succinctly introducing the convolution operator ⊗, which
shall be defined by

F (i)(x,Q2) =
partons∑

j

Ci(x,Q2) ⊗ fi(x, µ2) , (2.5.3)

that is,

f(x) ⊗ g(x) ≡
∫ 1

x

dy

y
f

(
x

y

)
g(y) . (2.5.4)

The fact that Eq. 2.5.2 holds is by no means trivial. We have taken a number
of items for granted along the way: The first one is the fact that the divergent part
factorizes in a way that is independent of the observable. The second is that the
collinear corrections do not apply to the interference terms between the partonic and
the non perturbative hadronic part of the calculation.

It turns out that both of these features are true for a large class of processes. This
result is known as the Collinear factorization theorem, and is described in detail in
Ref. [31]. The reason why we can neglect the interference terms for sufficiently hard
interactions is that they are suppressed by powers of the hard scale Q2. The terms
are commonly called higher twist.

Notice that in Eq.2.5.3 the right hand side of the has a term that depends on the
arbitrary scale µ2, while the left hand side does not depend on it. This is as expected,
since observable quantities must not depend on this arbitrary choice. In the following
section we will explicitly construct PDFs that have this property. Here we remark
that we can choose how to split the finite contributions of µ dependence between
the PDF and the coefficient function. This choice does not affect the results at any
order in perturbation theory, and is called factorization scheme. The most common
choice is the MS scheme, where the finite counterterms that are kept in the coefficient
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functions are process independent. For example, at next-to-leading order (NLO), the
finite counterterms are log 4π − γE , (where γE is the Euler-Mascheroni constant).

2.6 DGLAP evolution

We obtain the scale dependence of the PDFs by requiring that the structure functions
in Eq. 2.5.3 are independent of the arbitrary factorization scale choice µ2.

µ
d

dµ
F (x,Q2) = 0 . (2.6.1)

This condition leads to renormalization group equations for the PDFs and coeffi-
cient functions that are solved in terms of the Altarelli-Parisi splitting functions Pij :

µ
d

dµ
fi(x, µ2) =

∑
j

Pij(x, αs(µ)) ⊗ fj(x, µ2) (2.6.2)

µ
d

dµ
Ci(x,Q2/µ2, αs) = −

∑
j

Pij(x, αs(µ)) ⊗ Cj(x,Q2/µ2, αs) (2.6.3)

These relations are known as Altarelli-Parisi or DGLAP equations [32, 33, 34], and
the results can be proven using the operator product expansion formalism. Note that
the coupling constant is evaluated at the factorization scale. The splitting functions
Pij are known up to NNLO [35, 36].

Since the rank of the evolution matrix Pij is not maximal, there are several sub-
spaces of flavour combinations that are preserved by the evolution. This is a conse-
quence of the flavour symmetry that QCD exhibits in the limit where we neglect the
quark masses; For example, a gluon only splits into a quark and an antiquark of the
same flavour. The thirteen partons (6 quarks, 6 antiquarks and the gluon). We give
a basis that transforms the flavours in the PDFs so as to make the evolution operator
Pij as diagonal as possible. We first define:

q±
i = qi ± q̄i . (2.6.4)

because of the baryon number conservation, the combinations with a negative sign,
called valences are preserved, and thus decouple. Similarly we can define triplet com-
binations:

T3 = u+ − d+ , (2.6.5)
T8 = u+ + d+ − 2s+ , (2.6.6)
T15 = u+ + d+ + s+ − 3c+ , (2.6.7)
T24 = u+ + d+ + s+ + c+ − 4b+ , (2.6.8)
T35 = u+ + d+ + s+ + c+ + b+ − 5t+ . (2.6.9)

Instead, the singlet distribution,

Σ =
quarks∑

i

q+ (2.6.10)
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can couple with the gluon. Therefore, for the non-singlet sector composed by valences
and triplets, we have

µ
d

dµ
fNS

i (x, µ2) = PNS
i (x, αs) ⊗ f(x, µ2) (2.6.11)

while for the gluon and the singlet,

µ
d

dµ

(
g
Σ

)
(x, µ2) =

(
Pgg PgΣ
PΣg PΣΣ

)
(x, αs) ⊗

(
g
Σ

)
(x, µ2) (2.6.12)

We have now established that the scale dependence on the PDFs can be com-
puted in perturbative QCD given an initial condition. In practice, the solution to the
DGLAP equations are implemented in numerical codes trough x space integrations.
Examples of such code include HOPPET [37], QCDNUM [38] or APFEL [39], which
is currently employed in the NNPDF fits. It is also possible to solve the DGLAP equa-
tions in Mellin space, where they are trivial, since a Mellin transform of Equation 2.6.2
transforms the convolution integrals into products. The trade-off is then recovering
the PDFs in x space, which requires a numerically involved inversion procedure. The
QCD-PEGASUS [40] implements this approach.

2.7 Treatment of heavy flavours

So far we have been consistently making the approximation that the quarks participat-
ing in the PDF evolution are massless. Since the masses of the three lightest quarks,
u, d, s are far below Λ, this approximation is entirely reasonable for them. The treat-
ment of the rest of the quarks is more delicate, particularly since we are interesting in
studying the regimes where they masses are either smaller or bigger than the charac-
teristic scale of the interaction, and therefore procedures that are able to interpolate
all the regimes are needed.

There exit several flavour number schemes that incorporate the heavy quark effects
under different assumptions. Depending on the relation between the mass of a heavy
quark mq and the scale at which we probe the PDF, Q, we can identify two limiting
cases:

mq ≪ Q In this case we can simply treat the heavy quark as another massless proton,
so that it is perturbatively generated by the DGLAP evolution.

mq ≳ Q The heavy quark can be considered as a purely final state that does not
participate in the evolution (since there is no energy to produce it). This then
allows to consider fully the mass effects in the matrix elements of the final state.

The first of these limits is well realized in the so called Zero Mass Variable Flavour
Number Scheme (ZM-VFNS): The heavy quark is treated as a massless parton above
its mass threshold (typically chosen to coincide with the mass of the quark, defined in
e.g. the MS subtraction scheme), and a corresponding heavy quark PDF is introduced
(which is set to zero below the threshold). The approximation becomes problem-
atic near the mass threshold because coefficients of order log(m2

q/Q
2) appear in the

coefficient functions and constitute potentially large corrections [10].
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Instead the Fixed Flavour Number Schemes (FFNS) are accurate in the second
limit: The heavy quarks are treated as a purely final state particle and only the
lighter partons are considered in the evolution. Instead the heavy quark enters into
the coefficient functions; at lowest order, they incorporate the splitting of a gluon into
pair qq̄ of heavy quarks, considering the mass effects. At scales much greater than the
mass, this approximation becomes unreliable because collinear logarithms of Q2/m2

q

are left unresummed by the DGLAP evolution.
The General Mass Variable Flavour Number Schemes (GM-VFNS) are procedures

that attempt to interpolate between these two limits, so that the effects of the heavy
quarks are accounted for at all scales.

The essential idea [41] is to switch from FFNS PDFs with nf flavours considered in
the evolution to PDFs with nf + 1 flavours, at the matching point µ = mq. The PDFs
above and below the threshold are related order by order in αs by the (nf + 1) × nf

transition matrix Ajk(µ/mq),

f
(nf+1)
j (µ → m+

q ) = Ajk ⊗ f
(nf )
k (µ → m−

q ) . (2.7.1)

Here the superindexes + and − indicate the direction of the limit.
The elements of the Ajk are known up to NNLO [42]. Requiring that the theoretical

expressions of the structure functions are continuous at the matching threshold, we
find

F (x,Q2) = C−
k (mq/Q) ⊗ f−

k (Q) = C+
j (mq/Q) ⊗ fj(Q) (2.7.2)

≡ C+
j ⊗Ajk(mq/Q) ⊗ f−

k (Q) . (2.7.3)

Since the PDFs are continuous at the threshold, the coefficient functions must sepa-
rately satisfy

C−
k (mq/Q) = C+

j ⊗Ajk(mq/Q) . (2.7.4)

This condition defines the minimal GM-VFNS : Since the matrix is not square, the
equation is underspecified and one can redefine the scheme by swapping terms of
O(mq/Q) between the two sides.

A number of GM-VFNS variants exist: They include ACOT [43, 44, 45] TR [46]
(which require the continuity of the derivatives of the structure functions) and FONLL [10].
The FONLL method provided a theoretical framework that improved the understand-
ing of the differences and equivalences in the earlier methods (and in particular to
establish its equivalence with several ACOT variants) and allows for extensions such
as the description of charm initiated contributions [47].

2.8 Hadroproduction

The result of the collinear factorization in Sec 2.5 also holds for processes where to
hadrons interact to yield a given final state [31]. This is a basic property of QCD
and allows to relate experimental measurements obtained in an hadron collider such
as the LHC to theory predictions obtained in Perturbation Theory. The experimental
results are typically obtained for hadronic cross sections (σpp→X) for a given final state
X (typically taken to be inclusive in all hadronic particles accompanying the desired
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event), while the theory predictions are usually computed for hard (partonic) quanti-
ties, σ̂ab→X . Using the notation from Ref. [48], the basic structure of hadroproduction
processes is:

σpp→X(s,M2
X) =

∑
a,b

∫
xmin

dx1dx2fa(x1,M
2
X)fb(x2,M

2
X)σ̂ab→X(x1x2s,M

2
X) .

(2.8.1)
Here the sum is taken over all possible constituents of the proton, including quarks,

antiquarks and gluon, but also photon and leptons. The underlying assumption of
the factorization theorem is that similarly to the DIS case, discussed in Sec. 2.5,
the singularities associated with the partons in the initial state are universal for all
processes, so that it is possible to absorb these singularities into the bare parton
densities [49]. We may recast Eq. 2.8.1 in terms of the convolution (see Sec. 2.5)
between a partonic luminosity dependent on the PDFs, and a hard coefficient function,

σpp→X(s,M2
X) =

∫ 1

τ

dx

x
L(x)C

(τ
x
, αs(M2

x)
)
, (2.8.2)

where τ is the minimum value of x1 or x2 that allows kinematically to produce a final
state with invariant mass MX ,

τ = M2
X

s
(2.8.3)

The partonic luminosity L is defined by

L(x,M2
X) ≡

∑
a,b

∫ 1

x

dz

z
fa(z,M2

X)fb(x/z,M2
X) . (2.8.4)

We can define the luminosity of a given partonic channel by restricting the sum
in Eq. 2.8.4 to a particular subset of partons. For example if a and b are restricted
to be quarks we talk about quark luminosity, Lqq. Note that, since a and b are
indistinguishable in a pp collider like the LHC, it only makes sense to define partonic
channels that are symmetric under the exchange a ↔ b. For example Lud̄ is defined
as

Lud̄(x,M2
X) ≡

∫ 1

x

dz

z
fu(z,M2

X)fd̄(x/z,M2
X) +

∫ 1

x

dz

z
fd̄(z,M2

X)fu(x/z,M2
X) .

(2.8.5)
The coefficient function is defined analogously to the DIS case Eq 2.5.1, as dimen-

sionless quantities that encode the partonic cross section,

σ̂ab→X = σ0Cab

(
τ, αs(M2

X)
)

(2.8.6)

where
Cab

(
τ, αs(M2

X)
)

= cabδ(1 − x) + O(αs) (2.8.7)

with the numbers cab nonzero only if the given partons couple to the final state X at
leading order.



Chapter 3

PDFs for practical usage

In this chapter we consider several transformations of PDF sets that make them more
useful in certain practical situations.

3.1 PDFs from the point of view of users

A user of PDFs is typically someone who wishes to compute a PDF dependent quantity
(such as cross sections for hadronic processes). Users generally possess the means to
compute the corresponding parton level quantity (e.g. given in terms of a parton level
simulation [50, 51, 52, 53, 54, 55, 56] or as a precomputed grid [57, 9]), and need to
convolve it with a PDF to obtain the corresponding observable result.

From the point of view of an user, PDF sets are generally given as a set of computer
files in the LHAPDF [58] format. An LHAPDF set consists of a set of members, each
consisting of the value of a PDF sampled at a grid of points in (x,Q) and for each
flavour. The LHAPDF software then interpolates to obtain the value of the PDF at
arbitrary points in (x,Q) (it can also extrapolate, but that is generally not advised
since the extrapolation does not preserve basic properties of the PDF like the sum
rules in Eqs. 2.4.1-2.4.4). The members of the PDF sets are used to compute PDF
dependent quantities together with their uncertainties. The following types of PDF
members are often employed:

Central values Representing the "best fit" PDF.

Error members These represent variations around the best result. They are used
to compute “PDF uncertainties” in a way prescribed by each set. The most
common error types are Monte Carlo and Hessian. We will describe them next
in Sec. 3.2.

Parameter fluctuations Most commonly αS . These members are used to correlated
the change in the PDFs with the variations of the parameter, and account for it
when for example considering the uncertainties of that parameter.

To obtain an estimate of the PDF uncertainty of a given quantity, one must com-
pute it for each of the PDF members. This is often computationally prohibitive as
it requires to repeatedly compute expensive convolutions Eq 2.8.1. We will dedicate

19
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much of the remaining of this chapter to the problem of compressing the informa-
tion contained in the error members in a way that they reproduce the features of the
starting set of error members as faithfully as possible.

In the context of experimental analyses at the LHC, PDF uncertainties need to be
combined with those from other theory and experimental parameters. This is often
done employing maximum likelihood estimation method (see e.g. Ref [59]) which
assume that the error parameters can be continuously varied. The Hessian error
representation is suited for this task, while the Monte Carlo is not. Therefore, it is
advantageous for PDF sets that are obtained as Monte Carlo samples like NNPDF
(see Sec 5.1) to be convertible to error sets of the Hessian type. In Sec. 3.3 we describe
a method that implements this transformation.

Finally it may be desirable to somewhat modify the assumptions made in the PDF
fit, for example to impose some asymptotic behaviour at small x consistent with the
expected behaviour at leading order.

3.2 Representation of uncertainties in PDFs

We note that the way PDF uncertainties are represented in the grid seen by the user
(See Sec 3.1) is not necessarily related to the way PDFs were determined. Indeed in the
following sections we discuss methods to convert between the different representations
of the uncertainties a posteriori.

3.2.1 Monte Carlo errors

For Monte Carlo PDF sets, the error members describe samples from some distribution
of a set of functions (that is, one PDF for each flavour) that is constructed propagating
the uncertainties in the fitting procedure. These are typically the uncertainties of the
data used to constrain the PDFs, the random state of the fitting algorithms that selects
potentially different minima (since the PDFs are not fully constrained by the data)
and in some instances, additional theory errors. We discuss a Monte Carlo fitting
procedure in more detail in Sec. 5.1. We call each error member, a Monte Carlo
replica.

Any quantity O that depends on the PDFs adopts a different value for each replica,
Or. The PDF dependence can then be characterized by computing statistical estima-
tors over the set of values {Or}, r = 1 . . . Nrep. We can define its central value as the
mean of the values that it adopts for each of the PDF replicas:

⟨O⟩ = ⟨O⟩r = 1
Nrep

Nrep∑
r

Or (3.2.1)

PDF uncertainty on any quantity O as the standard deviation of the ensemble of
values that O has for each replica:

∆O =

 1
Nrep − 1

Nrep∑
r

(Or − ⟨O⟩r)2

 1
2

(3.2.2)
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Other statistical estimators, such as the median (instead of the mean) and the
interquartile range (instead of the standard deviation) may be advisable in that they
are more resilient to outliers.

The central value PDF written to the LHAPDF grids is similarly the mean of
the replicas. Note that using the value of the observable computed with the central
value PDF is different from Eq. 3.2.1 if the observable is not linear in the PDFs. The
difference can be significative compared with the PDF uncertainty, for example when
computing the best fit value of αs

(
M2

Z

)
, as we will discuss in Chapter 6.

3.2.2 Hessian errors
The Hessian error formalism is a natural way to represent PDF uncertainties when a
given PDF parametrization is assumed. The PDFs are then fitted by maximizing the
agreement with the data and the uncertainties are assumed to be Gaussian fluctuations
around the best fit values for each parameter [60, 61]. That is, at some fixed scale Q2

0,
the PDF is defined by a set of parameters. For example, the functional form assumed
in older PDF fits by the CTEQ collaboration was [62]

xf(x,Q2
0) = a0x

a1(a− x)a2 exp(a3x+ a4x
2 + a5

√
x+ a6x

−a7) . (3.2.3)

Current Hessian determinations employ more complicated functional forms containing
a polynomial basis to some high order [63, 64, 65]. The parameters a⃗ (⃗a = {a0 . . . a7}
in the example above) are fixed by minimizing some error function like

χ2(⃗a) =
∑

ij

(di − ti(⃗a))C−1
ij (dj − tj (⃗a)) , (3.2.4)

where di is the experimentally measured value for the data point i, ti is the correspond-
ing theoretical prediction obtained from the PDF and Cij measures the experimental
covariance between the points i and j. The parametrization, and thus the PDF is then
obtained as

a⃗0 = arg min
a⃗
χ2(⃗a) , (3.2.5)

where the arg min notation stands for the values in the domain of the function χ2(⃗a)
where it is minimized. Assuming the minimum is unique and that the error function is
quadratic around the minimum, a small deviation from the minimum when we change
the parameters, is given by

∆χ2 = χ2(⃗a) − χ2(⃗a0) = (⃗a− a⃗0)H (⃗a− a⃗0) , (3.2.6)

where H is the Hessian matrix of the error function χ2 (with an added factor 1/2
for convenience as will be clear from Eq. 3.2.9), evaluated at the minimum of the
parameters,

Hij = 1
2
∂2χ2(⃗a)
∂ai∂aj

∣∣∣∣
a⃗=a⃗0

. (3.2.7)

In terms of the shifts,
δ⃗ = a⃗− a⃗0 , (3.2.8)

the variation is
∆χ2 = δ⃗Hδ⃗ (3.2.9)
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Since H is symmetric, it can be diagonalized in terms of a complete orthogonal
basis. We define a set of rescaled eigenvectors e⃗i as the normalized eigenvectors v⃗i

over the square root of the eigenvalues λi; that is e⃗i = v⃗i/
√
λi. We can now project δ⃗

in the basis of e⃗i,
δ⃗ =

∑
i

zie⃗i , (3.2.10)

with zi = δ⃗.e⃗i. Replacing in Eq. 3.2.9, we find:

∆χ2 =
∑

i

z2
i (3.2.11)

This defines a sphere in the rotated parameter space defined by the bases {ei}, centered
in a⃗0 and corresponding to increases in the figure of merit of up to ∆χ2, and thus the
expected value of the parameters.

Given any observable O that depends on the parameters trough the PDF, we can
now find the maximum deviation from its best fit value (when δ = 0) that is consistent
with a fixed increase in the error function ∆χ2. In the linear approximation we are
assuming, we have

O(δ) −O(0) =
∑

i

dO

dδi

∣∣∣∣
δi=0

δi =
∑

i

dO

dzi

∣∣∣∣
zi=0

zi . (3.2.12)

The vector of maximum deviation is parallel to the gradient, that is:

zi = dO

dzi

√√√√∆χ2/
∑

j

(
dO

dzj

∣∣∣∣
zj=0

)2

(3.2.13)

Then the square of the maximum deviation is, from Eqs 3.2.12 and 3.2.13,

∆2
O = ∆χ2

∑
i

dO

dzi

∣∣∣∣2
zi=0

(3.2.14)

Assuming again linear error propagation, we can construct a general set of PDFs
that allow to compute the uncertainty in Eq. 3.2.14. Each error member is constructed
by shifting the best fit parameters in the direction of the corresponding eigenvectors
of the covariance matrix,

a⃗(k) = a⃗0 + te⃗k , (3.2.15)

where, t2 = ∆χ2.
The final recipe for estimating uncertainties is then similar to what we find in the

Monte Carlo Method, Eq. 3.2.2:

∆O =

Neig∑
k

(O(⃗ak) − O(⃗a0))2

 1
2

(3.2.16)

Some caveats of the fitting Hessian methodology include:
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• The ∆χ2 parameter needs to be chosen in a way that accounts for both the
possible inconsistencies in the input data and limitations in the parametrization
that may limit the maximum achievable agreement.

• It is complicated to account for parameters that are too sensitive to the fluctu-
ations in the experimental data overfitting. This is accomplished with relatively
involved procedures employed to fix the parametrization (e.g. [66, 64]), or di-
rectly not accounted for. This also makes it difficult to estimate the uncertainty
associated to making a particular choice of parametrization.

• The approximation of linear error propagation that is the basis to the Hessian
approximation is not necessarily precise enough. It is possible to partially correct
for that by setting the parameter t in Eq. 3.2.15. Indeed to improve the robust-
ness of the Hessian representation, ofen positive and negative fluctuations are
construncted with respect to each eigenvector. That is, for each eigenvector, in
addition to an error member constrcuted with the parametrization in Eq. 3.2.15,
we also have,

a⃗(k−) = a⃗0 − te⃗k (3.2.17)

Note that this comes at the cost of duplicating the total number of convolutions
needed to compute the PDF uncertainty for a fixed number of eigenvectors.

Note that only the last point applies to the Hessian error representation, as opposed
to fits performed with the Hessian methodology: The uncertainty on the predictions
will be accurate only up to a linear approximation in the dependence of a given ob-
servable on the PDF. A related limitation of the Hessian representation is that the
shifts can only correspond to Gaussian fluctuationas in parameter space; as we show
in Sec 4.4, the PDF uncertainties in kinematical regions were PDFs are not so well
constrained (that is, small and large x) are best characterized by non Gaussian dis-
tributions. This is because the uncertainty is mainly determined by the methodology
and non Gaussian constrains like positivity (see Sec 5.1.3) rather than by experimental
data (which are often assumed Gaussian).

3.3 Monte Carlo to Hessian transformation

3.3.1 Introduction

One crucial advantage is the Hessian error representation of PDFs described in Sec. 3.2.2
over the Monte Carlo error representation (Sec. 3.2.1) is that it allows to interpret the
PDF fluctuations in terms of continuous parameter variations, and the orthogonal
Hessian eigenvectors can be used as nuisance parameters in experimental analyses.
In this way PDF uncertainties are more easily combined with other experimental or
theoretical sources of uncertainty, at least as long as the theoretical uncertainties do
not depend on the PDFs, since otherwise coherent variations of the PDFs also the
corresponding variations would be needed (see Sec. 6.4.1 for an example).

NNPDF however uses a Monte Carlo fitting procedure, that instead has the ad-
vantage that it allows to construct PDFs with an arbitrary functional form (neural
network) and characterized by a very large number of parameters (and with a built in
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procedure to eliminate possible over-learning). It also does not need to assume that
the distributions around the best fit are Gaussian, or linear error propagation.

Even though deviations from Gaussianity may be important in specific kinematic
regions, especially when limited experimental measurements are available and PDF
uncertainties are driven by theoretical constraints (such as for example the large-x
region, relevant for new physics searches), in most cases, and specifically when PDF
uncertainties are small and driven by abundant experimental data, the Gaussian ap-
proximation is reasonably accurate. This then raises the question of whether in such
case, in which everything is Gaussian and the Hessian approximation is adequate, one
could have the best of possible worlds: a Hessian representation with the associate ad-
vantages, but without having to give up the use of a general-purpose flexible functional
form. We develop a methodology for the construction of a Hessian representation of
Monte Carlo PDFs that achieves this goal in a straight forward manner. Starting
from an initial Monte Carlo PDF set, the Hessian error sets are directly obtained as
the eigenvectors of the covariance matrix in PDF space. The method offers a direct
way to achieve "PDF compression": That is, to represent the PDF uncertainties of
the initial set with a much smaller number of error sets and minimal loss of accuracy.
Furthermore, since the inverse problem of obtaining a Monte Carlo representation of
a Hessian set was already solved [67], the method allows to convert between the two
main representations of PDF errors. This in turn enables the construction of combined
PDF sets [48, 67, 68, 69] in either representation. In this context, the problem of ob-
taining a common Hessian PDF representation has also been tackled in the so-called
"Meta-PDF" approach [69], which is based on first parametrizing the Monte Carlo
members in terms of a common functional form thus induced the problems associated
with a particular choice of parametrization, and in particular the accuracy loss due
to the finite flexibility of the assumed functional form. In Ref. [13], we proposed a
method that minimizes the bias by using the Monte Carlo replicas themselves as a
basis for the parametrisation, and employs a genetic algorithm to find the linear com-
bination that best describes each replica. In the method described here (described for
the first time in the Appendix of Ref. [13] and explained in more detail in Ref. [14]),
we skip the parametrization step altogether and employ directly the eigenvectors of
the covariance matrix as Hessian parameters.

The benchmarks done in the context of the PDF4LHC recommendation [4, 15] and
discussed in Chapter. 4 proved that this method is superior to either of the two at a
fixed number of error sets, in that it provides a description of the PDF uncertainty
of the most relevant PDF dependent observables of the LHC that is closer to the
prior. The method is also more conceptually simple and straight forward to implement
efficiently (the topical runtime is of order one minute on a laptop while the GA based
method required a day on a computing cluster).

In the following, we dub the Monte Carlo to Hessian transformation SVD+PCA.

3.3.2 Methodology

Here we will assume the central value to be the same as in the prior PDF set, from
which, if the prior is given as a Monte Carlo, it is typically determined as a mean
(note that this is not uniquely the best choice, as pointed out in Sec. 3.2.1).

Since we are interested in the construction of a multigaussian representation in
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PDF space, the only information we need is the corresponding covariance matrix.
This is constructed starting with a matrix X which samples over a grid of points
the difference between each PDF replica, f (k)

α (xi, Q), and the central set, f (0)
α (xi, Q),

namely
Xlk(Q) ≡ f (k)

α (xi, Q) − f (0)
α (xi, Q) , (3.3.1)

where α runs over the Nf independent PDF flavors at the factorization scale µF = Q,
i runs over the Nx points in the x grid where the PDFs are sampled, l = Nx(α− 1) + i
runs over all NxNf grid points, and k runs over the Nrep replicas. The sampling is
chosen to be fine-grained enough that results will not depend on it.

The desired covariance matrix in PDF space is then constructed as

cov(Q) = 1
Nrep − 1

XXt . (3.3.2)

The key idea which underlies the SVD method is to represent the (NxNf ) × (NxNf )
covariance matrix Eq. (3.3.2) over the Nrep dimensional linear space spanned by the
replicas (assuming Nrep > NxNf ), by viewing its NxNf eigenvectors as orthonormal
basis vectors in this space, which can thus be represented as linear combinations
of replicas. The subsequent PCA optimization then simply consists of picking the
subspace spanned by the dominant eigenvectors, i.e., those with largest eigenvalues.

The first step is the SVD of the sampling matrix X, namely

X = USV t , (3.3.3)

where U and V t are orthogonal matrices, with dimensions respectively NxNf ×N
(0)
eig

and Nrep × Nrep, S is a diagonal N (0)
eig × Nrep positive semi-definite matrix, whose

elements are the so-called singular values of X, and the initial number of singular
values is given by N (0)

eig = NxNf .
The matrix Z = US then has the important property that

ZZt = XXt, (3.3.4)

but also that it can be expressed as

Z = XV, (3.3.5)

and thus it provides the sought-for representation of the multigaussian covariance ma-
trix in terms of the original PDF replicas: specifically, Vkj is the expansion coefficient
of the j-th eigenvector over the k-th replica. We assume henceforth that the singular
values are ordered, so that the first diagonal entry of S correspond to the largest value,
the second to the second-largest and so forth.

The PCA optimization then consists of only retaining the principal components, i.e.
the largest singular values. In this case, U and S are replaced by their sub-matrices,
denoted by u and s respectively, with dimension NxNf × Neig and Neig × Nrep, with
Neig < N

(0)
eig the number of eigenvectors which have been retained. Due to the ordering,

these are the upper left sub-matrices. Because s has only Neig non-vanishing diagonal
entries, only the Nrep × Neig submatrix of V contributes. We call this the principal
submatrix P of V :

Pkj = Vkj k = 1 , . . . , Nrep , j = 1, . . . , Neig . (3.3.6)
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The optimized representation of the original covariance matrix, Eq. (3.3.2), is then
found by replacing V with its principal submatrix P in Eq. (3.3.5). This principal
matrix P is thus the output of the SVD+PCA method: it contains the coefficients
of the linear combination of the original replicas or error sets which correspond to
the principal components, which can be used to compute PDF uncertainties using the
Hessian method.

Indeed, given a certain observable σi (which could be a cross-section, the value of
a structure function, a bin of a differential distribution, etc.) its PDF uncertainty can
be computed in terms of the original Monte Carlo replicas by

sσi =

 1
Nrep − 1

Nrep∑
k=1

(
σ

(k)
i − σ

(0)
i

)2
 1

2

= 1√
Nrep − 1

∥d(σi)∥ , (3.3.7)

where σ(k)
i is the prediction obtained using the k-th Monte Carlo PDF replica, σ(0)

i is
the central prediction, and in the last step we have defined the vector of differences

dk(σi) ≡ σ
(k)
i − σ

(0)
i , k = 1, . . . , Nrep , (3.3.8)

with norm

∥d(σi)∥ ≡

Nrep∑
k=1

d2
k(σi)

 1
2

. (3.3.9)

Note that this is another way of writting Eq.3.2.2.
Assuming linear error propagation and using Eq. (3.3.5), the norm of the vector

{dk(σi)}, Eq. (3.3.8), can be represented on the eigenvector basis:

∥d(σ1)∥ =
∥∥dV (σ1)

∥∥ (3.3.10)

where the rotated vector

dV
j(σi) =

Nrep∑
k=1

dk(σi)Vkj , j = 1, . . . , N (0)
eig , (3.3.11)

has the same norm as the original one because of Eq. (3.3.4).
Replacing V by the principal matrix P in Eq. (3.3.11), i.e., letting j only run up

to Neig < N
(0)
eig we get

s̃σi = 1√
Nrep − 1

∥∥dP (σi)
∥∥ , (3.3.12)

where now the vector is both rotated and projected

dP
j(σi) =

Nrep∑
k=1

dk(σi)Pkj , j = 1, . . . , Neig . (3.3.13)

The norm of dP is only approximately equal to that of the starting vector of differences
d:
∥∥dP (σ1)

∥∥ ≈ ∥d(σ1)∥. However, it is easy to see that this provides the linear
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combination of replicas which minimizes the difference in absolute value between the
prior and final covariance matrix for given number of eigenvectors. As the difference
decreases monotonically as Neig increases, the value of Neig can be tuned to any desired
accuracy goal, with the exact equality Eq. (3.3.10) achieved when Neig = N

(0)
eig . Note

that, of course, the optimization step can be performed also starting with a symmetric
Hessian, rather than Monte Carlo, prior. In such case, the index k runs over Hessian
eigenvectors, Eq. (3.3.2) is replaced by cov(Q) = XXt, and the rest of the procedure
is unchanged.

An interesting feature of this SVD+PCA method is that the matrix V (and thus
also the principal matrix P ) in Eq. (3.3.11) simply represents the coefficients of a
linear combination of replicas, and this does not depend on the value of the PDF
factorization scale Q (note that the evolution operator, viewed as a matrix would act
on U instead): the scale dependence is thus entirely given by the DGLAP evolution
equation satisfied by the original Monte Carlo replicas. Of course, the subsequent PCA
projection may depend on scale if there are level crossings, but this is clearly a minor
effect if a large enough number of principal components is retained. Because of this
property, the SVD+PCA methodology can be used for the efficient construction [4] of
a Hessian representation of combined PDF sets, even when the sets which enter the
combination satisfy somewhat different evolution equations, e.g., because of different
choices in parameters such as the heavy quark masses, or in the specific solution of
the DGLAP equations.

3.3.3 Number of error sets

The SVD+PCA method can represent Monte Carlo PDF sets with enough replicas
that the statistical error is negligible, such as the 900 replicas of the prior PDF4LHC
2015 combined set [4], the 1000 replicas of the NNPDF 3.1 prior sets [12] or the 1000
replicas of the NNPDF 3.0 set [15] with around 100 Hessian error sets in such a way
that the information loss due to the compression is negligible compared to the error
due to the Hessian approximation.

While a smaller number of error sets can still yield reasonable accuracy (certainly
comparable to other proposed solutions such as Meta PDF), one cannot control very
accurately where the information loss is happening: smaller eigenvectors in the covari-
ance matrix correspond to large-x (where the value of the PDF us numerically smaller)
and small-x (where the correlation length is small and the covariance has many small
contributions). Therefore observables that depend on the behaviour at the most ex-
treme x values, like notably jet distributions would be the first to deteriorate as the
number of error sets goes down.

We therefore develop a compression procedure where one can choose which be-
haviour of the PDF uncertainty is more important to reproduce. This is the idea
behind the SMPDF method discussed next in Sec. 3.4.
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3.4 The SMPDF algorithm

3.4.1 Introduction
The SMPDF method aims at producing PDFs with a minimal number of error sets,
designed to provide accurate representations of PDF uncertainties for specific processes
or classes of processes. The SMPDFs (Specialized minimal PDFs) are constructed
in such a way that sets corresponding to different input processes can be combined
together without losing information on their correlations, and therefore an existing set
can also be enlarged to describe a new process.

While other compression methods such as MCH [13, 14], META PDFs [69] and
CMC [70] aim at providing an optimized representation in all kinematic regions, here
we exploit the well known fact [71] that if one is interested only in a specific set of cross
sections, the number of PDF error members can be greatly reduced without significant
accuracy loss. This allows us to reduce the number of error sets required from around
a 100 required by each of the methods to achieve a reasonable description of the PDF
uncertainty to as little as a dozen or less for sufficiently inclusive processes (see the
detailed comparison in Ref [14]).

Our methodology is based on the SVD-PCA [13, 14], method discussed in Sec.3.3.
Starting from either a Hessian or a Monte Carlo prior set, and a list of collider pro-
cesses, the SM-PDF algorithm leads to a set of eigenvectors optimized for the descrip-
tion of the input processes within some given tolerance.

In comparison to existing methods, such as data set diagonalization [72], our
methodology has the advantage that no information is lost in the process of the con-
struction of the specialized set. This is because the specialized set is constructed
through a suitable linear transformation, whereby the starting space is separated into
a subspace spanned by the optimized SM-PDF set, and its orthogonal subspace. This
then implies that any given SM-PDF set can be iteratively expanded in order to main-
tain a given accuracy for an increasingly large set of processes, and also, that SM-PDF
sets optimized for different sets of processes can be combined into a single set, either
a priori, at the level of PDFs, or a posteriori, at the level of cross-sections. This, for
example, enables the a-posteriori combination of previous independent studies for a
signal process and its corresponding backgrounds, with all correlations properly ac-
counted for.

We describe the method en detail next. An example is shown in Sec. 4.4.

3.4.2 Methodology
In the SM-PDF method, this same SVD+PCA optimization is performed, but now
with the goal of achieving a given accuracy goal not for the full prior PDF set in the
complete range of x and Q2, but rather for the aspects of it which are relevant for
the determination of a given input set of cross-sections, and in such a way that all the
information which is not immediately used is stored and can be a posteriori recovered
either in part or fully, e.g. if one wishes to add further observables to the input list.
The method allows the user to choose the desired accuracy of the representation, and
has only one additional free parameter that is fixed by optimizing to data.

The algorithm is constructed by supplementing the SVD+PCA methodology of
Sec. 3.3 with three additional features: a measure of the accuracy goal with which
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the uncertainties are to be reproduced; a way of singling out the relevant part of the
covariance matrix; and a way of keeping the information on the rest of the covariance
matrix in such a way that the full covariance matrix can be recovered at a later stage,
to improce the description of the next observable. The main input to the algorithm
is the set of Nσ observables which we want to reproduce, {σi}, with i = 1, . . . Nσ.
Theoretical predictions for the cross-sections {σi} are computed using a prior PDF
set, which we assume for definiteness to be given as a Monte Carlo, though the method
works with obvious modifications also if the starting PDFs are given in Hessian form
(one just needs to convert between Eqs. 3.2.2 and 3.2.16). The goal of the SM-PDF
methodology is to evaluate the PDF uncertainties sσi , Eq. (3.2.2), in terms of a reduced
number of Hessian eigenvectors,

s̃σi =

Neig∑
n=1

(
σ̃

(n)
i − σ̃

(0)
i

)2
 1

2

, (3.4.1)

with the number Neig being as small as possible within a given accuracy goal. We
thus define a measure TR of the accuracy goal (tolerance) by the condition

T < TR; T ≡ max
i∈(1,Nσ)

∣∣∣∣∣1 − s̃σi

sσi

∣∣∣∣∣ (3.4.2)

in other words, TR is the maximum relative difference which is allowed between the
original and reduced PDF uncertainties, s̃σi and sσi respectively, for all the observables
{σi}.

In order to determine the part of the covariance matrix relevant for the description
of the input observables {σi}, we define the correlation function

ρ (xi, Q, α, σi) ≡ Nrep

Nrep − 1

( ⟨X(Q)lkdk(σi)⟩rep − ⟨X(Qσi)lk⟩rep ⟨dk(σi)⟩rep

sPDF
α (xi, Q)sσi

)
,

(3.4.3)
where the matrix of PDF differences X(Q) and the grid index l = Nx(α− 1) + i have
been defined in Sec. 3.3 Eq. (3.3.1); sPDF

α (xi, Q) is the standard deviation of the PDFs
in the prior Monte Carlo representation, given by the usual expression, analogously to
Eq. 3.3.7

sPDF
α (xi, Q) =

 1
Nrep − 1

Nrep∑
k=1

[
f (k)

α (xi, Q) − ⟨fα(xi, Q)⟩
] 1

2

, (3.4.4)

and sσi , the standard deviation of the i-th observable σi, is given by Eq. (3.3.7). The
function in Eq. (3.4.3) measures the correlation between the observables σi and the
l-th PDF value (i.e. fα(xi, Q), with l = Nx(α− 1) + i).

The basic idea of the SM-PDF construction is to apply the SVD to the subset of
the covariance matrix which is most correlated to the specific observables that one
wishes to reproduce {σi}, one at a time, through an iterative procedure schematically
represented in Fig. 3.1.

The iteration loop (contained in the dashed box in Figure 3.1) is labeled by an
iteration index j, such that at each iteration an extra eigenvector is added, thereby



30 CHAPTER 3. PDFS FOR PRACTICAL USAGE

  

The SM-PDFs strategy

Custom observables

Theoretical
predictions

Kinematic sampling

SM-PDFs

Input PDF set

APPLgrid

Plain files

LHAPDF

LHAPDF grid
Reached

Tolerance?

SM-PDF algorithm:

Eigenvector collection

Compute uncertainties
Validation plots

Data output

  No
Yes

Check non-linear 
effects

Next observable

Orthogonal projection

Figure 3.1: Schematic representation of the SM-PDF strategy.

increasing the accuracy. If the accuracy goal is achieved for all observables after j
iterations, then the final reduced Hessian set contains Neig = j eigenvectors as error
sets. These are delivered as a new principal matrix P , which provides the expansion
coefficients of the eigenvectors over the replica basis: namely, Pkj is the component
of the j-th eigenvector in terms of the k-th replica. They thus replace the principal
matrix of the previous PCA procedure as a final output of the procedure, and can be
used in exactly the same way.

To set off the iterative procedure, we select one of the observables we wish to
reproduce from the list, σ1, and compute the correlation coefficient ρ (xi, Q, α, σ1) for
all grid points (xi, α) and for a suitable choice of scale Q. We then identify the subset
Ξ of grid points for which ρ exceeds some threshold value:

Ξ = {(xi, α) : ρ (xi, Qσ1 , α, σ1) ≥ tρmax} . (3.4.5)

The threshold value is expressed as a fraction 0 < t < 1 times the maximum value
ρmax that the correlation coefficient takes over the whole grid, thereby making the
criterion independent of the absolute scale of the correlation.

We then construct a reduced sampling matrix XΞ, defined as in Eq. (3.3.1), but
now only including points in the {xi, α} space which are in the subset Ξ. We perform
the SVD of the reduced matrix

XΞ = USV t , (3.4.6)
and we only keep the largest principal component, i.e. one single largest eigenvector,
which is specified by the coefficients of its expansion over the replica basis, namely,
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assuming that the singular values are ordered, by the first row of the V matrix. We
thus start filling our output principal matrix P by letting

Pkj = V
(j)

k1 , j = 1 , k = 1, . . . , Nrep . (3.4.7)

Note that j on the left-hand side labels the eigenvector (Pkj provides expansion co-
efficients for the j-the eigenvector) and on the right-hand side it labels the iteration
(V (j)

k1 is the first row of the V -matrix at the j-th iteration), which we can identify
because, as mentioned, at each iteration we will add an eigenvector. The remaining
eigenvectors of the principal matrix span the linear subspace orthogonal to P , and we
assign them to a residual matrix R:

R
(j)
km = V

(j)
k(m+1) j = 1 , m = 1, . . . , Nrep − 1 , k = 1, . . . , Nrep . (3.4.8)

At the first iteration, when there is only one eigenvector, the principal matrix P has
just one row, and it coincides with the principal component of V . So far, the procedure
is identical to that of the SVD+PCA method, and we can thus use again Eq.(3.3.12)
to compute uncertainties on observables, check whether the condition Eq. (3.4.2) is
met, and if it is not add more eigenvectors. The procedure works in such a way that
each time a new eigenvector is selected, exactly the same steps are repeated in the
subspace orthogonal to that of the previously selected eigenvectors, thereby ensuring
that information is never discarded. This is achieved by a projection method.

Specifically, we project the matrix X and the vector of observable differences
{dk(σi)} on the orthogonal subspace of P , namely, the space orthogonal to that
spanned by the eigenvectors which have already been selected (as many as the number
of previous iterations). The projections are performed by respectively replacing d(σi)
and X by

dR(σi) = d(σi)R(j−1) , (3.4.9)
XR = XR(j−1) , (3.4.10)

where the first iteration of the residual matrix R(1) has been defined in Eq. (3.4.8).
After the projection, we proceed as in the first iteration. We first determine again

the subset Ξ, Eq. (3.4.5), of the projected sampling matrix XR, thereby obtaining a
new sampling matrix XR

Ξ : this is possible because everything is expressed as a linear
combination of replicas anyway. Once the new matrix XR

Ξ has been constructed, the
procedure is restarted from Eq. (3.4.6), leading to a new matrix V R. The number of
columns of the projected matrix XR

Ξ (and therefore of V R) is Nrep−(j−1), which is the
dimension of the subspace of the linear combinations not yet selected by the algorithm
(that is, Nrep −1 for j = 2, and so on). We can now go back to Eq. (3.4.7) and proceed
as in the previous case, but with the projected matrices: we add another row to the
matrix of coefficients to the principal matrix by picking the largest eigenvector of the
projected matrix, and determining again the orthogonal subspace.

At the j-th iteration, this procedure gives

PR(j)
k = V R(j)

k1 , k = 1, . . . , Nrep − (j − 1) , (3.4.11)

RR(j)
km = V R(j)

k(m+1) , m = 1, . . . , Nrep − j , k = 1, . . . , Nrep − (j − 1) . (3.4.12)
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which respectively generalize Eqs. (3.4.7) and (3.4.8) for j ≥ 1. The projected row of
coefficients PR Eq. (3.4.11) can be used to determine the corresponding unprojected
row of coefficients of the principal matrix and of the residual matrix by using the
projection R matrix in reverse, i.e., at the j-th iteration

P
(j)
kh =

∑
k′

R
(j−1)
kk′ PR(j)

k′h , (3.4.13)

R
(j)
kh =

∑
k′

R
(j−1)
kk′ RR(j)

k′h . (3.4.14)

We thus end up with a principal matrix which has been filled with a further eigenvector,
and a new residual matrix and thus a new projection.

In summary, at each iteration we first project onto the residual subspace, Eq. (3.4.9),
then pick the largest eigenvector in the subspace, Eq. (3.4.11), then re-express results
in the starting space of replicas, Eq. (3.4.13), so P is always the first row of V in each
subspace, and Eqs. (3.3.13-3.3.12) remain valid as the P matrix is gradually filled. De-
termining the correlation and thus Ξ after projection ensures that only the correlations
with previously unselected linear combinations are kept. The fact that we are always
working in the orthogonal subspace implies that the agreement for the observables
σi which had already been included can only be improved and not deteriorated by
subsequent iterations. It follows that we can always just check the tolerance condition
on one observable at a time. The procedure is thus unchanged regardless of whether
we are adding a new observable or not. In any case, the subset Ξ Eq. (3.4.5) is always
determined by only one observable, namely, the one that failed to satisfy the tolerance
condition at the previous iteration. The procedure is iterated until the condition is
satisfied for all observables {σi} in the input list. The number of iterations j until
convergence defines the final number of eigenvectors Neig.

The output of the algorithm is the final Nrep ×Neig principal matrix P , which can
be used to compute uncertainties on observables using Eqs. (3.3.12-3.3.13). However,
for the final delivery we wish to obtain a set of Hessian eigenvectors. These can
be obtained by performing the linear transformation given by P (a rotation and a
projection) in the space of PDFs. The X matrix Eq. (3.3.1) then becomes

X̃ ≡

√
1

Nrep − 1
XP , (3.4.15)

so, substituting in Eq. (3.3.1), the final Neig eigenvectors are found to be given by

f̃ (k)
α (xi, Q) = f (0)

α (xi, Q) + X̃lk(Q) , k = 1, . . . , Neig . (3.4.16)

This is the same result as with the SVD+PCA algorithm of Sect. 3.3, but now generally
with a smaller number of eigenvectors, namely, those which are necessary to describe
the subset of the covariance matrix which is correlated to the input set of observables.



Chapter 4

The PDF4LHC recommendation

4.1 Introduction

There exist several collaborations that produce PDF sets [65, 64, 73, 74, 75, 12] which
are advertised as adequate "For High precision collider data", or "for the LHC era".
These sets can however lead to significatively different predictions (and importantly,
also different sizes of the corresponding PDF uncertainties), and therefore leave non-
expert users confused as to how to interpret the results. This is particularly relevant in
the context of precise experimental analyses at the LHC [48, 68]: The level of precision
achievable by the experiments is such that differences in the PDFs may well be the
main reason of potential disagreements between theory and data. Also in this context,
it is particularly convenient to have an agreed upon prescription that different analysis
groups can use to compare their results.

The PDF4LHC working group has the task to elucidate the differences between the
PDF sets used at the LHC, and to provide a protocol for both experimentalists and
theorists to calculate PDF dependent quantities, with the necessarily corresponding
estimate of their PDF uncertainty. This is then translated into recommendations [76, 4]
for the broader community, with guidelines on how to compute PDF+αs uncertainties.
While alternative sets of recommendations exist (e.g. [77]), the PDF4LHC guidelines
are mostly employed by the community (as measured by citation count or by e.g.
their adoption by the Higgs Cross Section Working Group [78, 16]). The PDF4LHC
recommendations specify that PDF dependent quantities should be estimated taking
into account the results from different PDF fits.

Th evolution of the PDF4LHC guidelines reflects the progress in the field. In
2010 [76], at the time of the first recommendation, PDFs did not incorporate LHC
data, the importance of the parametrization uncertainties wasn’t sufficiently recog-
nized and the GM-VFNS schemes (see Sec. 2.7) were only in the process of being
implemented. The difference among PDF sets was much bigger than the PDF uncer-
tainties they quoted, and the origin of the disagreements was unclear [79, 80]. These
facts required that the recommendation for estimating PDF uncertainties was conser-
vative and largely independent of the PDF uncertainties provided by each group since
they were too small to account for the poorly understood differences.

By 2015, the situation was much improved. The updated versions of the PDF sets
entering the previous recommendation agreed within their respective uncertainties,

33
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and provided predictions for LHC observables that were broadly in agreement. This
suggested that now the uncertainties from each group could be assumed to have a
proper statistical meaning and that the recommendation should take them into account
in a statistically sound way. Consequently, the need for an updated recommendation
was identified [81].

Naturally, an essential task of the recommendation is to define a set of requirements
for PDF sets to be part of it. These criteria are presented in Sec. 4.2. In Sec. 4.3 we
present the combination method that was adopted in the 2015 recommendation and
compare some of its features with the older 2010 prescription. Next, in Sec. 4.4 we
present the methods that were used to obtain the final PDF sets together with detailed
benchmarks.

4.2 Criteria for sets entering the combination

The guidelines in the PDF4LHC recommendation are based on the most up to date un-
derstanding on the subject of PDF determination. The 2015 recommendation steams
from the combined result of the progress made by individual groups and common
benchmark studies, particularly Refs. [82, 79, 80, 83] and references therein. The first
task of the recommendation is to identify a set of criteria that specify which PDF sets
are suitable to be included. These criteria are:

Based on global dataset It has been recognized [64, 75, 12] that including includ-
ing diverse types of processes from both fixed target and collider experiments
contributes to reduce the experimental uncertainties by providing more stringent
constraints on the PDFs. This increases the requirements on the PDF fitting
methodologies themselves: A successful PDF determination should be able to
accommodate all available experimental data within its experimental and the-
oretical uncertainties, as well as to detect problems in the experimental and
theoretical inputs (see e.g. the approach taken by NNPDF in Sec. 5.4). While
a generalized procedure to treat theoretical uncertainties in PDF fits does not
exist currently, one can reasonably expect that different physical process that
constraint the similar partonic channels can provide increased robustness against
missing higher order corrections. For example top quark pair production, jet pro-
duction, and the Z transverse momentum distribution all constrain the gluon
PDF at medium x. Since there is no reason to think that the higher order
corrections of these processes are correlated, including them all is likely partly
average out the undue pull that the missing higher order of each process has in
the PDFs. Similarly including data from different experiments allows to assess
possible underestimated experimental uncertainty by comparing the constraints
provided by them all (i.e. we would find poor agreement between the dataset
with underestimated uncertainties and the rest of the data).

NNLO theory with a GM-VFNS All the process included modern PDF analyses
can be computed at two loops in αs: It is possible to include NNLO corrections
at the level of total cross sections and for exclusive distributions for Deep In-
elastic Scattering [84, 85, 86], Drell Yan[87, 88, 89], and recently top quark pair
production [90, 91], Z transverse distribution[92, 93, 94, 95] and dijet produc-
tion [96].
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Furthermore it has been established that the effect of the masses of the heavy
quarks needs to be taken into account properly, thought the use of the General-
Mass Variable Flavour Number Schemes (GM-VFNS). Indeed, in the detailed
benchmarks leading to the 2015 recommendations, it was found that using a
3-flavour fixed flavour number scheme, with otherwise the same methodology
as the one used in MSTW [97] and NNPDF [98], leads to a markedly worse
agreement with the data on average, and a significantly lower preferred value
of αs. Ref. [99] concludes that some of the most significant differences between
PDF sets are due to the choice of flavour scheme, specifically in the choice of a
GM-VFNS versus a FFNS, with the first favoured on theoretical grounds: For
example, the PDF evolution in a 3-flavour FFNS, where the charm quark is not
generated perturbatively, yields logarithmic terms of the form (αs log(Q2/m2

c))n)
that are neglected. GM-VFNS have also been found to be advantageous by direct
comparison of the fit quality to experimental data. On the other hand, the
differences between the specific GM-VFNS have been shown to be subdominant:
The variations are both formally higher order and numerically small compared to
the experimental uncertainties; the differences between GM-VFNS were studied
in detail in Chapter 22 of Ref. [82].

Usage of the world average of αs

(
M2

Z

)
The uncertainty on αs

(
M2

Z

)
has a strong

impact both on the determination of PDFs and the prediction on PDF-dependent
quantities [100, 101, 102]. While it is possible to determine αs from the best fit
PDF (see Chapter 6), it is considered advantageous to deliver default results at a
commonly agreed value that is consistent with the PDG World Average [23]. Two
main reasons motivate this requirement. Firstly, PDF based determinations of αs

miss independent constrains coming from Lattice QCD, τ decays or electroweak
global fits, that are included in the PDG average (in Chapter. 6 we show that the
determination based on top quark pair production included in the World Average
is in fact not an independent constraint). The second reason is that in practice a
common value of αs is simpler for practical uses, particularly for the preparation
of combined PDF sets. In fact, it was chosen to use the same central value of
αs at NLO and NNLO, namely αs

(
M2

Z

)
= 0.118, which is consistent with the

PDG average (based on determinations at, at least, NNLO accuracy). While a
selecting different value at NLO could lead to an overall better agreement to the
data with NLO PDFs, the differences in NLO predictions are due to finite higher
order (that is NNLO) terms in αs, and therefore consistent with NLO theory.

Similarly to αs, the rest of the Standard Model parameters entering the PDF fit
should be consistent with the PDG values.

Self validation methods The PDF methodologies entering the combination should
be based on methodologies that contain an assessment of the uncertainties in-
duced not only by the experimental data entering the fit but also due to the
fitting procedure (particularly due to the choice of parametrization). NNPDF
implements this requirement by tuning the methodology to closure tests that
ensure that the uncertainties are consistent (See Sec. 5.1.9). CTEQ and MMHT
implement dynamic tolerances [64, 75] (see Sec. 3.2.2).
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At the time of producing the recommendation, CT14, MMHT20014 and NNPDF3.0,
were the sets identified as satisfying the above requirements.

4.3 The PDF4LHC combination

The improvements in PDF determination we just summarized in Sec 4.1 call for a more
statistically meaningful prescription for combining the results from multiple PDF than
that adopted in 2011 (taking the envelope of the uncertainty bands). This is easily
achievable when PDFs are in the Monte Carlo representation [48, 67, 68, 69]: One can
simply concatenate together sets of Monte Carlo replicas from different groups. The
meaning of such combined sets is that, when computing Monte Carlo errors following
Sec 3.2.1 one has a given probability to sample a replica from any of the groups and
therefore the uncertainties take into account both the individual estimate of PDF
errors and the dispersion between different determinations. Note than in the case
where all the individual PDF set agree perfectly both in terms of central values and
uncertainties, the combined set is statistically equivalent to each of the combined sets
rather than one with reduced uncertainties. This is the correct behaviour considering
all the PDFs entering the combination use a similar input dataset. The Hessian PDF
sets entering the combination, CT14, MMHT20014, can be converted to Monte Carlo
following the method in Ref [67]. It was found that taking 300 replicas from each of
the three PDF sets is stable upon statistical fluctuations. In this way we arrive at a
900 replica prior set.

We compare the application of the 2011 and 2015 prescriptions to Higgs production
in gluon fusion, in Fig. 4.1. The agreement between the newer PDF sets improves
significantly with respect to the old ones (in this particular case mainly due to the
improvements in the NNPDF methodology driven by the closure test validation). The
statistical combination also presents somewhat smaller uncertainties compared to the
envelope procedure.

In Fig 4.2 we have verified the agreement at the PDF level. We find that the
dispersion between the individual PDFs entering the combination is comparable to
each of the individual PDF uncertainties, and thus generally compatible with statistical
fluctuations. Additional variations can be attributed to the differences in experimental
inputs, fitting methodology, and theory settings.

4.4 The final PDF4LHC deliverables

4.4.1 The PDF4LHC PDF sets

The PDF4LHC prior set uses 900 replicas, which is too many to be practical in most
applications. Additionally, as discussed in Chapter 3, the Hessian error representations
are preferable for many contexts. Therefore it was found that providing more compact
PDF sets was a necessity. Three methods were proposed to achieve a more practical
representation:

Meta PDFs [69] It is a Monte Carlo to Hessian transformation which consist on first
fitting the Monte Carlo replicas to a given functional form and then applying the
standard Hessian procedure, described in Sec. 3.2.2 to obtain the uncertainties.
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Figure 4.1: Comparison of the PDF uncertainties in the Higgs production in gluon
fusion employing the 2011 PDF4LHC prescription based on envelopes (left) and the
2015 based on a combined dataset. The three PDF predictions for MMHT14, CT14
and NNPDF3.0 enter the 2015 prescription, and the older 2011 prescription was based
on MSTW08, CT10, and NNPDF2.3. The central values and uncertainties using the
combined PDF4LHC15 set, labeled as PDF4LHC15_prior, are displayed on the top
of the figure on the right. The figures have been taken from Ref. [103].

Compressed Monte Carlo (CMC) [70] It is a Monte Carlo compression tech-
nique that minimizes the number of replicas while preserving a number of sta-
tistical estimator in the original sample.

MCH [13] The Monte Carlo to Hessian transformation described in Sec 3.3.

The three methods are used to implement different PDF4LHC combined sets: The
PDF4LHC15_30 sets are based on Meta PDF, the PDF4LHC15_mc are based on
the compressed Monte Carlo approach and PDF4LHC15_100 is based on MCH. The
PDF4LHC15_100 and PDF4LHC15_mc contain 100 error members, while PDF4LHC15_30
contains 30.

The properties of these sets were thoroughly benchmarked during the prepara-
tion of the 2015 recommendation (a large number of comparison plots is archived in
Ref. [104]), and also subsequently in Ref [15].

4.4.2 Comparison of Hessian reductions

For the two Hessian transformations it is trivial to reproduce the central values of
the prior set. The only other relevant quantity in the Hessian approximation is the
covariance matrix in PDF space, Eq. 3.3.2. Since the MCH method directly optimizes
the agreement with the covariance matrix, it is expected that it will perform better
than Meta PDF in this regard. As shown in Fig 4.1 this is indeed the case. We
see that the correlation matrix (which is displayed instead of the covariance so that
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Figure 4.2: Comparison between newer (left) and older (right) versions of the PDF
set entering the PDF4LHC recommendation. The upper plots display the gluon PDF
and the lower the strange quark.

the total uncertainties are normalized away) is more closely reproduced in the MCH
method when the number of error members is large enough. When a small number of
eigenvectors is desired (around 30), the two methods perform similarly (MCH fails to
reproduce the regions at large x where the covariance matrix is numerically small while
the differences for Meta-PDF is somewhat more spread in all kinematical regions).

We now compare the performance of the three reduced sets at NLO for all the
hadronic cross sections included in the NNPDF3.0 analysis [8].

The predictions have been computed at
√
s = 7 TeV using NLO theory with

MCFM [105], NLOjet++ [106] and aMC@NLO [107, 108] interfaced to APPLgrid [57]. The
dataset we are considering contains Nσ ≃ 600 data points for electroweak gauge boson,
jet production and top quark pair production. We display the results on the (x,Q)
plane, associating leading order kinematics to each process (see Sec. 5.2.2). We assess
the compressed methods on the relative difference between the standard deviation,
s

(red)
i , of the cross-section σi computed with the reduced sets, and that of the prior,
s

(prior)
i :

∆i ≡

∣∣∣s(prior)
i − s

(red)
i

∣∣∣
s

(prior)
i

, i = 1, . . . , Nσ . (4.4.1)

Here s
(prior)
i have been compute employing all the 900 replicas of the prior (using

Eq. 3.2.2) while the s(red)
i have been computed with each of the reduced sets (using
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s̄ ū d̄ g d u s

s̄

ū
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ū

d̄

g

d

u

s

Correlations META30-META900 NNLO @ 8 GeV

0.20

0.16

0.12

0.08

0.04

0.00

0.04

0.08

0.12

0.16

0.20

Figure 4.1: Differences in the correlation matrix between the Hessian representations
of the PDF4LHC prior set and the prior itself. The MCH representation is on the left
and the META PDF on the right. We show the results for 100 eigenvectors (up) and
30 (down).

again Eq. 3.2.2 for PDF4LHC_nlo_mc and Eq. 3.2.16 for PDF4LHC_nlo_30 and
PDF4LHC_nlo_100).

We have presented the results in Fig. 4.2. We find that the PDF4LHC_nlo_mc
and PDF4LHC_nlo_100 reproduce the uncertainties to better than around 30% in all
the cases, while PDF4LHC_nlo_30 can cause deviations bigger than 50% for certain
outliers. This may warrant some caution when using these sets in a context where
PDF uncertainties are important.

The results we have obtained suggest that it may be interesting to test the perfor-
mance of the SM-PDF based sets (see Sec. 3.4) as general purpose reduced sets. While
they would, by construction, fail to reproduce observables they were not optimized for,
it may be the case that a sufficiently inclusive input data set (see Sec. 3.4.2) leads to a
similar performance as the Meta PDF sets, but with a more explicit control on which
observables should be expected to work (and obviously the possibility to alter the input
to suit a particular application while retaining the possibility to combine uncertainties
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Figure 4.2: Relative difference Eq. (4.4.1), between the PDF uncertainties computed
using the reduced set and the prior computed for all hadronic observables included
in the NNPDF3.0 fit, shown as a scatter plot in the (x,Q2) at the corresponding
point, determined using leading-order kinematics. From top to bottom results for
PDF4LHC_nlo_30, PDF4LHC_nlo_100 and PDF4LHC_nlo_mc are shown. In the
left, all the points are shown, while on the right, we display only the 10% of points
with maximal deviation.

later). We have constructed the so called SM-PDF-Ladder PDF set at NLO using the
theoretical predictions in Table. 4.1, calculated with the aMC@NLO code. We set the
tolerance parameter TR, Eq. 3.4.2 to 5% and obtain a set with 17 eigenvectors. These
are the same settings as in Sec 3.3 of Ref. [14]. In Fig. 4.3 we compare the ∆i ratio
Eq 4.4.1 for the NNPDF3.0 dataset, like we did for the PDF4LHC sets (in Fig. 4.2).
The results are almost equivalent to those for PDF4LHC_nlo_30, even though the
SM-PDF-Ladder sets has half the number of error sets. This shows that, even in its
most unspecialised form, the SM-PDF methodology can provide a competitive relation



4.4. THE FINAL PDF4LHC DELIVERABLES 41

process distribution Nbins range

gg → h
dσ/dph

t 10 [0,200] GeV
dσ/dyh 10 [-2.5,2.5]

VBF hjj
dσ/dph

t 5 [0,200] GeV
dσ/dyh 5 [-2.5,2.5]

hW
dσ/dph

t 10 [0,200] GeV
dσ/dyh 10 [-2.5,2.5]

hZ
dσ/dph

t 10 [0,200] GeV
dσ/dyh 10 [-2.5,2.5]

htt̄
dσ/dph

t 10 [0,200] GeV
dσ/dyh 10 [-2.5,2.5]

process distribution Nbins range

Z

dσ/dpl−
t 10 [0,200] GeV

dσ/dyl− 10 [-2.5,2.5]
dσ/dpl+

t 10 [0,200] GeV
dσ/dyl− 10 [-2.5,2.5]
dσ/dpZ

t 10 [0,200] GeV
dσ/dyZ 5 [-4,4]
dσ/dmll 10 [50,130] GeV
dσ/dpll

t 10 [0,200] GeV

process distribution Nbins range

tt̄

dσ/dpt̄
t 10 [40,400] GeV

dσ/dyt̄ 10 [-2.5,2.5]
dσ/dpt

t 10 [40,400] GeV
dσ/dyt 10 [-2.5,2.5]

dσ/dmtt̄ 10 [300,1000]
dσ/dptt̄

t 10 [20,200]
dσ/dytt̄ 12 [-3,3]

process distribution Nbins range

W

dσ/dϕ 10 [0,200] GeV
dσ/dEmiss

t 10 [-2.5,2.5]
dσ/dpl

t 10 [0,200] GeV
dσ/dyl 10 [-2.5,2.5]
dσ/dmt 10 [0,200] GeV
dσ/dpW

T 5 [-4,4]
dσ/yW 10 [50,130] GeV

Table 4.1: LHC processes and the corresponding differential distributions used as input
in the construction of the SM-PDF-Ladder set. In each case we indicate the range
spanned by each distribution and the number of bins Nbins. All processes have been
computed for

√
s = 13 TeV. Higgs bosons and top quarks are stable, while weak gauge

bosons are assumed to decay leptonically. No acceptance cuts are imposed with the
exception of the leptons from the gauge boson decay, for which we require pl

T ≥ 10
GeV and |ηl| ≤ 2.5.
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Figure 4.3: Same as Fig. 4.2 but testing the SM-PDF-Ladder PDFs.

between computational efficiency and accuracy in reproducing the uncertainties.

4.4.3 Gaussianity of the PDF4LHC predictions

While the CMC method is expected to perform worse than the Hessian based reduc-
tions when reproducing purely Gaussian properties, such as correlations and standard
deviations (when compared with a fixed number of error members), it may be advan-
tageous to employ the CMC compressed sets for observables where the distribution
of the predictions of the replicas of the prior PDF4LHC set is non Gaussian. Here
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we reproduce some of the results from Ref [15] that shed light on the situations when
using the PDF4LHC15_mc set is advantageous.

In order to quantify the degree of Gaussianity of the predictions, we first transform
the Monte Carlo sample (one value of the observable for each of the 900 replicas) into
a continuous probability distribution. We then compare that probability distribution
with a Gaussian with the same mean and standard deviation as the sample as well
as the distributions obtained for the MCH and CMC compressed sets. The first
step is accomplished using the Kernel Density Estimate (KDE) method. The second,
using the KullbackLeibler (KL) divergence as a measure of the difference between two
probability distributions (for a brief review of both methods see e.g. Ref. [109]).

The KDE method consists of constructing the probability distribution correspond-
ing to a sample as the average of kernel functions K centered at each point in the
sample. In our case, given k = 1, . . . , Nrep replicas of the i-th cross-section {σ(k)

i }, the
probability distribution is

P (σi) = 1
Nrep

Nrep∑
k=1

K
(
σi − σ

(k)
i

)
, i = 1, . . . , Nσ . (4.4.2)

We specifically choose

K(σ − σi) ≡ 1
h

√
2π

exp
(

− (σ − σi)2

h

)
, (4.4.3)

where the parameter h, known as bandwidth, is set to

h = ŝi

(
4

3Nrep

) 1
5

, (4.4.4)

where ŝi is the standard deviation of the given sample of replicas. This choice is
known as Silverman rule, and, if the underlying probability distribution is Gaussian,
it minimizes the integral of the square difference between the ensuing distribution and
this underlying Gaussian [110].

The KullbackLeibler divergence measures the information loss when using a prob-
ability distribution Q(x) to approximate a prior P (x), and is given by

D
(i)
KL(P |Q) =

∫ +∞

−∞

(
P (x) · logP (x)

logQ(x)

)
dx. , (4.4.5)

We have studied the Gaussianity of the observables listed in Table 4.1. We have
proceeded as follows: For each cross section we have obtained a KDE representation
of the prior distribution (i.e. the predictions for the 900 replicas in the prior) and
we have compared (by computing the KL divergence Eq. 4.4.5) them to the KDE
estimate of the distribution of predictions obtained with the PDF4LHC15_mc set,
the Gaussian distribution obtained directly PDF4LHC15_100 (see Sec. 3.2.2) and a
Gaussian that has the same mean and standard deviation as the prior sample. We
present the results for all the cross sections in Fig. 4.4. We see that the MCH method
reproduces the prior distribution essentially as well as possible within a Gaussian ap-
proximation, since the values of the KL divergence between PDF4LHC15_100 and
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Figure 4.4: The KL divergence, Eq. (4.4.5) between the prior and each of its two reduced
representations PDF4LHC15_nlo_prior (Monte Carlo) and PDF4LHC15_nlo_mc (Hessian)
vs. the divergence between the prior and its Gaussian approximation, computed for all
observables listed in Table 4.1.

the prior and practically equal to those of the Gaussian approximation of the predic-
tion. In Ref. [15] we provided an intuitive way to understand the absolute values of
the KL divergences and found them to correspond to generally good agreement with
the Gaussian approximation (corresponding to reproducing the PDF uncertainties to
about 20%). We find that the performance of the CMC compression (vertical axis
of Fig. 4.4) is largely uncorrelated with the degree of Gaussianity (horizontal axis),
and indeed using the CMC compression proves advantageous for some observables (for
which we have DKL(Prior|PDF4LHC_nlo_mc) < DKL(Prior|Gaussian)).

In order to find out which observables are better described using the CMC com-
pression, we break down the results in Fig. 4.4 by process. Figure 4.5 that the Monte
Carlo compressing is advantageous for a significant fraction of the W and Z production
data, but not for top and Higgs production. This is consistent with the expectation
that non-Gaussian behaviour is mostly to be found in large x PDFs, which are probed
by gauge boson production at high rapidity, but not by Higgs and top production
which are mostly sensitive to the gluon PDF at medium and small x.
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Figure 4.5: Same as Fig. 4.4, now separating the contributions of the different classes of
processes of Table 4.1: Higgs production (top left), top quark pair production (top right), W
production (bottom left) and Z production (bottom right).



Chapter 5

NNPDF 3.1

NNPDF3.1 [8] is the latest global set of the NNPDF collaboration. Two main devel-
opments motivate its release. Firstly the inclusion of new collider data that provides
important constraints on the PDFs (see Sec. 5.2.2) thereby increasing the precision of
the PDF determination. Secondly, a formalism to fit the charm PDF in the same way
as the light quark PDFs within the FONLL scheme, was developed in Refs [111, 47]
and implemented in a PDF fit for the first time in Ref [11]. Allowing the charm
to be freely parametrized leads to improvements in the fit quality and stabilizes the
dependence of the PDFs on the charm mass (see Sec. 5.3.2).

NNPDF3.1 uses the same fitting algorithm as NNPDF3.0, which is briefly described
in Sec. 5.1. The adequacy of the methodology was established by means of closure
test, described in Sec. 5.1.9. The main features of the resulting PDFs are described
in Sec. 5.3. The main challenge in the development of NNPDF3.1 was the increased
precision targets driven by the new high precision collider data and the corresponding
state of art theory predictions at NNLO. Two remarkable examples of the issues that
appeared are presented in Sec. 5.4. The necessity to challenge every aspect of the
methodology and the input experimental and theoretical predictions demanded the
development of a new brand of analysis tools, described in Sec. 5.5 that extend and
complement the existing fitting code, described in Ref. [112], and explore concepts
in Computer Science such as Functional Programming, Contract Programming and
compiler technology.

NNPDF3.1 takes advantage of the tools presented in Chap 3 to provide compressed
sets with higher statistics. Specifically, the default sets are compressed Monte Carlo
and Hessian sets of 100 error members obtained from fits with 1000 replicas.

5.1 The NNPDF fitting methodology

The NNPDF fitting methodology for NNPDF3.0 is described in detail Ref.[8]. The
fitting algorithm is essentially unchanged in NNPDF3.1. Here we only briefly refer to
some aspects of the methodology that are more relevant for this work.

45
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5.1.1 PDF parametrization
As we discussed in Sec.2.6, it is enough to parametrize the PDFs at a fixed scale,
since they can be related to any other via DGLAP evolution. In NNPDF3.1, we
selected Q = 1.65GeV so that the PDFs run always above the charm mass when it is
independently parametrized.

Compared to NNPDF3.0, the change is that the charm PDF is added to the basis
of independently parametrized flavour combinations. The fitted basis is, in terms of
quarks and gluons,

g , (5.1.1)

Σ =
∑
u,d,s

qi + qi , (5.1.2)

T3 = u+ − d+ , (5.1.3)
T8 = u+ + d+ − 2s+ , (5.1.4)

V =
∑
u,d,s

qi − qi , (5.1.5)

V3 = u− − d− , (5.1.6)
V8 = u− + d− − 2s− , (5.1.7)
c . (5.1.8)

Since each PDF combination is characterized by in a very flexible functional form,
the choice of basis has little effect on the resulting PDFs, but however can accelerate
the convergence of the procure in practice, as was explicit shown in Ref. [8].

Each of the combinations is parametrized in terms of a neural network times a
preprocessing term:

fi(x) = Aix
−αi(1 − x)βiNNi(x) (5.1.9)

Ai is a normalization term that is used to fix the value of the sum rules: Four of
these values are fixed at each iteration of the fit as follows:

Ag =
1 −

∫ 1
0 dxxΣ(x)∫ 1

0 dxxĝ(x)
, (5.1.10)

AV = 3∫ 1
0 dxV̂ (x)

, (5.1.11)

AV3 = 1∫ 1
0 V̂3(x)

, (5.1.12)

AV8 = 1∫ 1
0 V̂8(x)

, (5.1.13)

where the notation f̂(x) stands for the unnormalized PDFs. The rest of the normal-
ization constants are set to 1. The preprocessing factor x−αi(1 − x)βi represents the
dominant behaviour of the PDF.
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The preprocessing exponents αi and βi are determined following an iterative pro-
cedure where the exponents of a new fit are set from the preferred exponents of a
previous one. Specifically, we choose points at sufficiently low x for α (at 10−6 to
10−3, except for the gluon and singlet where we only use 10−6) and sufficiently high
x for β (at 0.6 to 0.95) and compute

αeff,i(x) = − log fi(x)
log x

(5.1.14)

βeff,i(x) = log fi(x)
log(1 − x)

(5.1.15)

We use these values to set the αi and βi parameters from Eq. 5.1.9 for the next
iteration: specifically we draw the values from an uniform distribution centered at
the mean of αi,eff and βi,eff over the set of replicas of the previous fit and spanning
twice the standard deviation in each direction. We impose limits that guarantee the
finiteness of the momentum fraction when the neural network part is constant (that is
αi>2). The resulting values are used to fix the preprocessing exponents of each replica
for the next iteration of the fit. The procedure is repeated until the distributions
of the preprocessing exponents do not change significantly. Usually convergence is
attained after the first or the second iteration, depending on how big the changes in
the respective fits were. While it would be desirable to arrive at a procedure that
does not require iterating the preprocessing, currently it has a number of advantages:
The PDF behaviour at low and large x cannot be described by experimental data
and thus some extra knowledge is required to fix it. Additionally, the convergence of
the algorithm improves significantly when the dominant part of the PDF behaviour is
determined by preprocessing.

Let us briefly introduce some common nomenclature related to neural networks: A
neural network can be viewed as a directed graph where each node is either an input or
an activation node. The activation nodes have each associated an activation function
and the edges indicate that the result of one node is to be used as output for another,
as indicated by the direction of the edge. The input nodes represent the external
inputs (e.g. the data to be fitted). The output nodes characterize the value of the
network. Each node (labeled by I) is additionally associated to a threshold θI , and
each edge connecting the output of the node J to the input of the node I is associated
to a weight, wJI . Thresholds and weights constitute the parameters of the neural
network. The activation function of a given node, often takes a single parameter, a,
constructed by as the weighted sum of the inputs of the node,

aI =
inputs of I∑

J

wJIξJ + θI (5.1.16)

where ξJ is the value of the activation function gJ (aJ) for the node J ,

ξJ = gJ(aJ ) . (5.1.17)

A feed forward neural network restricts the graph to be acyclic. A multilayer percep-
tron restricts each node to belong to one element of an ordered list of layers. Then,
edges can only exists between consecutive layers. The first layer is the input layer and
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the last is the output layer. Any layer in between is called hidden layer. In terms of
the layer index l and the indexes of the node within the current (i) and previous (j)
layer, the value of the activation nodes is

ξ
(l)
i = g

inputs∑
j

w
(l)
ij ξ

(l−1)
j + θl

i

 . (5.1.18)

The index l runs over layers and the indexes i and j over the nodes of the l-th and (l−1)-
th layer respectively, starting from the first hidden layer. A multilayer perceptron
is fully connected when all possible edges given the aforementioned restrictions are
present.

The neural network we use is a feed forward, fully connected, multilayer perceptron.
The architecture, represented in Fig 5.1, is by default 2-5-3-1. The first layer contains

Figure 5.1: A representation of the default neural network used in the fit. The inputs
are x and log x. The two hidden layers have a logistic activation function, and the
final visible layer, a linear one.

2 input nodes which take x and log x respectively. The two hidden layers have a
logistic activation function:

g(a) = 1
1 + exp−a

, (5.1.19)

while the last (output) layer has a linear activation function, allowing the final result
of the neural network to acquire values outside (0, 1).

g(a) = a . (5.1.20)

The weights w(l)
ij and thresholds θl

i are the parameters to be determined by the
minimization algorithm.
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5.1.2 Experimental uncertainties
We now wish to construct the error function to be minimized when fitting PDFs. All
the experimental data used in NNPDF comes in the form of a central value for each
point, a statistical uncertainty (that is always uncorrelated) and a list of possibly
correlated systematic uncertainties. The systematic uncertainties can be additive or
multiplicative. Multiplicative systematic uncertainties are proportional to the value of
the observable, while additive ones do not depend on it. We can construct a covariance
matrix between two data point i and j as

covij = δijσ
uncorr
i σuncorr

j +
additive∑

s

σi,sσj, s+

(multiplicative∑
p

σi,pσj,p

)
TiTj . (5.1.21)

The uncorrelated uncertainties contain the statistical ones as well as other correlated
systematics. The multiplicative uncertainties are proportional to the value of the cor-
responding data, Ti. Since the experimental data are assumed to have a multigaussian
distribution, a natural candidate for error function is the χ2 statistic defined as

χ2 =
Ndata∑

ij

(Di − Ti)cov−1
ij (Dj − Tj) , (5.1.22)

where Ti are the theory predictions that are varied to attain the minimum. This how-
ever yields inconsistent results. It is well known [113] that the minimum of Eq.5.1.22
does not correspond to an unbiased estimator for the location of the underlying multi-
gaussian distribution of the data, and in practice the difference is large. The problem
can be eliminated using the t0 prescription [114] in the fit instead. The procedure
consists on making the normalization uncertainties depend on the result of a previous
fit, and keeping the covariance matrix fixed during the minimization. The result is
a covariance matrix identical to Eq. 5.1.21 with the exception that the normalization
systematics are not normalized by the current theoretical predictions (that change as
the fit progresses) but are fixed to the predictions of a previous fit. Replacing it in
Eq. 5.1.22 leads to an objective function that, after the convergence of the procedure,
yields unbiased best fit values, as illustrated in Ref. [114].

In the NNPDF fits, the t0 covariance is iterated at the same time as preprocessing,
and the convergence is similarly achieve after less than 3 iterations in most cases
(depending on how close the original t0 PDF we started from is to the current fit
configuration).

5.1.3 Positivity constraints
Positivity constraints are a further addition to the target error function. While PDFs
at leading order represent probability densities and are therefore positive definite,
this is not the case beyond LO [115]. This constitutes an important difficulty in
PDF fits: We must allow PDFs to go below zero while at the same time ensuring
the positivity of any observable cross section. The experimental data that is fitted
obviously provides some positivity constraints, but this however is not enough to
guarantee that all possible observables are positive definite, particularly those sensitive
to the high or low x regions such as high energy jets or heavy partners in New Physics
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searches. We therefore consider quantities that can be predicted by the theory and
must be positive, but for which we do not have experimental data. These include the
longitudinal structure functions FL(x,Q2) on a grid in x, the dimuon cross section
from Ref [116], and tagged deep-inelastic structure functions and Drell-Yan rapidity
distributions, defined by setting to zero the electric charge of all quarks but one [8].
Additionally we include the gluon fusion process for a Higgs-like observable with a
mass of 5GeV.

For each positivity observable we add a contribution to the error function that is
activated when the observable becomes negative:

∆pos = −λpos

Ndata∑
i

Θ(−Opos,i)Opos,i , (5.1.23)

where Θ is the indicator function. The value of λpos is determined as 0.25 times the
prediction with the PDF chosen as t0 (see Sec.5.1.2). We take the absolute value if
the prediction is negative.

The positivity predictions for the structure functions are computed using APFEL [39],
while the Higgs based constraints are obtained from aMCfast [117].

This strategy is rather expensive computationally for its effectiveness, since the
convolutions with the positivity observables account for around 25% of the time in
the fit and require a larger number of iterations of the minimization algorithm to each
convergence, with convergence worsening rather quickly as new positivity observables
are added which in turn limits the amount we can add. Yet the penalization terms in
Eq. 5.1.23 do not by themselves guarantee in practice that all the replicas will predict
a positive value for the observables that are included (or indeed any other observable
that an user might be interested in). Positivity is hard to guarantee within the NNPDF
framework when the PDF uncertainty of the observable is comparable in magnitude
with its value. From the user’s perspective, the most consistent way of treating the
results is manually setting to zero the PDF prediction for any replica that turns out
to be negative. Note that the fact that many replicas are negative means that the
observable is consistent with zero within uncertainties which is in fact an adequate
characterization.

Investigations on possible improvements of the positivity minimization strategy
(for example using a log-barrier method [118]) suggested that an improved treatment
of the positivity requires an upgrade of the current minimization strategy based on a
genetic algorithm, described next in Sec. 5.1.7. Such improved minimization strategies
are currently under investigation.

5.1.4 Cross validation
The NNPDF parametrization is chosen to be flexible enough to adapt to any reason-
able functional form for the PDF as extensively tested in Ref. [114]. This allows a
conceptually simpler and more rigorous treatment compared to approaches bases on
obtaining the parametrizations based on some physical consideration, since one can
allow the fit to find the best functional form without any prejudice. There is however
the risk that the fit becomes sensitive to noise in the experimental data as opposed
to genuine features of it. This effect is called overlearning. To address the problem
introducing as little bias as possible, NNPDF fits utilize a cross validation procedure.
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The idea is to split the experimental data in two sets roughly equal in size called
training and validation sets. The fit algorithm only optimizes the training set and it
never tests any of the validation data. However the best parametrization is selected
at the point where the unseen validation set has the smallest error function, thereby
ensuring that optimizing noise in the training set does not bias the final result of the
fit.

The current strategy is to perform the minimization for a fixed number of iterations
and look back at the parameter value where the validation error function was smallest.
This is in general not the latest iteration since at some point improving the training
score has a negative effect on the validation. In NNPDF3.1 the number of minimization
iterations (see Sec. 5.1.7 next) is 50000.

At the end of the fit, the training and validation scores of the error function are
very similar, as we would expect if the fit procedure is working properly. This is shown
in Fig. 5.2.
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Figure 5.2: Distribution of training and validation error function for the 1000 replica
NNPDF 3.1 NNLO default set. Each circle corresponds to one replica and the square
is the average value. The training and validation scores are comparable.

5.1.5 Pseudodata generation

One of the most salient features of the NNPDF methodology is the ability to prop-
agate the experimental uncertainties to the PDF fit making a minimal number of
assumptions: To perform a fit, we first sample Nrep realizations from the probability
distribution that we construct from the experimental inputs. We call these samples
pseudodata replicas. Each of the pseudodata replicas is then fitted to a set of functional
forms for each fitted combination as described in Sec 5.1.1. We call each of these sets
of functions a PDF replica, or simply replica. For each of the ND points entering the
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fit, the pseudodata replica samples are obtained as from

DI = D0
I +

ND∑
J

C
1
2
IJδJ , (5.1.24)

where DI is the data point indexed by I, D0
I is the corresponding experimentally

measured central value, C 1
2 is the transpose of the Cholesky decomposition of the

t0-covariance matrix C (see Sec.5.1.2) and δJ is a random number sampled from a
standard normal distribution. We have I = 1 . . . ND. For positive observables, DI is
restricted to be positive.

5.1.6 Target error function
We have now described all the elements of the target error function to be optimized:
Fitting a given PDF replica consists on performing the minimization of the error
function χ2 as a function of the set of parameters that characterize the PDF functional
form, {θ}, namely the thresholds and weights of the neural networks (see Sec.5.1.1):

χ2 [T [f({θ})] ,D] = 1
ND

∑
I,J

(TI [f({θ})] −DI)C−1
IJ (TJ [f({θ})] −DJ) + (positivity) ,

(5.1.25)
where TI [f ] is the theoretical prediction for the experimental point I using the PDF
replica f and DI is the fluctuated pseudodata experimental measurement (constructed
following Eq. 5.1.24). The positivity terms were described in Sec.5.1.3. The cross
validation procedure described in Sec. 5.1.4 is employed to avoid overfitting during
the minimization. Labeling it cv min, fitting a replica means performing the operation

χ2 min = cv min
{θ}

χ2 [T [f({θ})] ,D, ξ] , (5.1.26)

and retrieving the PDF replica from the parametrization that minimizes the error. We
have introduced a parameter ξ characterizing the random state of the algorithm (i.e.
it is the seed of the random number generator). It affects the results because of the
selection of the cross validation split, the finite efficiency of the genetic minimization
algorithm and the existence of equivalent local minima. That is, while the error
function Eq 5.1.25 does not depend on the random state, the minimum we find in
practice does.

5.1.7 Minimization algorithm
NNPDF3.1 uses the same nodal mutation genetic algorithm of NNPDF3.0. The al-
gorithm minimizes the target training error function Eq. 5.1.25 as a function of the
parameter of the neural network. First all the parameters are initialized by sampling
from a standard normal distribution.

Then Nmut mutants are generated by assigning each node of the neural network a
probability of being mutated. If a node is selected, its parameters (both weights and
thresholds) are changing following the formula

θ → θ + ηrδ

Nrite
ite

, (5.1.27)
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where η is a constant baseline size of the mutation, rδ is a random uniform number
between -1 and 1, different for each parameter, Nite is index of the current iteration. It
was found that setting η = 15 and the mutation probability for a node being selected
is 5%.

Once the mutants are generated, the goodness of fit on the training set is computed
for each of them. The best mutant with the best store is selected and is used as baseline
for the next iteration. The procedures is repeated for a fixed number of iterations.

As discussed in Sec.5.1.4, in the end, the parametrization with best overall valida-
tion score is selected from the set of best mutants obtained in each iteration.

5.1.8 Post selection of replicas
The genetic algorithm described in Sec. 5.1.7 does not always find a replica of accept-
able quality. We implement a set of post selection criteria that ensure that replicas
that failed to converge are discarded. These criteria are:

Error function We discard replicas for which the value of the total error function
is bigger that the mean one plus 4 standard deviations. These are unlikely to
correspond to pseudodata outliers in a 1000 replica fit, and instead are likely
to reflect a poorly converged minimization. Indeed assuming the error function
is distributed following a Gaussian distribution, the probability of seeing one or
more replicas that is more that 4 sigma away from the mean value in a 1000
replica fit is

P = 1 − (1 − 2CDF(4))1000 ≈ 0.06 , (5.1.28)

where with CDF we have indicated the cumulative density function of a standard
normal distribution,

CDF(x) = 1
2

(
1 + 2√

π

∫ x√
2

0
e−tdt

)
. (5.1.29)

We have computed one minus the probability of not seeing any outlier, which
implies that it is not outside the ±4σ band (the factor two accounts for the
symmetric range) 1000 times. Therefore the outliers are far more likely to be a
consequence of the bad performance of the fitting procedure than they are to be
a statistical fluctuation.

Arc-Length Similarly we discard replicas where the arc-length fluctuates more than
4 standard deviation w.r.t the mean value. In this way we discard replicas that
are too wiggly and unlikely to correspond to physical PDFs.

Positivity As we discussed in Sec. 5.1.3, our positivity setting strategy is not guaran-
teed to converge. We therefore discard replicas where any positivity bin is more
negative than minus its corresponding λpos from Eq. 5.1.23.

The post fit selection criteria discard between around 20 and 30% of the replicas in a
typical fit. Developing more reliable minimization strategies that hold these properties
automatically and do not require a separate post processing step is an ongoing project.
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5.1.9 Closure tests
Closure tests are a powerful tool to verify the correctness of a PDF fitting procedure.
The idea is based on assuming the complete knowledge of the PDFs and testing whether
the fitting procedure reproduced them. Specifically one creates fake experimental data
that is consistent with the assumed functional forms of the PDFs and then follows the
usual fitting procedure. The results of the fit are then compared to the functional form
that was assumed and consistency is assessed. We define 3 levels of closure testing:

Level 0 The predictions on the assumed functional form are fitted directly without
applying any extra fluctuation. The goal is to obtain the same functional form
with negligible uncertainty, in the region where data is abundant.

Level 1 Experimental fluctuations are added on top of the theory predictions, follow-
ing Eq. 5.1.24.

Level 2 Pseudodata replicas are sampled from the fluctuated data obtained in Level
1, thus reproducing the NNPDF fitting procedure described in Sec. 5.1.7. The
goal is to obtain a distribution in PDF space such that the initial functional
form is compatible everywhere within uncertainties.

Thus Level 0 tests the efficiency of the minimization algorithm, and Level 2 the con-
sistency of the complete procedure, and particularly of the size of PDF uncertainties.
The difference between the size of Level 2 and Level 1 uncertainties can give a rough
idea of the relative size of the functional and experimental uncertainties: The fits at
Level 1 always see the same data and the replicas differ only in the random seed used
to initialize the algorithm. As discussed in Sec. 5.1.7, this change the cross valida-
tion splitting and is thus a way of finding equivalent minima within the efficiency of
the fitting algorithm which is also included. Level 2 uncertainties also include the
propagation of experimental errors.

Ref.[114] produced multiple pieces of evidence that the NNPDF methodology is suc-
cessfully validated by closure tests when the starting distribution is MSTW2008 [119].
Here we only reproduce the most clear and direct evidence of the success of the pro-
cedure when it comes to reproduce the original data input, in Fig. 5.3: The χ2 of the
fluctuated data to the fitted result is comparable to the original χ2 it was sampled
from. Further evidence proved that the distances between input and fitted PDFs are
compatible with statistical fluctuations thereby proving the consistence of the method-
ology.

5.2 Experimental and theoretical input to NNPDF 3.1

5.2.1 Overview
NNPDF3.1 features a wealth of high precision experimental data from the LHC in-
cluded in a PDF determinations for the first time, including data corresponding to two
original process: top quark differential distributions and the Z transverse momentum
distribution.

We briefly review the complete dataset, referring the reader to Ref. [12] for more
details. For each dataset, we list in Tables 5.1, 5.2, and 5.3, the published reference,
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Figure 5.3: Comparison between the error function of the original input data to a
Level 2 closure two fit to the original PDF set it was sample from (MSTW2008) and
the corresponding NNPDF fit. The figure shows that the NNPDF methodology can
attain a result that is statistically equivalent to the true value, in the data region. The
figure is taken from Ref. [114].

the number of data points in the NLO/NNLO PDF determinations before and after
(in parenthesis) kinematic cuts, the kinematic range covered in the relevant variables
after cuts, and the code used to compute the NLO and NNLO results.

The kinamtic coverage of the NNPDF3.1 dataset in the (x,Q2) plane is shown in
Fig. 5.1 where leading order kinematics have been used for illustration purposes. The
central rapidity is used when rapidity is integrated over, and we set Q2 equal to the
factorization scale.

5.2.2 New data in NNPDF3.1
We now list the new data included in NNPDF 3.1.

We have included the datasets from experiments which have now finished and have
provided the final analysis of their results:

• The final HERA combined data [74] is now available and has been included in
NNPDF3.1 replacing previous partial analyses. The effect of this replacement
was studied in [168] and found to be small.

• We also include the H1 and ZEUS measurements of the bottoms structure func-
tion [129, 130].
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Experiment Obs. Ref. Ndat x range Q range (GeV) Theory

NMC
F d

2 /F p
2 [120] 260 (121/121) 0.012 ≤ x ≤ 0.68 2.1 ≤ Q ≤ 10

APFEL
σNC,p [121] 292 (204/204) 0.012 ≤ x ≤ 0.50 1.8 ≤ Q ≤ 7.9

SLAC
F p

2 [122] 211 (33/33) 0.14 ≤ x ≤ 0.55 1.9 ≤ Q ≤ 4.4
APFEL

F d
2 [122] 211 (34/34) 0.14 ≤ x ≤ 0.55 1.9 ≤ Q ≤ 4.4

BCDMS
F p

2 [123] 351 (333/333) 0.07 ≤ x ≤ 0.75 2.7 ≤ Q ≤ 15.1
APFEL

F d
2 [124] 254 (248/248) 0.07 ≤ x ≤ 0.75 3.0 ≤ Q ≤ 15.1

CHORUS
σCC,ν [125] 607 (416/416) 0.045 ≤ x ≤ 0.65 1.9 ≤ Q ≤ 9.8

APFEL
σCC,ν̄ [125] 607 (416/416) 0.045 ≤ x ≤ 0.65 1.9 ≤ Q ≤ 9.8

NuTeV
σcc

ν [126, 127] 45 (39/39) 0.02 ≤ x ≤ 0.33 2.0 ≤ Q ≤ 10.8
APFEL

σcc
ν̄ [126, 127] 45 (37/37) 0.02 ≤ x ≤ 0.21 1.9 ≤ Q ≤ 8.3

HERA
σp

NC,CC (*) [74] 1306 (1145/1145) 4 · 10−5 ≤ x ≤ 0.65 1.87 ≤ Q ≤ 223
APFELσc

NC [128] 52 (47/37) 7 · 10−5 ≤ x ≤ 0.05 2.2 ≤ Q ≤ 45
F b

2 (*) [129, 130] 29 (29/29) 2 · 10−4 ≤ x ≤ 0.5 2.2 ≤ Q ≤ 45

Table 5.1: Deep-inelastic scattering data included in NNPDF3.1. New datasets, not in-
cluded in NNPDF3.0, are denoted (*). The kinematic range covered in each variable is given
after cuts are applied. The total number of DIS data points after cuts is 3102/3092 for the
NLO/NNLO PDF determinations.

Exp. Obs. Ref. Ndat Kin1 Kin2 (GeV) Theory

E866
σd

DY/σp
DY [131] 15 (15/15) 0.07 ≤ yll ≤ 1.53 4.6 ≤ Mll ≤ 12.9 APFEL+Vrap

σp
DY [132, 133] 184 (89/89) 0 ≤ yll ≤ 1.36 4.5 ≤ Mll ≤ 8.5 APFEL+Vrap

E605 σp
DY [134] 119 (85/85) −0.2 ≤ yll ≤ 0.4 7.1 ≤ Mll ≤ 10.9 APFEL+Vrap

CDF
dσZ/dyZ [135] 29 (29/29) 0 ≤ yll ≤ 2.9 66 ≤ Mll ≤ 116 Sherpa+Vrap

kt incl jets [136] 76 (76/76) 0 ≤ yjet ≤ 1.9 58 ≤ pjet
T ≤ 613 NLOjet++

D0
dσZ/dyZ [137] 28 (28/28) 0 ≤ yll ≤ 2.8 66 ≤ Mll ≤ 116 Sherpa+Vrap

W electron asy (*) [138] 13 (13/8) 0 ≤ ye ≤ 2.9 Q = MW MCFM+FEWZ

W muon asy (*) [139] 10 (10/9) 0 ≤ yµ ≤ 1.9 Q = MW MCFM+FEWZ

Table 5.2: Same as Table 5.1 for the Tevatron fixed-target Drell-Yan and W , Z and jet
collider data. The total number of Tevatron data points after cuts is 345/339 for NLO/NNLO
fits.

• We have included the legacy W lepton asymmetries from D0 using the complete
Tevatron luminosity, both in the electron [138] and in the muon [139] channels.
These datasets provide important information on quark flavour separation [169],
which is currently the less well understood feature of PDFs in the data region.

We have also included some new dataset from the LHC experiments

• From the ATLAS experiment we include:

– The Z boson (pZ
T , yZ) and (pZ

T ,Mll) double differential distributions mea-
sured at 8 TeV [145].

– The inclusive W+, W− and Z rapidity distributions at 7 TeV from the 2011
dataset [141],

– The top-quark pair production normalized yt distribution at 8 TeV [151];
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Exp. Obs. Ref. Ndat Kin1 Kin2 (GeV) Theory

ATLAS

W, Z 2010 [140] 30 (30/30) 0 ≤ |ηl| ≤ 3.2 Q = MW , MZ MCFM+FEWZ

W, Z 2011 (*) [141] 34 (34/34) 0 ≤ |ηl| ≤ 2.3 Q = MW , MZ MCFM+FEWZ

high-mass DY 2011 [142] 11 (5/5) 0 ≤ |ηl| ≤ 2.1 116 ≤ Mll ≤ 1500 MCFM+FEWZ

low-mass DY 2011 (*) [143] 6 (4/6) 0 ≤ |ηl| ≤ 2.1 14 ≤ Mll ≤ 56 MCFM+FEWZ

[Z pT 7 TeV
(

pZ
T , yZ

)
] (*) [144] 64 (39/39) 0 ≤ |yZ | ≤ 2.5 30 ≤ pZ

T ≤ 300 MCFM+NNLO

Z pT 8 TeV
(

pZ
T , Mll

)
(*) [145] 64 (44/44) 12 ≤ Mll ≤ 150 GeV 30 ≤ pZ

T ≤ 900 MCFM+NNLO

Z pT 8 TeV
(

pZ
T , yZ

)
(*) [145] 120 (48/48) 0.0 ≤ |yZ | ≤ 2.4 30 ≤ pZ

T ≤ 150 MCFM+NNLO

7 TeV jets 2010 [146] 90 (90/90) 0 ≤ |yjet| ≤ 4.4 25 ≤ pjet
T

≤ 1350 NLOjet++

2.76 TeV jets [147] 59 (59/59) 0 ≤ |yjet| ≤ 4.4 20 ≤ pjet
T

≤ 200 NLOjet++

7 TeV jets 2011 (*) [148] 140 (31/31) 0 ≤ |yjet| ≤ 0.5 108 ≤ pjet
T

≤ 1760 NLOjet++

σtot(tt̄) [149, 150] 3 (3/3) - Q = mt top++

(1/σtt̄)dσ(tt̄)/yt (*) [151] 10 (10/10) 0 < |yt| < 2.5 Q = mt Sherpa+NNLO

CMS

W electron asy [152] 11 (11/11) 0 ≤ |ηe| ≤ 2.4 Q = MW MCFM+FEWZ

W muon asy [153] 11 (11/11) 0 ≤ |ηµ| ≤ 2.4 Q = MW MCFM+FEWZ

W + c total [154] 5 (5/0) 0 ≤ |ηl| ≤ 2.1 Q = MW MCFM

W + c ratio [154] 5 (5/0) 0 ≤ |ηl| ≤ 2.1 Q = MW MCFM

2D DY 2011 7 TeV [155] 124 (88/110) 0 ≤ |ηll| ≤ 2.2 20 ≤ Mll ≤ 200 MCFM+FEWZ

[2D DY 2012 8 TeV] [156] 124 (108/108) 0 ≤ |ηll| ≤ 2.4 20 ≤ Mll ≤ 1200 MCFM+FEWZ

W ± rap 8 TeV (*) [157] 22 (22/22) 0 ≤ |ηl| ≤ 2.3 Q = MW MCFM+FEWZ

Z pT 8 TeV (*) [158] 50 (28/28) 0.0 ≤ |yZ | ≤ 1.6 30 ≤ pZ
T ≤ 170 MCFM+NNLO

7 TeV jets 2011 [159] 133 (133/133) 0 ≤ |yjet| ≤ 2.5 114 ≤ pjet
T

≤ 2116 NLOjet++

2.76 TeV jets (*) [160] 81 (81/81) 0 ≤ |yjet| ≤ 2.8 80 ≤ pjet
T

≤ 570 NLOjet++

σtot(tt̄) [161, 162] 3 (3/3) - Q = mt top++

(1/σtt̄)dσ(tt̄)/ytt̄ (*) [163] 10 (10/10) −2.1 < ytt̄ < 2.1 Q = mt Sherpa+NNLO

LHCb

Z rapidity 940 pb [164] 9 (9/9) 2.0 ≤ ηl ≤ 4.5 Q = MZ MCFM+FEWZ

Z → ee rapidity 2 fb [165] 17 (17/17) 2.0 ≤ ηl ≤ 4.5 Q = MZ MCFM+FEWZ

W, Z → µ 7 TeV (*) [166] 33 (33/29) 2.0 ≤ ηl ≤ 4.5 Q = MW , MZ MCFM+FEWZ

W, Z → µ 8 TeV (*) [167] 34 (34/30) 2.0 ≤ ηl ≤ 4.5 Q = MW , MZ MCFM+FEWZ

Table 5.3: Same as Table 5.1, for ATLAS, CMS and LHCb data from the LHC Run I at√
s = 2.76 TeV,

√
s = 7 TeV and

√
s = 8 TeV. The ATLAS 7 TeV Z pT and CMS 2D DY 2012

are in brackets because they are only included in a dedicated study but not in the default
PDF set. The total number of LHC data points after cuts is 848/854 for NLO/NNLO fits
(not including ATLAS 7 TeV Z pT and CMS 2D DY 2012).

– The total cross-sections for top quark pair production at 7, 8 and 13 TeV [149,
150]. The top cross section is the only data we include at 13 TeV; we reserve
the total W and Z cross sections [170] for benchmarks (some of which are
shown in Sec. 5.3.4).

– The inclusive jet cross-sections at 7 TeV from the 2011 dataset [148];
– The Low mass Drell-Yan Mll distributions at 7 TeV from the 2010 run [143].

• From CMS we have added:

– The W+ and W− rapidity distributions at 8 TeV [157]
– The inclusive jet production cross-sections at 2.76 TeV [160];
– Top-quark pair production normalized ytt̄ distributions at 8 TeV [163]
– Total inclusive tt̄ cross-sections at 7, 8 and 13 TeV [161];
– The distribution of the Z boson double differentially in (pT , yZ) at 8 TeV [158].

• Finally, we include the complete LHCb 7 and 8 TeV measurements of the W and
Z inclusive production in the muon channel [166, 167].
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Figure 5.1: Kinematic reach of the NNPDF 3.1 data
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5.3 Main characteristics of NNPDF 3.1

We present here a small selection of the results shown in Ref. [12] and the accompa-
nying online gallery [171]; for example, while here we only plot some selected PDF
flavours, all of the fitted PDFs for the corresponding comparison can be found in the
gallery.

5.3.1 Impact of new data

The change that adding each individual dataset listed in Sec. 5.2.2 causes in the PDFs
is relatively small and comparable with statistical fluctuations. To illustrate this, we
compare in Fig 5.1 the baseline gluon PDF from the default NNPDF3.1 global fit to
fits where the ZpT and the top data have been excluded (note that both of these
processes couple to the gluon PDF at leading order). The uncertainties are similarly
increased only slightly, by a few per-mill of the value of the PDF. However the addition
of new data taken as a whole results in a change in the central value of around 1σ
and a reduction in PDF uncertainties by up to 30%. We show this in Fig. 5.2. This
result is satisfactory in that it shows that the new data contributes to constrain the
PDFs, but in a way that is consistent with the quoted PDF uncertainties for a given
experimental input, thereby supporting the overall consistency of the methodology.
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Figure 5.1: Comparison of the gluon PDF (up) and the gluon PDF uncertainty (down)
of the default NNPDF 3.1 global fit at NNLO with a fit that does not contain any top
data (left) and Z pT data (right).
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Figure 5.2: Comparison of the default NNPDF3.1 default fit at NNLO with a fit
containing a similar dataset to NNPDF3.0, for the gluon (left) and d (right) .

5.3.2 Impact of fitted charm
Fitting the charm PDF independently, in an equivalent way to the strange and light
quark distributions proves to be advantageous when determining PDFs, particularly at
NNLO accuracy. For example the fit quality of the combined HERA data deteriorates
notably at NNLO compared to the fits at NLO, when the charm is generated only
perturbatively. Instead the difference in fit quality is significatively smaller when the
charm is fitted. The underlying reason is that the constraints on the total quark con-
tent from HERA only become compatible with the constrains on strangeness from the
ATLAS W,Z 2011 rapidity distributions with the extra degrees of freedom provided
by the parametrized charm PDF, as shown in Table 5.1.

ATLAS W,Z 7 TeV 2011 Hera Combined
NLO fitted charm 3.70 1.14
NLO perturbative charm 4.29 1.15
NNLO fitted charm 2.15 1.16
NNLO perturbative charm 2.75 1.21

Table 5.1: χ2 per degree of freedom for the ATLAS W,Z rapidity distributions for fits
at NLO, NNLO with fitted or perturbative charm



5.3. MAIN CHARACTERISTICS OF NNPDF 3.1 61

10 5 10 4 10 3 10 2 10 1 100

x

0.7

0.8

0.9

1.0

1.1

1.2

Ra
tio

 to
 m

po
le

c
=

1.
51

Ge
V 

(fi
tte

d)
c at 100.0 GeV

mpole
c = 1.51GeV (fitted) (68% c.l.+1 )

mpole
c = 1.38GeV (fitted) (68% c.l.+1 )

mpole
c = 1.64GeV (fitted) (68% c.l.+1 )

10 5 10 4 10 3 10 2 10 1 100

x

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

Ra
tio

 to
 m

po
le

c
=

1.
51

Ge
V 

(p
er

t)

c at 100.0 GeV
mpole

c = 1.51GeV (pert) (68% c.l.+1 )
mpole

c = 1.38GeV (pert.) (68% c.l.+1 )
mpole

c = 1.64GeV (pert.) (68% c.l.+1 )

10 5 10 4 10 3 10 2 10 1 100

x

0.98

0.99

1.00

1.01

1.02

1.03

Ra
tio

 to
 m

po
le

c
=

1.
51

Ge
V 

(fi
tte

d)

d at 100.0 GeV
mpole

c = 1.51GeV (fitted) (68% c.l.+1 )
mpole

c = 1.38GeV (fitted) (68% c.l.+1 )
mpole

c = 1.64GeV (fitted) (68% c.l.+1 )

10 5 10 4 10 3 10 2 10 1 100

x

0.97

0.98

0.99

1.00

1.01

1.02

1.03

Ra
tio

 to
 m

po
le

c
=

1.
51

Ge
V 

(p
er

t)

d at 100.0 GeV
mpole

c = 1.51GeV (pert) (68% c.l.+1 )
mpole

c = 1.38GeV (pert.) (68% c.l.+1 )
mpole

c = 1.64GeV (pert.) (68% c.l.+1 )

Figure 5.3: Charm (up) and d PDFs fitted with several different values of the charm
mass, with a fitted (left) and a purely perturbatively generated (right) charm PDF,
at Q = 100 GeV

A PDF fit where the charm PDF is purely perturbative is affected by significative
uncertainties related to the value of the charm mass. As discussed in Ref. [11], this
is mainly due to the position of the perturbative threshold for charm production
in the DGLAP evolution (see Sec. 2.7 and references therein): A lower threshold
(associated with a lower charm pole mass) can be related to an increase in the charm
momentum fraction (which is completely correlated to that of the gluon since no
indented parametrization of the charm exists when it is generated perturbatively) at
any scale above the threshold, since the range of scales in which charm is produced
increases. Therefore the differences is propagated at higher scales and affects high
energy cross sections (see the detailed discussion in Ref. [11]).

As we show in Fig. 5.3, the charm mass dependence is much reduced when the
charm PDF is fitted: The charm PDF is fundamentally determined by the data (rather
than the DGLAP evolution) since extra degree of freedom exist to compensate thresh-
old effects, which are arranged by the PDF fit in such a way that the agreement with
the data is optimized; and a change in the charm production threshold only effects a
small fluctuation in the charm PDF at the initial scale to accommodate it. Notably,
the light quark PDFs are also more stable upon a variation in the charm mass.
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5.3.3 Improved uncertainties compared to NNPDF 3.0

To demonstrate the improvement in uncertainties with respect to NNPDF3.0, we plot
in Fig. 5.5 the PDF uncertainty on the differential luminosity (see Sec 2.8),

L̃(MX , y, s) =
channel∑

ij

1
s
fi

(
Mxe

y

√
x
,Mx

)
fj

(
Mxe

−y

√
x

,Mx

)
(5.3.1)

for NNPDF 3.0 and NNPDF 3.1. The figure shows a considerable reduction in uncer-
tainty, which is now below the percent level in parts of the phases space relevant for
LHC phenomenology. In particular, the gluon PDF shown in Fig 5.4 is improved due
to the combination of many mutually consistent constraints on the gluon from DIS
(especially at HERA), Z transverse momentum distributions, jet production, and top
pair production, which taken together cover a very wide kinematic range. The uncer-
tainty reduction on the gluon then propagates to the singlet component of the quark
distributions via DGLAP evolution, partially explaining the overall improvement in
Fig. 5.5.
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Figure 5.4: Gluon PDF of NNPDF 3.1 and NNPDF3.1, at Q = 2GeV (left) and 100
GeV (right)

5.3.4 LHC cross sections

Theoretical predictions based on the NNPDF3.1 to W and Z production data at√
s = 13 TeV from ATLAS [170] are compared to the data and the results from other

PDFs in Fig. 5.6. As mentioned in Sec. 5.2.2, none of these cross sections were included
in the fits (neither in NNPDF 3.1 nor in any PDFs used for comparison), and therefore
constitute genuine predictions of the theory.

We compute fiducial cross-sections using FEWZ [172] at NNLO QCD accuracy, us-
ing NNPDF3.1, NNPDF3.0, CT14, MMHT14 and ABMP16 PDFs, together with the
corresponding PDF uncertainty band. All calculations are performed with αs = 0.118
(including ABMP16 which uses a different value by default). Electroweak NLO cor-
rections are computed with FEWZ for Z production, and with HORACE3.2 [173] for
W production. The fiducial phase space is matched to the ATLAS measurement in
Ref. [170].
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In Fig 5.6 we display the ratios of total cross sections W+/W− and W/Z. Note
that in the figures we only show the PDF uncertainties of the theoretical predictions,
but not other effects such as αs or mc uncertainties or scale variations. Taking this
into account, all the results agree reasonably well with the data. The electroweak
corrections are sizeable compared to the PDF uncertainty and contribute to improve
the agreement with the ATLAS measurements.

The corresponding absolute W+, W− and Z cross-sections are shown in Fig. 5.7,
normalized in each case to the experimental central value. Theory predictions are
generally in agreement with the data, with the exception of ABMP16 for Z production.

These results show that both the precision and accuracy of NNPDF3.1 in de-
scribing these high precision observables have significantly improved with respect to
NNPDF3.0. This improved agreement is particularly marked for Z production.
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Figure 5.5: The relative uncertainty on the luminosities of plotted as a function of the
invariant mass MX and the rapidity y of the final state; the left plots show results for
NNPDF3.0 and the right plots for NNPDF3.1 (upper four rows).
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Figure 5.6: Comparison of the ATLAS measurements of the W +/W − ratio (left) and the
W/Z ratio (right) at

√
s = 13 TeV with theoretical predictions computed with different NNLO

PDF sets. Predictions are shown with (heavy) and without (light) NLO EW corrections
computed with FEWZ and HORACE, as described in the text. The figure is taken from Ref. [12].
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Figure 5.7: Same as Fig. 5.6, now for the absolute W +, W − and Z cross-sections. All pre-
dictions are normalized to the experimental central value. The figure is taken from Ref. [12].
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5.4 Issues with high precision data

As repeatedly mentioned throughout this work, the inclusion of high precision data
in the PDF fits requires a constant reassessment of the underlying assumptions and
methodological choices. The same holds for the input to the PDF determinations: the
experimental data and the corresponding parton level theory predictions. When the
nominal uncertainties decrease effects that were previously overlooked become impor-
tant and comparable to the main uncertainties. We illustrate this with two examples
where the complications arising from such overlooked effects required a substantial
effort in order to be clarified.

The first one involves an issue with the theoretical computation of the Z transverse
momentum distribution: It was found that the fluctuations in the provided results were
substantially higher than the quoted Monte Carlo uncertainties. The second one shows
that the correlation model for the CMS double differential Drell-Yan distribution from
2012. It was found the provided correlation model leads to results that are largely
incompatible with the rest of the fitted data.

5.4.1 Monte Carlo uncertainties in the ZpT distributions
The transverse momentum distribution of the Z boson was recently computed at
NNLO [92, 93, 94, 95]. This accomplishment allowed to include the predictions cor-
responding predictions from ATLAS [144, 145] and CMS [158], for the first time. In
NNPDF3.1 the theoretical predictions have been obtained from Ref. [174], based on
the computation of Refs. [94, 95]. Factorization and renormalization scales are chosen
as

µR = µF =
√
p2

T +M2
ℓℓ , (5.4.1)

where Mℓℓ is the invariant mass of the final-state lepton pair.
The ZpT datasets are measured very precisely, with experimental uncertainties few-

per-mille for the most precise bins. This in turn requires to place the theory predictions
under further scrutiny. In particular it was found that the C-factors, defined as the
ratios of the NNLO to the NLO predictions for each bins presented fluctuations that
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Figure 5.1: C-factors of two bins of the ATLAS Z transverse momentum data. The
error bars show the Monte Carlo integration errors as obtained from the theory pre-
dictions based on Refs. [94, 95]. The solid line shows the prediction from the Gaussian
Process based model described here.
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Figure 5.2: Theory predictions for the ATLAS ZpT 8 TeV data for two rapidity bins,
compared and normalized to the experimental data. The comparison with Fig. 5.1
constitutes evidence that the observed fluctuations in the theoretical predictions are
predominately due to the fluctuations in the C-factors.

were big compared to the quoted Monte Carlo uncertainties, and were unlikely to
be explained by them. The C-factors for two rapidity bins are displayed in Fig 5.1;
since it is expected that the C-factors are smooth as a function of pT , the fluctuations
are unlikely to be a genuine theoretical effect. To further support this conclusion, we
show in Fig. 5.2 the theoretical predictions for one PDF that does not include the data
(NNPDF3.0) and one that does (NNPDF3.1). The fluctuations observed in Fig. 5.2
are clearly correlated with those in Fig 5.1. Furthermore, note that the scale of the
fluctuations is bigger than all the other magnitudes in Fig. 5.2, proving that they
constitute an impediment to obtain predictions with theoretical uncertainties smaller
than the experimental ones.

We can try to further study the size of the fluctuations by fitting the C-factors to
a suitable statistical model. While we do not know the amount of smoothness (i.e.
the correlation length of the C-factors taken as a function of pT ), we can learn it
using a similar methodology as in the NNPDF fits. Specifically, we choose a Gaussian
Process [175] as implemented by the scikit-learn library [176].

We construct a Gaussian Process kernel taking two parameters: the scale of the
correlation length in units of pT , and a noise level η. We now assume a translation-
invariant two point covariance function defined by:

k(pT i, pT j) = exp
(

−1
2

(|pT i − pT j |/l)2
)

+ δ(pT i − pT j)η (5.4.2)

The prior of our Gaussian Process model is then a distribution of functions C(pT )
that fulfills:

E(C(pT )) = m(pT ) = 1 (5.4.3)
E ((C(pT i) −m(pT i)(C(pT j) −m(pT j))) = k(pT i, pT j) , (5.4.4)

where E is the expected value over ensembles of functions. In this model the higher
moments of the probability density vanish. The result of the procedure is a posterior
distribution that is constructed by considering the input C-factors. Assuming an
uncorrelated a Gaussian likelihood for the input data, with the mean centered at each
data point and the scale set to η, it is possible to arrive at a closed form solution that
is also a Gaussian Process [175].
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y (0.4, 0.8) (0.8, 1.2) (1.2, 1.6) (1.6,2.0) (2.0,2.4)
std 0.0033 0.0038 0.0032 0.0068 0.0162
68% 0.0038 0.0038 0.0035 0.0065 0.0172
90% 0.0051 0.0053 0.0050 0.010 0.0222

Table 5.2: Fluctuations of the differences between the original C-factors and the model
predictions for the ATLAS ZpT 8 TeV data. The columns indicate bind in rapidity
and the rows are the standard deviation, the 68% inter quantile range and the 98%
inter quantile range respectively, computed over the distribution of absolute value of
differences in each bin. The results validate the choice of adding 1% extra uncertainty
to the data.

Note that we do not use the Monte Carlo uncertainties in the whole procedure
since we wish precisely to estimate them. For this application we can for example
compute the differences between the mean value of each of the provided C-factors and
the mean of the posterior distribution, and estimate the dispersion for each bin in
rapidity.

We fix the hyper-parameters η and l employing a cross validation procedure. Specif-
ically we maximize the mean of the validation score (using a quadratic error function)
of a leave-one-out cross validation fit over all the possible combinations. We further
require that the training and validation score are not too far apart (specifically that
they are within a factor 2) so that an accidentally finding an overfitted minimum for
the only validation point does not bias the fit. With this procedure, we finally obtain
the model predictions in Fig 5.2. Note that in the second bin, the model is unable to
find evidence for l < inf since it does no combination of parameters with correlation
length of the size of the range in pT improves the error improve the error score. We
can then proceed to estimate the size of the fluctuations .

In view of the results, we conclude that there is likely an underestimated source
of uncertainty in the preparation of the theory prediction, that is phenomenologically
relevant when compared with the magnitude of the experimental errors.

A similar approach based on neural network fits [177] was presented in Ref. [12].
The conclusions were consistent with the ones presented here.

After the decision was to include the data adding an additional 1% uncorrelated
uncertainty to all the points in the distribution, which is consistent with the difference
. Unfortunately this implies that we cannot take full advantage of the experimental
precision of the measurement currently. These findings were further corroborated in
Ref. [174].

We note that the approach presented here could be used to improve the accuracy
of theory predictions where the Monte Carlo errors are consistent with the size of the
fluctuations but it is desired to make them smaller. One could learn a correlation
model for the predictions based on similar assumption on smoothness and replace the
noisy outputs of the computations with smoothed model predictions.
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5.4.2 The CMS 8 TeV double-differential Drell-Yan distributions

The NNPDF3.0 PDF determination already included double-differential (in rapidity
and invariant mass) Drell-Yan data at 7 TeV from the CMS 2011 dataset [155]. An
updated version of the same measurement at 8 TeV based on 2012 data was presented
in Ref. [156], including both the absolute cross-sections and the ratio of 8 TeV and
7 TeV measurements. The data is characterized by extremely small uncorrelated un-
certainties, and therefore the total uncertainty is dominated by correlated systematics.
After extensive checks, it was determined that the data is incompatible with the rest
of the constraints in the fit. While it is not possible to determine it with certainty
since no breakdown of systematics was provided, we obtained evidence that the in-
compatibility may be related with the choice of correlation model used to analyze the
experimental uncertainties.

Including the 2012 data in the fit causes a global increase in the total error function
by ∆χ2 = 11.5. The most marked deterioration occurs in the inclusive HERA data.
Yet including the data in the fit does not suffice to describe it properly: We obtain
a χ2 per degree of freedom of 2.88. Furthermore, the inclusion of the CMS double-
differential Drell-Yan data causes a noticeable change in the gluon PDF, which is
unexpected considering that the Drell-Yan process only provides an indirect handle
for the gluon PDF. We show some comparisons in Fig. 5.3.
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Figure 5.3: Ratios for the gluon (left) and up (right) PDFs, where the impact of
including the CMS double differential Drell-Yan data at 8 TeV is more marked.

Even though the exercise is necessarily limited in scope considering the lack of
information of the systematics, it is instructive to try to understand the origin of
the problem, in particular to discard any possible problems with the global fit. We
begin by illustrating the effect of the correlation model, by comparison with the 2011
dataset. In Fig. 5.4 we compare the predictions for two equivalent bins in invariant
mass of the 2011 and 2012 datasets, using a variation of 3.1 that includes the updated
CMS data. Even though the diagonal uncertainties are in better agreement for the
new data, the total χ2 is markedly worse, showing how these comparison plots can be
misleading when the effect of the correlated systematics dominates. We next assess
the kinematical region that each of these two bins probe. To this end, we plot in
Fig. 5.5 the correlation function used for the SMPDF, Eq. 3.4.3. These plots answer
the question "In which region would a reduction of the PDF uncertainty result on a
biggest reduction in uncertainty in the corresponding prediction?" and they can be
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used as a proxy to estimate the parts of the PDF (in flavour and x space) that are
most sensitive to a given prediction. Unsurprisingly we find extremely similar patterns,
providing evidence for the fact that the two datasets might be incompatible with each
other, since we are unable to fit them both at the same time.
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Figure 5.4: Data-theory comparison for two equivalent bins of the CMS double differ-
ential Drell-Yan 2012 (left) and (2011) data. The predictions are computed with a fit
that includes both datasets. The agreement with the 2012 is much worse despite each
point of the predictions being closer to the data in units of the diagonal uncertainty:
The χ2 per degree of freedom is 2.88 for the 2012 data and 1.24 for the 2011 data.

At this point evidence has accumulated to hypothesise that the problem may reside
in the stability of the covariance matrix. If uncorrelated uncertainties do not dominate,
the diagonal entries may not be big enough to stabilize the results, and we may end up
with eigenvectors of very different magnitude. In this situation, a small modification
in the covariance matrix, that rotates one big eigenvector into a small one might make
a large difference when sampling pseudodata and fitting. In the NNPDF3.1 code, we
solve Eq. 5.1.25 using a Cholesky decomposition rather than computing the inverse
explicitly. We have checked that the numerical stability of this improved procedure is
enough to use it reliably. However the main concern is not the floating point precision,
but rather the precision with which the experimental systematics are determined in
the first place, which currently is largely uncontrolled. For example it may be the
case that assuming that a particular systematic is completely correlated across all
datapoints would not be an adequate approximation at this level of precision. In fact,
there is evidence that different correlation models for inclusive jet double differential
observables have a very large impact on the fit quality [178]. To elucidate further,
we compare the cumulative increase in the χ2 that each eigenvector of the covariance
matrix effects when considered. The results in Fig. 5.6 show that only a small number
of eigenvectors is responsible for the large increase in χ2. These eigenvectors may well
correspond to incompatible linear combinations of data points that should vanish due
to elemental smoothness constraints in the PDFs.

All this evidence, together with private communication with colleagues from the
MMHT collaboration led us to judge that it is not advantageous to include the CMS
2012 double differential Drell-Yan data at 8 TeV in the default NNPDF fit.
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Figure 5.5: Data-PDF corrleations for two equivalent bins of the CMS double differ-
ential Drell-Yan 2012 (left) and (2011) data. For each point in rapidity (distinguished
by the color code), we plot the result of Eq. 3.4.3 for each flavour. The similarity of
the patterns provides evidence of the incompatibility between the two datasets. The
test PDF is a variation of NNPDF3.1 fits that include the 2012 data.

5.5 Advanced code tools for NNPDF 3.1

While NNPDF 3.1 did not change much with respect to NNPDF 3.0 [8] in terms of fit-
ting methodology, as we discussed in the previous sections, there was a notable increase
in the precision that the whole procedure required, driven mainly by the addition of
new high precision LHC data with the corresponding novel theory prediction.

Meeting these precision requirements demanded a careful evaluation of all aspects
of the NNPDF methodology described in Sec. 5.1. In fact it was found that multiple
aspects of the procedure that were previous overlooked since they constituted com-
pletely negligible corrections in the previous generation of PDF sets, were now causing
deviations above the PDF uncertainty, or contributing to a unacceptable decrease in
the quality of the fit. This in turn required a new generation of analysis and plotting
tools, that could process all data used as output and input to the fits to produce the
relevant diagnostics.

While the NNPDF code already had a reporting tool, called validphys that pro-
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Figure 5.6: Cumulative contribution to the error function per eigenvector for the CMS
2012 double differential Drell-Yan data (left) and the 2011 data (right) , obtained by
setting the subsequent eignvectors to zero after the inversion of the covariance matrix.
The error function is computed w.r.t. the variation of NNPDF3.1 that does include
the 2012 data.

duces a very detailed comparison between two fits (outputting a LaTeX project that
is then compiled to PDF), one cannot easily customize its output to perform more
general comparisons. On the other hand, tools such as APFEL Web [179] or SM-
PDF Web [180] are adequate for casual usages, but not when one wants to assemble
large numbers of comparisons in a systematic way. A related problem to solve is the
general lack of metadata in the NNPDF internal formats, making it complicated to
associate code outputs to interesting quantities (for example to perform a data-theory
comparison as a function of the relevant kinematical variables of a given experiment).

It was therefore clear that the best of course of action would be to develop a new set
of tools that could be used to analyze the data in a more general and systematic way.
A stringent constraint on the development was to not introduce big modifications
in the NNPDF code given the originally short timescale of the project, which also
imposed the requirement to be able to produce interesting analysis incrementally as
the progress in the code development occurs. This was also an opportunity to change
the development language from C++ to Python. While the original goal of the project
(named validphys2) was to design a more general plotting tool, eventually its scope
extended far beyond that. Currently the project consist on an NNPDF-specific part
which is built on top of a open sourced framework to perform scientific computation
in the Python programming language, (named reportengine). Its main purpose is
to contribute to alleviate the problem of reproducibility in software based research
while maximizing the usability for practitioners. While it is currently used within the
NNPDF collaboration, the code can be employed in other research. Thus the NNPDF
specific code validphys2 is an example of an application that uses the reportengine
framework.

The basic usage of validphys2 consists on producing a runcard such as

pdfs:
- NNPDF31_nnlo_as_0118
- NNPDF30_nnlo_as_0118
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lumi_channel: gg

sqrts: 13000

template_text: |
# Luminosity uncertainties
To illustrate the improvement in preciosion compared to

’NNPDF 3.0’, we plot the
uncertainty of the PDF luminosity
for the gluon-gluon channel ($i=j=g$)

{@with pdfs@}
{@plot_lumi2d_uncertainty@}
{@endwith@}

actions_:
- - report:

main: True

and obtain essentially Sect. 5.3.3 of this document in HTML format (also with the
resolved Markdown source that can be converted to LaTeX easily).

While given a complete description of the reportengine and validphys codes is
outside the scope of this work, and is furthermore likely to become outdated soon, we
will describe in some detail which problems they solve and how.

The framework was used to study several aspects of the NNPDF fit, to produce the
gallery of plots, and was used extensively in the αS determination project, presented
in Chapter 6.

5.5.1 The reportengine framework

Introduction

reportengine is a scientific computation framework for the Python programming
language. Its aim is to help programmers develop analysis code that is easily accessible
to users, reproducible and based on small and side effect free units that are composed
automatically to perform a given task.

Usually reusable code is associated with an architecture where many clearly sep-
arated units (here by units we mean for examples functions in the Python language)
perform small and specialized tasks and are then composed together to achieve the
desired effect. There is however a tension in how small the units can be reasonably
made: The simpler they are the more work to put them together is needed, and then
the complexity shifts from the core logic to the orchestration. One problem that
reportengine solves is automating the composition of the small units for many pat-
terns that are typical in scientific computing. This way, the minimum complexity for
a given task shifts towards smaller and more reusable logical units that are easy to
reason about and compose.
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Facing the user, the crucial advantage is that the user’s analysis that ultimately
determines how the pieces are to be combined is given in terms of a declarative input
card. It allows the users of applications based on reportengine to write a YAML file
instead of a script or a Jupyter Notebook [181] which are instead used extensively for
prototyping. As we discuss in Sect. 5.5.1 this has several advantages.

When processing the input of the user, the code acts as a compiler: It processes the
runcard to generate a dependency graph, Directed Acyclic Graph (DAG), represent-
ing executable code. The nodes correspond to actions and the edges to dependency
relations between them (i.e. which inputs are requires to execute a given action). In-
deed compilers like GCC[182] or LLVM[183] use DAGs as the abstraction to represent
the program. After the user input is read, DAG is then checked for “compile time”
errors, and if none is preset, each node (action) is executed in the topological order
of the graph (that is, in such an order that each action is executed after all of its
dependencies), providing inputs for subsequent actions. Compared to a true compiler,
reportengine currently does little to optimize the code, and it is mostly focused on
the automatic generation of the graph. In fact, it does currently add some overhead
compared two writing an equivalent script in Python by hand, which is small for appli-
cations like validphys2 where the runtime is dominated by numeric computation in
the user code. One difference with compiled languages like C or C++ is that one can
use arbitrary logic in the same language (Python) at compile- and run-time, making
the distinction somewhat arbitrary. This allows for much more powerful checks at
compile time than what can be achieved with a reasonable amount of effort with the
preprocessing or templating facilities of the most popular compiled languages (the D
languages allows making use of many characteristics of the language at compile time
but not arbitrary I/O). One can for example not just check that the type of a given
input variable is a string but also check that a given file is present in the user’s system
and if not, download it. This way, the framework addresses the need of scientific codes
to have convenient checks of the input at initialization time, beyond what a typical
complied language can provide when compiling the input and what is easily doable by
hand in scripted languages. The convention is therefore that everything that might fail
should do so at compile-time and as fast as possible, to allow the user to fix it. Past the
checking phase, everything that is long-running can reasonably safely be assumed to
succeed. One advantage of having an explicit graph is that the parallelization becomes
trivial, as we discuss 5.5.1.

To automatically deduce the graph from the minimal amount of user input, reportengine
makes extensive use of the introspection features of the Python language and a few
conventions: The nodes are obtained directly from Python functions (that we call
provider functions) defined by the client application that uses reportengine. The
edges are deduced from the names of the parameters in the signature of the func-
tion: It is assumed the functions depends on resources that have the same name of
the parameters, and are computed either from other provider functions or from the
user configuration. For example, the validphys2 code contains a provider function
sum_rules, defined as follows:

import numbers
from reportengine.checks import check_positive
from validphys.core import PDF
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def sum_rules(pdf:PDF, Q:numbers.Real):
"""Compute the sum rules for each member (as defined by libnnpdf), at the
energy scale ‘‘Q‘‘. Return a SumRulesGrid object with the list of values
for each sum rule.
The integration is performed with absolute and relative tolerance of 1e-4."""
#Code that computes the sum rules
...

Then, if reportengine determines that the function sum_rules needs to be com-
puted, it will search try to find the resources PDF and Q. The resources could either be
provided in the user’s configuration file or be given in terms of other provider func-
tions. In fact users would not be interested in using the sum_rules function directly,
but rather on a function that displays nicely the result

from reportengine.table import table

@table
def sum_rules_table(sum_rules):

"""Return a table with the descriptive statistics of the sum
rules, over members of the PDF."""
# Implementation
...

Thus a runcard such as

#sumrulestable.yaml

Q: 10
pdf: NNPDF31_nnlo_as_0118

actions_:
- - sum_rules_table

would generate the graph in Fig. 5.1, by analyzing the application source code and the
runcard without further developer intervention to assemble it. Once executed, by the
validphys executable (which is a reportengine based application), the runcard above
saves the table with the descriptive statistics of the sum rules over replicas. An impor-
tant assumption is that the functions defining the actions (such as sum_rules_table
above) are pure in practice: That is, it is assumed that executing two times the same
function with the same outputs will yield the same results for all practical purposes
and have no other side effects. The side effects that are needed, such as writing figures
and tables to disk are managed by the framework itself. For example the @table
decorator above takes care of writing the returned Pandas DataFrame[184] structure
and write it to a correct path. Similarly, there is a @figure decorator that handles
Matplotlib[185] based plots.
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Figure 5.1: DAG representing the computation required to compute a table with sum
rules. The graph is generated automatically when the user requests the final action.

All inputs are ultimately derived from the user provided runcard. The reportehgine
framework contains a Config class that is meant to be extended by the client appli-
cations. It allows to write code like:

from reportengine.config import Config
from validphys.core import PDF
class ValidphysConfig(Config):

def parse_pdf(self, user_input:str):
#error out if not found
...
return PDF(user_input)

A method starting with parse_ automatically binds to the corresponding value
in the user input card. The type of the parameter (that we declared as string in the
example above) is also checked automatically before entering the parsing function.
Optional default values are similarly supported. Similarly several inputs can be com-
bined at compile time using production rules. These are methods starting with the
prefix produce_ that take zero or more already parsed inputs and return a resource
that can be requested by the user or by other provider functions.

The approach to building the graphs as presented so far lacks flexibility because
there is a bound fixed value for the parameters of each function (in this case pdf and
Q). The problem is resolved by making extensive use of namespaces, as we describe in
Sec.5.5.1.

We now describe how this architecture is designed to solve the problems that
typically appear in scientific code.

Main features of the framework

Early, decoupled error checking The framework addresses three particularities
of scientific software:

1. Computations can take a long time to run.
2. Outputs are frequently unexpected even when everything is working correctly,

for reasons that are not obvious at first.
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3. Computations depend on an complicated set of parameters that not always can
be encapsulated efficiently.

It is therefore necessary to check the inputs preemptively in order to assure that a
large amount of computation time isn’t wasted, possibly followed by tedious debugging
session because of a trivial mistake in the input parameters.

The further requirement to allow great dynamism in how the nodes are composed
and executed implies that the error checking of the parameters cannot be made inside
the functions themselves. This is clear considering a provider function like:

def check_parameter_is_correct(parameter):
#Raise error if parameter is not correct
...

@figure
def final_plot(complex_calulation, parameter):

check_parameter_is_correct(parameter)
#do the plot
...

This pattern is unpalatable if complex_calculation takes a large amount of time
and parameter is given by the user and known immediately after the program starts.
In that case we would like to know if the parameter satisfies the constraints required
by the action before any computationally expensive work takes place. reportengine
offers functionality to do precisely that. We would write instead:

from reportengine.checks import make_argcheck

@make_argcheck
def check_parameter_is_correct(parameter):

#Raise error if parameter is not correct
...

@figure
@check_parameter_is_correct
def final_plot(complex_calulation, parameter:int):

#do the plot
...

This construct causes the checking function check_parameter_is_correct to be
called at the time at which the graph is constructed (compile time), passing the user-
supplied parameter as argument. In this way the user can know if there are avoidable
problems with the input before committing large amounts of time such as when sending
jobs to a computing cluster. The type specification is tested at compile time (in this
example, we require that the parameter is an integer), before the check function,
allowing to omit the type checks in this contents.
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In principle, the checking facilities allows to impose on the client applications the
specification that any uncaught exception inside the provider functions, after the input
passes all the checks, is a programmer error in the application. Since reportengine
is specialized in the situation where the output is a deterministic function of the
user provided inputs, it is theoretically possible to always check that the input to
the provider function is valid. In practice the assumption can be broken, since it is
possible that the environment changes (for example the existence of a given file was
corroborated at some point but the file was removed later when it is actually needed)
or it is possible that some of the input files are corrupt (for example a PDF grid
that was extracted only partially from a tarball missing some of the replica files). In
such cases it is considered that the programs is in an invalid state and it is therefore
adequate to abort it.

The per-function checks as described here complement those defined in the Config
class: The checks in the functions can be used for parameters that are only going to
be used for a particular provider or that restrict further a generally valid resource (for
example several actions in validphys2 require that the error type (see Sec. 3.2) of the
PDF is based on replicas).

Declarative input It is convenient to be able to specify the what the program
should only without any regard or knowledge of how that is achieved by the underlying
implementation. The primary input of reportengine applications are YAML run
cards. A valid input card for the validphys2 application looks like this:

pdfs:
- NNPDF31_nlo_as_0118
- NNPDF31_nnlo_as_0118

First:
Q: 1
flavours: [up, down, gluon]

Second:
Q: 100
xgrid: linear

actions_:
- First:

- plot_pdfreplicas
- plot_pdfs

- Second:
- plot_pdfreplicas

This example illustrates several advantages of the framework

Correct by definition A declarative input specifies what user wants. It is up to the
underlying code to try to provide it (or fail with an informative message).
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Obvious meaning It is easy for a human to verify that the input is indeed what
it was intended. Even without any explanation it should be easy enough to
guess what the runcard above does: We declare a list of PDFs that we want to
compare in two different ways, determined by the namespaces First and Second.
In the First comparison, we want to plot the PDF replicas and error bands at
Q = 1GeV, and only for a subset of flavours. In the Second comparison we want
to plot the PDF replicas at Q = 100GeV on a linear scale.

Implementation independent The input is very loosely coupled with the under-
lying implementation, and therefore it is likely to remain valid even after big
changes in the code are made. For example, in the runcard above, we didn’t
have to concern ourselves with how LHAPDF grids are loaded, and how the
values of the PDFs are reused to produce the different plots. Therefore the un-
derlying mechanism could change easily without breaking the runcard. Thus
saving the runcard (which is done automatically when running a reportengine
application) greatly aids the reproducibility of the result.

Namespaces and loops As we saw in the previous example, one can perform ac-
tions with different parameters by wrapping each set of parameters in a namespace.
Also, arguably the main pattern in high level scientific analysis is testing something
scanning for multiple values of a given parameter. The most frequent data structure is
a list and the most useful control flow construct is a loop. To implement this, lists of
namespaces are created and expanded automatically. Therefore these both have first
class support in reportengine. The following rules apply to construct namespaces: -
Every unrecognized mapping in a configuration file can be interpreted as a namespace.
- Every list of mappings can be interpreted as a list of namespaces. - Actions can be
performed assuming a particular namespace or list of namespaces. In the later case,
all the parameters are resolved within each namespace in the list, and the action is
executed with each set of parameters as input. - Namespaces can be stacked together.
A given input is searched first in the innermost namespace of the stack, and if it cannot
be resolved, it is searched in the outer ones, until reaching the global one. When lists
of namespaces are staked, the result is the Cartesian product of the lists.

Furthermore one can trivially construct a parser for a list from a parser of the
element of the list, by adding the element_of decorator. For example, the following:

@element_of(’pdfs’)
def parse_pdf(self, user_input:str):

#error out if not found
...
return PDF(user_input)

Causes the key pdfs in the configuration file to be parsed as a list of PDF ob-
jects. Additionally, when used as a namespace specification, the lists will act as a list
of namespaces, each containing a single key with the corresponding element (in the
example above, pdf). For example, the following validphys2 runcard computes the
sum rules (that require a PDF and a value of Q as input) a total of 12 times for the
for each of the two PDFs and for each value of Q:
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pdfs:
- mcpdf_pdf4lhc_test_replicas
- mcpdf_test_replicas

Qs:
- Q: 1
- Q: 1.2
- Q: 1.65
- Q: 2
- Q: 10
- Q: 100

actions_:
- pdfs:

- Qs:
- sum_rules_table

The report function offers a more convenient syntax than the nested YAML based
actions_ specification.

The report provider function Reports are implemented as an action of reportengine.
The action takes a template_text argument, which corresponds to a text following
the pandoc flavour of the Markdown syntax, additionally containing special markers
that will be interpreted as actions and namespace specifications. The actions will be
resolve as if they where directly specified in the configuration file and when all of them
are completed, their value will be substituted in the template. The markers are strings
between {@ and @}. There are currently target and with/endwith tags:

Target tags Specify an action to be executed. The possible syntax is:

{@[spec] <action_name>@}

where [] stands for optional syntax. A few conforming examples are:

{@ sum_rules_table@}

{@Qs::pdfs sum_rules_table@}

The optional namespace specification works as described in SOMEWHERE. The
different parts of the specification, which can be mappings, or lists of mappings
(or special tags implementing that behaviour) are separated with the :: operator
(resembling the C++ scope resolution operator). Actions will be repeated if the
specification results in multiple namespaces.

with/endwith tags Repeat the content between the tags for each namespace in the
specifications. Targets inside the block are repeated and searched within each
namespace. The syntax of the with tag is:
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{@with <spec>@}

where spec is the same as for the target tag. It must be closed by an endwith
tag

{@endwith@}

Like in the target tag, the spec is separated by ::.

A version of the example above that generates a report in addition to a set of table
files is:

pdfs:
- mcpdf_pdf4lhc_test_replicas
- mcpdf_test_replicas

Qs:
- Q: 1
- Q: 1.2
- Q: 1.65
- Q: 2
- Q: 10
- Q: 100

meta:
title: Sum rules for Monte Carlo PDFs
author: Zahari Kassabov
keywords: [mcpdfs, test]

template_text: |

{@with pdfs@}

# {@pdf@}
{@with Qs@}
## Q = {@Q@} GeV
{@sum_rules_table@}

{@endwith@}
{@endwith@}

actions_:
- - report:

main: True

The result is shown in Fig 5.2.
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Figure 5.2: Example output of the validphys action that computes sum rules. The
result of a scan for multiple energy values is displayed neatly in an HTML page. The
results at low Q show that PDF values computed at low scales using the LHAPDF
extrapolation feature do not reproduce the sum rules properly.

Parallel processing Since the computation is represented in terms of a DAG where
the only allowed interactions between the nodes are the edges, the dependency struc-
ture is made explicit. This allows to trivially execute the graph in parallel. The
algorithm consists of transvasing the graph in topological order and adding to a queue
of nodes that contain no incoming edges (that is, the functions have no inputs). The
nodes in the queue are executed in parallel by a pool of process workers and as tasks
are completed, the outgoing edges of the corresponding node are removed, thereby
allowing new tasks to be added to the queue.

While this approach allows to effectively use the available number of computing
cores in some situations, The effective use of this feature is somewhat hampered by two
limitations in the CPython implementation: lack of truly immutable data structures
and incapacity to take advantage of multiple threads in the same process. Instead
one has to resort to creating one operating system process per worker, and the com-
munication between tasks requires that the data is serialized and in the origin and
deserialized in the destination, which can be expensive compares to executing a task.
Furthermore, some resources (like those backed by C/C++ wrappers like in those
coming from the NNPDF code) are not serializable and must be initialized in each
process, which often negates completely the multiprocessing advantage. Therefore the
approach only works optimally when the nodes perform expensive computation while
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exchanging little data.
More advanced approaches based on compacting the graph, so that the amount of

I/O is minimized are under investigation.

Help system The reportengine framework provides an automated command line
based help system for each defined action. The documentation is generated by parsing
the docstring of the corresponding provider function, as well as by figuring out the
dependencies. For example, the output of validphys --help sum_rules_table is:

sum_rules_table

Defined in: validphys.pdfgrids

Generates: table

sum_rules_table(sum_rules)

Return a table with the descriptive statistics of the sum rules, over
members of the PDF.

The following resources are read from the configuration:

pdf: A PDF set installed in LHAPDF. Either just an id (str), or a
mapping with ’id’ and ’label’.
[Used by sum_rules]

The following additionl arguments can be used to control the
behaviour. They are set by default to sensible values:

Q(Real) [Used by sum_rules]

The collect function and arbitrary comparisons The reportengine framework
provides an API function, called collect ,that allows to collect results produced in
different namespaces. It takes a function and a namespace specification and returns
the result of the function when the inputs are resolved in each of the namespaces
spanned by the specifications. The most straight forward use is to map some actions
over a list of equivalent items and then collect them into a plot or table. For example:

from reportengine import collect
from reportengine.table import table

# def abs_chi2_data_experiment(...) compute the chiš for a given
# experiment

experiments_chi2 = collect(abs_chi2_data_experiment, (’experiments’,))

@table
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def experiments_chi2_table(experiments, pdf, experiments_chi2,
each_dataset_chi2):

"""Return a table with the chiš to the experiments and each dataset on
the experiments.""

The collect function can also solve a more complicated problem in this framework;
namely how to perform a comparison where arbitrary differences in the inputs can be
introduced. For example, a simple data theory-comparison plot in the NNPDF code
depends on the following parameters:

• The name of the dataset.
• The specification of the experimental systematics.
• The theory settings used.
• The cuts of the data.
• The PDF(s) entering the comparison.

Ideally we want to be able to compare arbitrary aggregates of variations of these
options. To achieve that we choose an arbitrary name for a list of namespaces (for
example, dataspecs), and use the standard reportengine functionality to resolve the
dataset differently within each namespace. For example we might use the data-theory
comparison tool plot_fancy_dataspecs:

fit: NNPDF31_nlo_as_0118_1000
use_cuts: True

normalize_to: data

dataset_input:
dataset: NMC

dataspecs:
- theoryid: 52

pdf: NNPDF31_nlo_as_0118_hessian

- theoryid: 53
pdf: NNPDF31_nnlo_as_0118_hessian

template_text: |
% NLO vs NNLO comparison for {@dataset_input@}
{@plot_fancy_dataspecs@}

actions_:
- - report:

main: True

In this example, we are comparing the value of the NMC SOMETHING data, with
the theory option 52 (corresponding to a NLO theory) convolved with the NNPDF
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Figure 5.3: An example of an arbitrary comparison performed with the validphys
code. The user can specify declaratively the parameters of the comparison and have a
series of checks ensuring that the input is valid. At the same time, the code does not
need to be adapted specifically for each possible variation.

3.1 NLO set and the NNLO theory (theoryid 53) with the corresponding NNLO set.
The result (for one bin) is displayed in Fig. 5.3. The signature of the plotting function
is:

@_check_same_dataset_name
@_check_dataspec_normalize_to
@figuregen
def plot_fancy_dataspecs(dataspecs_results, dataspecs_commondata,

dataspecs_cuts, dataspecs_speclabel,
normalize_to:(str, int, type(None))=None):

Where the parameters starting with dataspecs_ are computed in terms of the
collect function over the dataspecs list of namespaces. For example:

dataspecs_commondata = collect(’commondata’, (’dataspecs’,))

Note that the plotting function has checks that ensure that the inputs fulfill the
relevant constraints (in this case, that we are comparing the same experimental data).
This is the most powerful feature of reportengine: It allows arbitrary comparisons
that are expressed without code in a declarative way and checked for correctness before
any expensive computation is executed.



5.5. ADVANCED CODE TOOLS FOR NNPDF 3.1 87

An example: A simple application to debug interpolation problems

During the development of NNPDF 3.1 it was found that some of the interpolations
that were used in the fit were causing discrepancies in the theory prediction, when
comparing the result produced from the source APPLgrids and the FKTables that
were produced from them. The discrepancy was of few percent, which is very notable
compared to the PDF uncertainty of precise LHC observables such as the ZpT data,
which are of order 0.2%. The difference in the predicted PDF uncertainties for those
observables could reach 50%. Debugging the issue was non trivial because there are
several interpolations involved in the FKTable production. These include:

• The interpolated grid in which the DGLAP equations are solved by APFEL.
• The interpolation of the fitted neural networks that is written to LHAPDF.
• The finite grid in which the FKTables are interpolated where the convolution is

performed.

Understanding the problem required to methodically disassemble all the effects of
these interpolations (and the different ways they commute in different parts of the
procedure). The issue was clarified by producing predictions obtained with variations
of the interpolation settings. The results were analyzed with a small reportengine
based application totaling 114 source lines of Python code (SLOC), including all the
boilerplate required to set up the framework. The application allowed to quickly pro-
cess and visualize the results and helped to finally pinpoint the issue (see an example
output in Fig. 5.4).

It was found that the settings for the APFEL interpolation grids that were used
in the fits and in the preparation of FKTables were the biggest contributors to the
interpolation inaccuracy. A change consisting on solving the DGLAP equation on a
custom, more dense, grid in x was shown to resolve the issue satisfactorily.

5.5.2 The validphys2 project
As we have illustrated in the previous sections, validphys2 is a reportengine based
application that provides tools to analyze data that is relevant to the NNPDF project.
It links to libnnpdf trough a wrapper for the Python language constructed with the
SWIG program. validphys2 can also be used as a Python library, allowing more con-
venient access to several libnnpdf features (including elemental ones, such as loading
a dataset) that are tedious to attain directly in the C++ code.

The validphy2 contains over 80 table generating and plotting tools, many of which
have been showcases thouought this document. Some are generally useful for all the
projects in the collaboration, such as PDF comparisn plots or data-theory predictions
while others are specifically useful for a particular project, such as the determination
of the strong coupling constant. It is convenient to systematize the tools within the
same code because in this way all of them can take advantages of the features of the
core code, such as the automatic localization of resources (see Sec. 5.5.2), extensive
error checking, and the possiblity to share the result as an HTML page (see Sec. 5.5.2).
Rather than decribing the ever-icreasing collection of tools, we proceed to list some
more notable features of the code that were implemented on top of the existing C++
code and reportengine (See Sec.5.5.1).
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Figure 5.4: Example of a part of the output of the simple program used to debug the
interpolation issues. The figure shows the output of a comparison with a particular
configuration of various grid settings (labeled “X4”). From top to bottom, the plots
show the ratios between the predictions used the internal NNPDF FKTables and the
APPLgrids that were used to generated them, the ratios in the PDF standard deviation
of the predictions and the difference in correlation coefficients between bins.

Sharing tools

Validphys allows members of the NNPDF collaboration to easily and automatically
upload the output of an analysis to a server that is accessible to all of them. This
merely requires appending --upload flag to the invocation of the validphys exe-
cutable. At the end of the run, the output folder will be stored online and the user
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will see an URL where the results can be viewed. The metadata block defined in the
user input card is also used to index the result so it can be fount later, as illustrated
in Fig. 5.5. While designed with reports in mind, the infrastructure can be used to
share and index any type of file. The repositiry is currently hosted at the University
of Milan and regulary backed up in two physical locations.

Figure 5.5: The private validphys reports page. The page collects and allows to find
all the produced reports in the NNPDF collaboration.

Automatic downloading of resources

When some validphys action requires a resource such a completed fit, an LHAPDF
set, or set of FKTables, and the files cannot be found locally, they will be automatically
downloaded from the relevant NNPDF or LHAPDF repositories. This makes it easy
to reproduce an existing validphys output given only the runcard to generate it: It
is considered a bug if running validphys <existing runcard>.yaml does not give
a comparable result to the original runcard on a correctly configured system, and
without further need to install any grid.

Plotting format specification

A pressing problem of the NNPDF framework is the dissociation between data and
metadata. For example, it used to not be easy to automatically plot some prediction
as a function of a kinematic variable because that information was not recorded. This
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information is now encoded in a declarative way for each included dataset, allowing
figures like SOMETHING and SOMETHING to be produced automatically.

Binary packaging

All the NNPDF projects required to run validphys2 are automatically packaged in
the conda format, when a change is pushed to the relevant continuous integration
services. Currently versions of the packages for both Linux and Mac are produced.

This allows users with access to the NNPDF repositories to set up all the required
codes by simply typing

conda install validphys

which will automatically pull all the dependencies, rather than requiring having
them installed by hand. While some basics checks are performed implementing a full
testing system is still a pending task.



Chapter 6

A determination of the strong
coupling constant

6.1 Introduction

The strong coupling constant αs (see Sec. 2.2) is an essential input to any calculation
in perturbative Quantum Chromodynamics (QCD), since it is the only free parameter
in the theory beside the quark masses. It enters the theoretical predictions of hard-
scattering processes both though the explicit dependence of the partonic cross section
and implicitly though its dependence on other quantities, particularly the PDFs. The
precise determination of αs is therefore relevant for phenomenology at the LHC. Cur-
rently αs uncertainties contribute notably to the uncertainty of relevant Standard
Model processes such as the Higgs Cross Section [16]. Furthermore, recent improve-
ments improvements in fixed order computation [186] and determination of PDFs [4]
highlight the importance of reducing the αs uncertainty.

Many different observables can be used to determine αs; several independent de-
terminations are combined by the Particle Data Group (PDG) to obtain a World
Average [23]. The determinations entering the PDG average are based on hadronic
τ decays, Lattice computations, PDFs, e+e− hadronic annihilations, electroweak pre-
cision fits and tt̄ production data. These observables all require making additional
assumptions on the underlying Physics, other than perturbative QCD. This includes
reliance on non perturbative Lattice or Monte Carlo models (τ decays and e+e− pro-
cesses), or the strict validity of the Standard Model (for EW precision fits).

The determinations of αs based on PDFs require both a robust fitting methodology,
with the suitable adaptations to extract αs, and a precise understanding of the theo-
retical and experimental inputs that enter PDF determination. This presents several
significative challenges: For examples biases arising from the choice of parametriza-
tion of the PDFs have been identified [187] as an important problem and has necessi-
tated relatively recent developments in the methodologies such as closure tests [8] (see
Sec. 5.1.9) and dynamical tolerances [64, 75] in order to be satisfactorily resolved.

Moreover, the results of PDF determinations will be affected by the inadequacies of
the theoretical calculations of the processes entering the fit such as missing higher order
corrections, the values of the heavy quark masses, deuteron and nuclear corrections,
or higher twist effects.

91
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In spite of the these complications, a determination of αs based on a global PDF
fit also presents important advantages. Because the fit of αs is performed on multiple
experimental measurements of diverse physical processes, the possible defects in the
description of the data (both of theoretical and experimental origin) can be reasonably
expected to be predominately uncorrelated, which in turn implies that defects should
average out to some extent in the final result. Therefore, despite the difficulty of
realizing a precise description of each of the inputs, a small defect in one of them (e.g.
due to the underestimation of the experimental uncertainties or large missing higher
order corrections) has a smaller impact on the result than it if the determination was
based solely on the problematic dataset, or indeed on any less global subset of the
data inputs entering the PDF fit, provided that no particular reason for excluding
some data from the determination has been identified.

In addition, while several recent determinations of αs based on hadronic data have
been presented [188, 189, 190, 191, 192, 193] (see also [194] for earlier results), the
ones based on the simultaneous fitting of the PDFs and αs(mZ) take consistently into
account the dependence of the result on the whole dataset entering the PDF fit. We
discuss this in further detail in Sec 6.4.

In this chapter, we present an update of the previous NNPDF determination [195,
196] based on NNPDF 2.1 [197, 198], employing the NNPDF 3.1 global analysis [12]
described in Chapter 5 as an input.

This is motivated by the development of a new methodology to extract αs, as well
as by the many subsequent improvements made to the NNPDF fits, which have cul-
minated in NNPDF3.1 global analysis [12]. The input dataset has been significatively
enhanced with new measurements (see Sec 5.2.2), and we use NNLO QCD theory for
all experimental predictions.

The main advantage of the new method (which we dub correlated replica method) is
to propagate directly all the components of uncertainty on the PDFs into the result for
αs, including the experimental uncertainty on the data, and the uncertainty induced
by the PDF fitting methodology. We call these uncertainties PDF uncertainties on
αs. The previous method employed in Refs [195, 196] only accounted for effects in the
central PDF, but not on the error members, and might be outright inadequate e.g in
the presence of inconsistent experiments. In order to improve both the precision and
the accuracy of our results we have employed for the first time a batch minimization
strategy: We determine αs from the best of several runs of the PDF minimization
algorithm. The effect is to minimize the dependence on outliers that may pull the
final value significatively and reduce the dispersion of the results due to the finite
efficiency of the minimization algorithm.

The combinations of the improvements in input dataset, theoretical calculations,
and fitting methodology, lead to the following result for the strong coupling constant
at NNLO

αs(mZ) = 0.11845 ± 0.00052pdf (0.4%) ± 0.000027stat (0.02%) , (6.1.1)

which is compatible with the PDG world average and with high precision (of 0.4%)
when considering only the uncertainties that can be reliably estimated in our frame-
work, which include the experimental uncertainty of the data and that related to the
PDF fitting methodology, but notably do not directly provide an estimate for missing
higher order uncertainties (MHOU). As a consequence our results need to be evaluated
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carefully: The results require a systematic scrutiny of all the elements of the method-
ology which could contribute significantly to the uncertainty at this level of precision.
To that end, we have systematically confirmed that all the procedural choices (such
as the number of fitted replicas) induce fluctuations on the value of αs that are much
smaller than the PDF uncertainty and are therefore irrelevant to our determination.
We also require at least a rough estimate of the theoretical uncertainty in order to
interpret the result properly: We estimate an upper bound on the MHOUs are by
halving the difference between the NLO and NNLO determinations of αs. As we will
show, these turn out to be the overall dominant source of uncertainties in the present
αs determination.

6.2 Fitting methodology

The main methodological development in this new determination is the introduction of
the correlated replica method used to obtain the determination of αs. Its main purpose
is to take into account all sources of uncertainty that enter a standard PDF fit, partic-
ularly the experimental uncertainty in the input data, and propagate this uncertainty
on the determination of αs. By contrast, the method described in Refs. [195, 196]
(henceforth called the ∆χ2 = 1 method) is based on determining αs from the best fit
PDF only and does not take into account the variations in the fitted PDFs at each
value of αs.

6.2.1 The correlated MC replica method

The methodology

To describe the αs fitting methodology it will be convenient to first repeat several
aspects of the NNPDF fitting procedure introduced in Sec. 5.1 and described in detail
in Ref. [8]: To perform a fit, we first sample Nrep realizations from the probability
distribution that describes the experimental inputs. We call these samples pseudodata
replicas (See Sec. 5.1.5). Each pseudodata replica is then fitted to a set of functional
forms (one for each fitted parton distribution) parametrized by neural networks multi-
plied by a preprocessing function (See Sec. 5.1.1). The set of functions obtained by this
procedure is called a PDF replica, or simply replica. For each of the ND experimental
points entering the fit, the pseudodata replica samples are generated according to the
Eq 5.1.24, which we repeat here, now explicitly indicating the replica dependence:

D
(r)
I = D0

I +
ND∑
J=1

C
1
2
IJd

(r)
J , (6.2.1)

where the index r identifies the replica, D(r)
I is the pseudodata point indexed by

I = 1, . . . , ND, D0
I is the corresponding experimentally measured central value, C 1

2 is
the transpose of the Cholesky decomposition of the covariance matrix C and d(r)

J is a
random number sampled from a standard normal distribution.

As discussed in Sec 3.2.1, any quantity O that depends on the PDFs adopts a
different value, denoted O(r), for each replica labeled by the index r.
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Fitting a given PDF replica consists of performing the minimization of the error
function χ2 (Eq. 5.1.22) as a function of the set of parameters, {θ} (see Sec 5.1.7), that
characterize the PDF functional form. Writing again the replica dependence explicitly,
we have

χ2(r) [{θ}, αs,D] =
ND∑

I,J=1

(
TI [{θ}, αs] −D

(r)
I

)
C−1

IJ

(
TJ [{θ}, αs] −D

(r)
J

)
, (6.2.2)

As explained in Sec. 5.1.4, a cross validation procedure is employed to avoid overfitting
during the minimization. The fitting procedure then consists on finding a minimum
for Eq 5.1.26,

χ
2(r)
min [αs,D, ξ] = cv min

{f}
χ2(r) [{f}, αs,D]

∣∣∣
αs,D,ξ

, (6.2.3)

and retrieving the PDF replica from the parametrization that minimizes the error
function. The value of αs, and the dataset D are held fixed during the minimization.

Simultaneous minimization of PDFs and αs

The central idea behind the correlated replica method consists of selecting the best
value of αs by minimizing the error function in Eq. 6.2.3:

αmin(r)
s [D, ξ] = arg min

αs

χ2 [αs,D, ξ] , (6.2.4)

where the notation arg min indicates that the right hand side corresponds to the
argument of the function that minimises the χ2.

The crucial point is that the same set of pseudodata replicas is used as we scan
the values of αs in search of a minimum, hence the name of correlated replicas. It is
clear from the notation used that the value of αs obtained by this procedure depends
on the choice of the dataset, and potentially on the details of the minimization. The
correlated replica method performs first the minimization in the space of PDFs at fixed
αs, and then the minimization over αs, using the same set of data replicas for the entire
procedure. Note that in this procedure αs is on the same footing as the parameters {θ}
that characterize the functional form of the PDFs, and the minimization procedure
spans this enlarged space of parameters. The only difference stems from the cross
validation procedure, which is only applied when minimizing over the set {θ}, and is
expected to have no effect on the best value of αs. Therefore αs could in principle be
treated as another parameter in the fit. However this cannot be directly implemented
in the FastKernel framework [9], which is used in the NNPDF fits, and achieves a
considerable speedup by fixing all the parameters of the DGLAP evolution, including
αs. Instead we perform multiple fits scanning over a range of values of αs: we fit a set
of PDF replicas f (α,r), organized as a Nαs ×Nrep table, where the index α runs over
the discrete set of values of αs, and the index r characterizes the pseudodata replica.
All the replicas with the same index r are fitted using different values of αs, but the
same set of random numbers {dJ} when sampling pseudodata in Eq. 6.2.1.

6.2.2 Minimization strategy
We now discuss how to implement the minimization Eq 6.2.4 in practice: We first
describe in Sec 6.2.2 how do we associate a value of αs

(
M2

Z

)
to a given pseudodata
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replica. Next, in Sec 6.2.2, we describe how do we obtain a finite size uncertainty,
associates to the finite number of pseudodata replicas we fit. Finally we address some
technical difficulties associated to our methodology: Since not all the PDF replicas in
satisfy the convergence criteria at the end of the PDF fit, described in Sec. 5.1.8, some
entries in f (α,r) will be undefined. Therefore it may not be possible to obtain a value
of αs from all pseudodata replicas. The set of selection criteria that determine which
values we consider are explained in Sec. 6.2.2.

Parabolic fitting

We associate to each of the remaining replicas the corresponding value of the minimum
of the error function Eq. 5.1.26 attained during the fit,

χ2(r,α) = χ2
min[α,Dr, ξr] . (6.2.5)

In order to increase the resolution that can be achieved with the finite grid in
αs, we take advantage of the fact that the profile of the error function χ2(r)(αs) ≡
χ2

min[αs,Dr, ξr] can be expanded as a quadratic polynomial around αmin
s ; therefore we

determine χ2(r)(αs) by performing a quadratic fit to the discrete set of Nαs values
that we determine by minimization. In Sec 6.3.5 we have checked that the effects of
the Taylor approximation are negligible compared to the relevant uncertainties. We
end up with a set of curves,

χ2(r)(αs) = m(r)
[
αs − αmin(r)

s

]2
+ c(r) , (6.2.6)

labeled by the index r, each of them obtained from the corresponding replica r, if
it satisfied the selection criteria that we will describe in Sec. 6.2.2. The number of
curves that we obtain following this prescription is denoted Ncurves, where clearly
Ncurves ≤ Nrep. Given the set of correlated replicas fitted for a fixed pseudodata
sample and different values of αs, f (α,r), we obtain the coefficients m(r), αmin(r)

s ,
c(r) from the fit to a quadratic polynomial, performed by least squares. Finally we
select αmin(r)

s , the minimum of the parabola, as the value predicted from the curve
corresponding to the pseudodata replica indexed by r.

The result of this procedure is a set of values {αmin(r)
s }, which describes the fluctu-

ations on αs induced by the fluctuations in the data, and hence effectively propagates
the PDF uncertainty, obtained from the standard PDF fits, to the αs determination.

Bootstrapping resampling

A remaining possible source of uncertainty are the finite size effects that appear due
to selecting a limited number of curves that pass the fitting criteria. In principle we
can always obtain more replicas and improving the finite size uncertainty is bounded
only by computational cost. We produce a large enough number of curves so that this
reducible finite size uncertainty is negligible compared with the PDF uncertainty. To
estimate this uncertainty, we implement a case resampling bootstrapping procedure: In
our case the sample is the set of minima of each of the selected curves, {αmin(r)

s }r,
with r = 1 . . . Ncurves. The method consists on constructing a large number Nresamples
of resamples of the original sample. Each resample is a new set of Ncurves values drawn
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with replacement from the original sample. We then compute the statistical estima-
tor of interest for each of the resamples, and assess its variation over the ensemble.
Nresamples is chosen large enough so that the results do not depend on it within the
required precision.

We now apply these steps explicitly to estimate the finite size uncertainty of the
αs determination. We estimate the central value of αs as the mean of the minima of
each curve,

α(central)
s =

⟨
{αmin(r)

s }
⟩

r
, r = 1 . . . Ncurves . (6.2.7)

The corresponding bootstrapping uncertainty is then obtained as

∆stat
αs

= std
(⟨

{αmin(ρ),s
s }

⟩
ρ

)
s

, ρ = 1 . . . Ncurves, s = 1 . . . Nresamples (6.2.8)

where each αmin(ρ),s
s is sampled with equal probability from the original sample {αmin(r)

s }r.
We may similarly estimate the finite size uncertainty on the PDF uncertainty as

∆stat
αs

= std
(

std
(

{αmin(ρ),s
s }

)
ρ

)
s

, ρ = 1 . . . Ncurves, s = 1 . . . Nresamples (6.2.9)

We find that the results are independent of the random seed used to generate the
boostrapping resamples (up to the two first significative figures in the uncertainties)
when Nresamples = 10000.

We use the finite size uncertainties on the mean Eq. 6.2.8 as a criterion to decide
how many replicas we require to obtain a determination of αs where the PDF uncer-
tainties dominate over the finite size ones. The uncertainty on the standard deviation
Eq. 6.2.9 is used as a criterion for discarding outliers resulting from undersampled
curves, as we discuss next in Sec. 6.2.2.

Selection criteria

The approach described so far needs to be refined to take into account two limitations
of the NNPDF methodology.

The first one is that not all the replica fits converge, as a consequence of the quality
criteria (described in Sec 5.1.8) that are imposed on them. The second limitation is
that the random state with which the genetic algorithm is initialized has a small but
measurable effect on the value of the error function. As discussed in Sec. 5.1.6, this
dependence is due to the limited efficiency of the genetic algorithm and the variations
in the cross validation/training splitting. The effect is to decrease the precision of
the αs determination since the parabolic fits of the error function profile χ2(αs) rely
crucially on the profile being smooth. We shall now discuss these issues in turn.

Firstly, in the correlated replica method we are using the same set of pseudodata
to perform fits at all the values of αs that we consider (up to small corrections due
to the implementation of normalization uncertainties). It may happen for particular
pseudodata configurations that some of the αs values yield non-convergent fits. As a
result there is a reduced number of points available to perform the fit of the parameters
in Eq. 6.2.6. A given curve is kept in the procedure only if the number of αs values for
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which the replica has passed all our fit quality criteria is larger than some threshold
that we denote by Nminpts. Hence the set of selected pseudodata is{

r |
∑

α

({
1 if f (r,α) converged
0 otherwise

)
≥ Nminpts

}
. (6.2.10)

The number of curves Ncurves is then the number of the selected replicas, correlated
across all αs values.

The threshold Nminpts is chosen to ensure the stability of the distribution of min-
ima. Curves with too few points to obtain a sensible parabolic fit, and thus a value
of αmin(r)

s will lead to spurious outliers in the distribution of minima over replicas.
However, once we have enough points to reliably fit the parabolas, the variations in
the distribution will be the result of the differences in the best fit value for different
pseudoreplica samples, and will not depend on the number of curves beyond finite size
effects. To assess the influence of outliers, we employ the bootstrapping procedure de-
scribed in Sec. 6.2.2 above. Specifically, we find the value of Nminpts that minimizes the
bootstrapping estimate of the finite size effects of the uncertainty, Eq. 6.2.9. The value
is expected to decrease when increasing the number of curves, if they were sampled
independently from the same distribution. However the parameter Nminpts controls
the trade-off between outliers allowed in the distribution and size of the sample, and
thus the underlying distribution depends on Nminpts. In particular, an increase in
∆stat

αs
when Ncurves increases by allowing curves with less points, is a clear indication

of a contamination of the sample due to poorly fitted parabolas, thus warranting a
tighter selection implemented as an increase in Nminpts. To account for the fact that
a too tight criteria yields a small number of samples that are then affected by large
statistical uncertainties, we multiply the ∆stat

αs
by a penalty factor that depends on the

number of points: This is the 99% confidence level factor from a two sided Student-t
distribution. In this way we minimize the effect of the outliers in the determination
of the central value. Indeed, assuming the distribution of {αmin(r)

s } is Gaussian, the
difference between the sampled and true central value follows a Student-t distribution
with Ncurves − 1 degrees of freedom, zero mean and scale parameter ∆stat

αs
/
√
Ncurves .

A given confidence level around the mean is the proportional to the standard devia-
tion ∆stat

αs
, where the proportionality term is a factor that depends on the number of

curves and the desired confidence interval. This coefficient is the quantile function of
the standardized Student-t distribution evaluated at 1 − (1 − CL)/2, where CL is the
desired confidence interval. We choose CL = 0.99. Thus, we minimize:

Nminpts = arg min
Nminpts

∆stat
αs

T0.99,Ncurves−1 . (6.2.11)

where T0.99,Ncurves−1 is the percentile of the two-sided confidence factor obtained from
a Student-t distribution with Ncurves − 1 degrees of freedom.

As we discuss Sec. 6.3.5, the precise settings of the selection affect the central
value of the determination by an amount that is negligible compared to the PDF
uncertainties on αs. The uncertainties themselves are affected by around 10%.

To address the second problem, namely improving the smoothness of the χ2(αs)
profiles, we construct several sets of fits (that we dub batches), f (α,r)

(1) and f (α,r)
(2) , which

differ by their respective random states ξ(1), and ξ(2), but correspond to the same
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pseudodata replica and αs (each also uses a different t0 PDF, which is a negligible effect
in the final result, as we discuss in detail in Sec. 6.3.5). Both batches are constructed
after we have achieved the convergence of the t0 and preprocessing settings on each
value of αs, as required by our standard fitting procedure (which in turn required
other batches of fits). We finally combine the batches by selecting the replica that
gives the minimum error function of each pair:

f (α,r) = arg min
{f

(α,r)
(1) ,f

(α,r)
(2) }

{
χ2(r,α)

[
f

(α,r)
(1)

]
, χ2(r,α)

[
f

(α,r)
(2)

]}
, (6.2.12)

and we impose the further condition that the two replicas f (α,r)
(1) and f

(α,r)
(2) have con-

verged. In this way we mitigate the influence of outliers that narrowly pass the post-
selection fit criteria. Note that the approach can be extended to arbitrarily many
batches which then will be advantageous to include in the combination, provided the
t0 and preprocessing parameters have converged. When we combine more than two
batches we still require to have at least of the replicas for trom the batches hace con-
verged in order to select a point. As we explain in detail in Sec. 6.3.3, we use some
additional batches both to prove that they do not significantly affect the result and
to refine it nevertheless. A further benefit of this technique is that it minimizes the
dependence on the t0 procedure, as we will explain in Sec. 6.3.5.

6.2.3 Final formulas for the αs determination
Let us summarize here the above discussion by presenting the final formulas used in
our determination of αs.

The central value and uncertainty are computed substituting the minimum of the
profile of χ2(r)(αs), Eq. 6.2.6, in Eqs.3.2.1 and 3.2.2 respectively. The profiles are com-
puted by fitting quadratic polynomials to the minimum of the error function Eq. 6.2.5
of sets of replicas fitted at discrete values of αs, where the pseudodata is kept appro-
priately correlated. The replicas used in the determination are selected according the
criteria explained in Sec. 6.2.2. For each profile, we obtain the minimum αs directly
from Eq.6.2.6. Finally, we determine our central value as

αs = 1
Ncurves

Ncurves∑
r

α(r) min
s , (6.2.13)

and the PDF uncertainty as

∆αs =

(
1

Ncurves − 1

Ncurves∑
r

(α(r) min
s − αs)2

) 1
2

(6.2.14)

6.3 The strong coupling constant from NNPDF3.1

In this section we present the main results for the strong coupling constant αs

(
M2

Z

)
from the NNPDF3.1 global NNLO analysis. We first discuss the details of the PDF
fit settings as well as the αs

(
M2

Z

)
fits and the range in which we vary αs

(
M2

Z

)
. We

then present the best-fit result, and estimate the experimental uncertainties by means
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of the correlated MC replica method, we perform multiple tests of the validity of the
approach, and provide some rough estimate on the Missing Higher Order Uncertainty
in the computation.

6.3.1 Fit settings
The present PDF fits are a close variant of the recent NNPDF3.1 global analysis [12].
The data inputs are thus described in Sec. 5.2.2, with only one difference: In the
NNPDF3.1 NNLO fit, inclusive jets where treated using NNLO evolution but NLO
matrix elements, and including the NLO scale variations as additional source of the-
oretical uncertainties. The reason for this choice was that the NNLO K-factors of
Ref. [199] were not available for all the jet datasets included in the NNPDF3.1 fit.
Here, in order to ensure that exact NNLO theory is used for all collider experiments
included in the αs

(
M2

Z

)
determination, we have kept only those datasets for which the

exact NNLO calculation is available, specifically the ATLAS and CMS inclusive jet
measurements at 7 TeV based on the 2011 dataset. In the former cases, as motivated
in [12], only the central rapidity bin has been kept in the fit. Other jet experiments,
in particular the CMS and ATLAS data at

√
s = 2.76 TeV and the CDF measure-

ments, are excluded from the present analysis, since the corresponding NNLO matrix
elements are still not available presently.

The theory settings for each fit are identical to the ones described in Ref. [12] with
the only difference that the value of αs changes in the PDF evolution and partonic
cross sections. Indeed we store enough data for all the processes to change the value
of αs: DIS predictions are explicitly recomputed using the APFEL [39] code, hadronic
processes are stored as APPLGIDS [57] up to NLO allowing to compute predictions
at different values of αs. The NNLO corrections are stored as ratios of the NNLO
over the NLO result for each bin (which we call C-factors, as mentioned in Sec. 5.4).
It is simple to rescale the C-factors knowing the value of αs

(
M2

Z

)
at which they were

computed, αold
s and the new desired value αnew

s :

C(αnew
s ) = 1 +

(
C(αold

s ) − 1
)(αnew

s

αold
s

)2

(6.3.1)

We use values of αs

(
M2

Z

)
between 0.106 and 0.130. We have produced fits in

steps of ∆αs = 0.002 between 0.106 and 0.112 and 0.128 to 0.1130, and in steps of
∆αs = 0.001 between 0.111 and 0.128.

6.3.2 Results
Here we show our main results, together with the corresponding PDF and finite size
uncertainties. We show the global average and the results for experiments correspond-
ing to different physical processes. The main result is the value of αs

(
M2

Z

)
, determined

from the minimum of 3 batches of fits at NNLO, as described in Sec. 6.2.2,

αNNLO
s (MZ) = 0.11845 ± 0.00052pdf (0.4%) ± 0.000027stat (0.02%) , (6.3.2)

where the residual finite size uncertainties are clearly negligible with respect to the
PDF uncertainty. The sample is based on 379 curves selected by our procedure. Using
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the same methodology we have also obtained a result at NLO based on the minimum
of two batches,

αNLO
s (MZ) = 0.12067 ± 0.00064pdf (0.5%) ± 0.000061stat (0.05%) . (6.3.3)

In this case the sample size is 108 curves.
Fig 6.1 illustrates the methodology described in Sec. 6.2: Each curve shows the

error function as a function of αs attained by each of the curves produced by combining
three batches of fits at NNLO. The color scale shows the fitted value αmin(r)

s , Eq. 6.2.6
from the fit to each the correlated pseudodata replica.

The distribution of the minimum values are shown in Fig. 6.2.
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Figure 6.1: Selected curves at NNLO. The lines show the error function Eq. 6.2.5 as a function
of αs for each curve. The color scale shows the minimum αs value from the parabolic fit to
each curve.

6.3.3 Effect of the batch minimization
We have employed for the first time the batch minimization strategy described in
Sec 6.2.2. The motivations for using batch minimization here are reducing the depen-
dence of the result from outliers that that barely pass the post selection criteria, and
to increase the smoothness of the χ2(r)(αs), Eq. 6.2.6. This in turn results in a more
precise estimation of the minimum, and correspondingly reduced PDF uncertainties.

In Table 6.1 we have shown the results of the αs determination at NNLO for each
of the individual batches (that is without applying the batch selection), combining two
out of three batches using Eq. 6.2.12, and finally combining the three batches (which
corresponds to our final NNLO result Eq. 6.3.2). We find that the batch minimization
causes a moderate increase of less that half a sigma in the final result αs

(
M2

Z

)
(which

can be attributed to better control of the outliers), as well as a decrease in the PDF
uncertainty of about 20%. We also find that a third batch does not significatively
improve the result, since variations are compatible with statistical fluctuations both
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Figure 6.2: Distribution of the minimum of the error function for each selected curve as a
function of αs

(
M2
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)
, at NNLO (left) and NLO (right). The markers represent the position of

each minimum. The curve is the probability density estimated using Kernel Density Estimate
where the bandwidth parameter of the kernel has been computed using the Silverman method.

NNLO Result
First batch mean 0.11831

error 0.00065 (0.55%)
Second batch mean 0.11828

error 0.00062 (0.52%)
Third batch mean 0.11822

error 0.00072 (0.61%)
First and second mean 0.11844

error 0.00054 (0.46%)
First and third mean 0.11841

error 0.00058 (0.49%)
Second and third mean 0.11841

error 0.00060 (0.51%)
All three mean 0.11845

error 0.00052 (0.44%)

Table 6.1: Results from the batch minimization. In the first block we have shown the
results we obtain from each of the three indivudual batches, without the batch minimization
procedure described in Sec. 6.2.2. In the second block we show the result of combining two of
the three batches (in all three possible ways). In the third block, we display our final result,
the combination of the three batches. The rows "mean" and "error" show the central value
and standard deviation (PDF uncertainty) of the minima of the selected curves.

at the level of central values and PDF uncertainties (see Sec. 6.3.5). This justifies
using only two batches for the NLO result Eq. 6.3.3.
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6.3.4 Impact of individual datasets and PDF uncertainties

We can try to guess the approximate impact of LHC data upon the determination of
αs, as well as the behaviour of individual processes included in the global fit, which
we discuss in the next section. In this way we can gain a very rough qualitative
understanding of how the new data has impacted the global best-fits at NLO and
NNLO since the previous NNPDF determinations [196, 195]. However, as we will
explain in Sec 6.4, a more quantitative understanding of the impact of the different
datasets requires more sophisticated analysis.

We can however provide rough estimates on whether a given process prefers a larger
or smaller value based on the individual contribution to the error function Eq. 6.2.2 of
each individual dataset. Neglecting correlations between different processes, the error
function is additive and we may define the partial contribution of the process P as

χ2
p [{θ}, αs,D,P] = 1

NP

DP∑
I,J

(TI [{θ}, αs] −DI)C−1
IJ (TJ [{θ}, αs] −DJ ) , (6.3.4)

which is identical to Eq. 6.2.2, with the only difference that we restrict the sum to
the set of data points belonging to the process we are interested in, P. It is crucial to
emphasize that formula Eq. 6.3.4 depends strongly on the whole input dataset D and
therefore in no way gives the αs determination from that process only. We can however
use Eq. 6.3.4 to provide rough qualitative estimates of the pull of individual datasets
and in particular whether assigning them a bigger weight in the fit would result in
smaller or bigger total values of αs

(
M2

Z

)
. The minima of the partial χ2 values as

a function of αs are shown in Fig. 6.3, with the experiments grouped by physical
process. The uncertainties are computed as standard deviations over the minima from
each curve, as explained in 6.2.2. We note that Fig. 6.3 must be interpreted carefully:
The minimum values do not correspond neither to the result of the αs determination
with only that process (which would result in much larger uncertainties) nor to the
preferred value of αs taking into account the rest of the data (which would exclude
values far from the global minimum value). The minimum values represent merely the
points where optimizing the partial error score for the process is most advantageous
in order to optimize the global error function Eq. 6.2.2. We will return to this point in
Sec 6.4. The number of experimental data points corresponding to each of the physical
processes is shown in Table 6.2.

A more insightful way of interpreting the per-process results is though the contri-
bution of the partial χ2

p per process to the total error function χ2: In Fig. 6.4 we show
the cumulative difference between the χ2

p of each individual processes and its value
computed at the global best fit αs

(
M2

Z

)
, always using the central PDF from one of

the batches, and neglecting the effect of the uncertainties that are correlated between
processes. We observe both at NLO and NNLO that the LHC data significantly con-
tributes to constraining αs. In particular, it is interesting to note that the 13 data
points from top pair production data make a large contribution to the total χ2 outside
the best fit region, even though the dataset is composed by almost 4000 points (see
Table 6.2). The interpretation of this fact is that there is a small interval of possible
values of αs where the top data is consistent with the rest of the data entering the fit.
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Figure 6.3: minima of the partial χ2 (see text) at NLO and NNLO for each family of
experiments determined with the MC replica method. For the total dataset, this corresponds
to the global best fit αs

(
M2

Z

)
.

NLO NNLO
Z pT 120 120
Jets 164 164
Top 13 13
FT DY 189 189
LHC DY 253 273
Collider DIS (HERA) 1221 1211
FT lepton DIS 973 973
FT neutrino DIS 492 492
Total 3950 3865

Table 6.2: Number of points entering the fits at NLO and NNLO, grouped per physical
process.

6.3.5 Tests of the methodology

Our determination of αs results in a remarkably small PDF uncertainty of about
0.4%, which is comparable with the uncertainties of the most precise determinations
that enter the PDG average [23]. This clearly indicates that the theory uncertainties
that are not presently estimated in our procedure may be significative. We provide
rough estimates of the theory uncertainties in Sec. 6.3.6. However, in view of the
level of precision we find, we need to analyze in detail the procedural aspects of the
correlated replica method described in Sec. 6.2 that could significatively increase the
uncertainty in our result. On top of the finite size uncertainties described in Sec. 6.2.2,
we have estimated the uncertainties induced by the t0 method to treat normalization
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Figure 6.4: Differences between the χ2
p at αs

(
M2

Z

)
and its value at the central best-fit αs

at NNLO (left) and NLO (right). Negative differences are ignored.

uncertainties [114], the fact that we fit quadratic polynomials, as described in Sec 6.2.2,
which do not necessarily model the error function χ2(αs) away from the minimum and
the criteria used to select the curves, explained in Sec.6.2.2. We find that all these
effects induce changes on the final value of αs

(
M2

Z

)
that are much smaller than our

estimate of the PDF uncertainty on αs

(
M2

Z

)
and therefore do not change our final

determination.

Effect of the curve selection settings

The selection algorithm in Sect. 6.2.2 contains some arbitrariness: Specifically in the
range of fitted values of αs

(
M2

Z

)
and the in the criteria to discard a curve with too

few points. We now vary these settings within reasonable ranges to probe their effect.
We use as input the combined three batches of fits at NNLO from where we obtained
our main result, Eq. 6.3.2. To probe the stability of the curve selection, instead of the
criterion in Eq 6.2.11, we simply fix the minimum required number of points that must
have converged in each curve, Nminpts out of the 21 values of αs we fit, and repeat
the determination of αs for different fixed values of Nminpts. The results are presented
in Table 6.3. The results show that the dependence of the central result with the
number of selected curves is always much smaller than the PDF uncertainty, while the
PDF uncertainty itself changes by around 15% in reasonable ranges where we select
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a sufficient number of curves. These variations are an estimate of the magnitude
of the uncertainty on the PDF uncertainty itself. The PDF uncertainty decreases
significatively when we tighten the selection (e.g. by requiring that each curve contains
18 out of 21 points), but at the cost of match reduced statistics. We conclude that
our results is stable upon changes in the arbitrary choices in the selection.

NNLO result
Nminpts ≥ 18 mean 0.11842

error 0.00031 (0.26%)
n 12

Nminpts ≥ 15 mean 0.11844
error 0.00044 (0.37%)
n 92

Nminpts ≥ 6 mean 0.11845
error 0.00052 (0.44%)
n 379

All selected mean 0.11844
error 0.00056 (0.47%)
n 400

Table 6.3: Variation of the results with the minimum number of converged PDF replicas
required to select a curve, out of the 21 that were attempted, one for each value of αs. The
rows "mean" and "error" show the central value and standard deviation (PDF uncertainty) of
the minima of the selected curves. The third row "Nminpts ≥ 6" is the final selection Eq. 6.3.2.
The row n shows the total number of selected curves entering the determination.

We also check the dependence on the values of αs that are farthest from the best
fit value. Our best fit should be independent of the PDF fits for αs values that
are far from it, as long as the parabolic behaviour of χ2(αs) can be resolved above
the statistical fluctuations. To test that this is in fact the case, we repeat the αs

determination removing the several αs value that are farthest from the best fit from
consideration. That is, instead of fitting αs from all the 21 different values in the
range αs

(
M2

Z

)
∈ [0.106, 0.130], we select a smaller range by trimming the values

where the absolute difference with our central result Eq 6.3.2 |αs

(
M2

Z

)
−αNNLO

s (MZ)|
is greatest. We present the results in Table 6.4. We confirm that the central values
are consistent within uncertainties even if we only fit half of the points. The resulting
PDF uncertainties are also within ten percent. The uncertainties only start growing
we trim the 15 most distant values of αs and fit the 6 central points only. In this case,
the selection criterion Eq. 6.2.11 (which is applied after trimming the distant values
in αs) only selects 10 curves.

Effect of the t0 procedure

The t0 procedure (see Sec 5.1.2) introduced in Ref [114] implements an unbiased es-
timate of the best fit PDF when the input experimental data contains normalization



106 CHAPTER 6. A DETERMINATION OF αs

Total
Default mean 0.11845

error 0.00052 (0.44%)
n 379

Trim one mean 0.11847
error 0.00049 (0.41%)
n 290

Trim two mean 0.11846
error 0.00045 (0.38%)
n 218

Trim 5 farthest mean 0.11852
error 0.00051 (0.43%)
n 290

Trim 10 farthest mean 0.11869
error 0.00046 (0.39%)
n 32

Trim 15 farthest mean 0.11822
error 0.00079 (0.67%)
n 10

Table 6.4: Variation of the result at NNLO as we discard the values of αs in the fitted range
that are furthest from the best fit. The rows "mean", "error" and n have the same meaning
as in Table 6.3.

uncertainties. The procedure makes the covariance matrix entering Eq. 6.2.2 depen-
dent on the so called t0 PDF set, which is simply the central PDF from a previous fit.
All multiplicative uncertainties, i.e. proportional to the central value of the measured
data, are made instead made proportional to the theory predictions using the t0. The
fits are iterated fit is statistically equivalent to the previous iteration (that is, the
differences are much smaller than the PDF uncertainties).

We first demonstrate that the t0 procedure produces a both necessary and large
correction on the αs determination. In Fig. 6.5 we have used the PDFs from one
of the NNLO batches (which were fitted with the t0 methods which is standard in
our fits) and minimized the error function using instead the unmodified experimental
covariance matrix. That is, we have replaced the experimental covariance matrix
(where the normalizations ) with the t0 covariance matrix in Eq. 6.2.4 but not in
Eq. 5.1.26. We see that all minima are shifted towards smaller values of αs

(
M2

Z

)
and

the fit we obtain, αs

(
M2

Z

)(expχ2) = 0.114 ± 0.001 is very far from the result obtained
when the normalization uncertainties are treated correctly Eq.6.3.2 in units of the
PDF uncertainties. While this is inconsistent since we are optimizing αs for a different
quantity than the PDF fit (redoing the excise optimizing the uncorrected definition of
χ2 has a prohibitive computational cost), it illustrates that a correct treatment of the
normalization uncertainties is necessary to achieve a correct determination.
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Figure 6.5: Like 6.2 but for one batch of NNLO fits, using the experimental covariance
matrix in in the minimization of αs instead of the t0 one.

The large effect of the t0 procedure on the resulting value of αs suggests that there
may also be a dependence on the precise choice of the t0 PDF that is used in the fits:
Even though the fits are iterated until the changes in the t0 PDF are small compared
to the PDF uncertainties, this doesn’t necessarily ensure that the finite precision with
which we determine the t0 PDF (i.e. the precision on the central PDF) does not induce
a measurable systematic change on αs. Therefore we need test to test explicitly that
the best fit value of αs, which depends on the t0 PDF trough the covariance matrix
in Eq. 6.2.2 is also not significatively affected. For example changes in the less well
constrained jet normalizations might change the global preferred value of αs though
their pull on the gluon PDF.

We have performed the following test: Using the three batches of NNLO fits f (α,r)
(1) ,

f
(α,r)
(2) and f

(α,r)
(3) we have performed three times combination procedure described in

Sec.6.2.2, where each time we have used a different t0 set when finding the best αs in
Eq. 6.2.4, namely the central value of each of the three batches for each value of αs.
Note that using the same t0 set for all batches is in fact more consistent that using
a different one since the values of the error function for each point can be compared
more meaningfully when selecting points in Eq. 6.2.12. We present the results in
Table 6.5. Since we observe no changes in the results, we may safely conclude that the
t0 procedure does not add significative procedural uncertainties to our result, while
however it is crucial to apply it to correct for normalization uncertainties.

mean error n
First t0 0.11844 0.00052 (0.44%) 379
Second t0 0.11845 0.00052 (0.44%) 379
Third t0 0.11841 0.00051 (0.43%) 356

Table 6.5: Results from the combination of three batches of fits at NNLO using different t0
variations. The mean and error are the results of the determination, as explained in Sec. 6.2.
n is the number of curves selected following Sec 6.2.2.
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Effect of the parabolic fit

Our procedure is based on obtaining smooth curves of the dependence of the error
function on αs for each for each of the fitted replicas. These curves have a minimum
in the fitted range, and consequently we can expand in Taylor polynomials of second
degree around the minimum. This is likely a good approximation as shown in Fig. 6.1.
We take advantage of the smoothness of the profiles by reducing the number of αs

variations we need to produce (and that are costly in the NNPDF framework). Indeed
if we follow the procedure as described, but simply take the sample minimum over αs

of the error function samples Eq. 6.2.5 instead of producing the quadratic fit Eq. 6.2.6.
In Sec. 6.3.5 we already demonstrated that our result does not depend strongly on

the fitted range.
Here we demonstrate quantitatively that the quadratic approximation does not in-

troduce procedural uncertainties that are of importance in comparison to the PDF un-
certainties. We first perform a simple qualitative test: Any transformation χ2(αs) →
χ2(f(αs)) where f is sufficiently smooth and monotonic in the relevant range should
also have the same minimum when replacing αs → f(αs) in Eq. 6.2.4. We consequently
expect to also get the same minimum value αmin(r)

s when making the replacement in
the parabolic fit Eq. 6.2.6. We have made this test for f = exp and f = log, and show
the results in Table 6.6. In both cases the results are within the PDF uncertainties.
This is especially notable in the case of log since its Taylor expansion has a small
convergence radius at log(αs) ∼ log(0.1).

Total
log mean 0.11813

error 0.00053 (0.45%)
n 379

exp mean 0.11849
error 0.00051 (0.43%)
n 345

default mean 0.11845
error 0.00052 (0.44%)
n 379

Table 6.6: αs determination with transformed input to the error function. For the first
row we fit χ2(exp(αs)), for the second χ2(log(αs)). In the third our standard determination
is presented for comparison. The rows "mean", "error" and n have the same meaning as in
Table 6.3.

We also check that the quadratic approximation is in fact sufficient and no higher
order terms are needed to describe the error function χ2(αs) in the fitted range. In
particular, we wish confirm that fitting a cubic polynomial does not improve the
model. For this test, we employ Akaike Information Criterion (AIC)[200]. The AIC
provides an estimate of the expected relative distance between the fitted model and
the unknown true mechanism [201]. The AIC score balances goodness of fit against
simplicity of the model. A lower score corresponds to a lower expected distance (more
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precisely, lower KullbackLeibler divergence). We may use it to test whether it is
advantageous to include extra orders in the Taylor expansion by comparing the AIC
score from our fit with quadratic polynomials Eq. 6.2.6 to the score obtain by fitting
cubic polynomials instead. The AIC score is given by

AIC = 2k − 2 logL+ 2k(k + 1)
n− k − 1

(6.3.5)

where k is the number of degrees of freedom, n is the number of fitted points and
log(L) is the log-likelihood associated to the model. For a least squares fit, it is given,
up to constant terms, by the sum in quadrature of the residues:

log(L)(r) =
n∑
α

(χ2(r)(αs) − χ2(r,α))2 + const. (6.3.6)

where we have used the notation from Eqs. 6.2.5 and 6.2.6: We fit by least squares a
polynomial model χ2(r)(αs) to the values of the error function obtained from the PDF
fit χ2(r,α) for each curve indexed by r. We have compared in Table 6.7 the mean and
standard deviations over curves. Since the AIC score is comparable and lower for , we
conclude that there is no evidence that a more complex model is required.

AIC
Quadratic polynomial 169 ± 37
Cubic polynomial 173 ± 35

Table 6.7: AIC score comparing a quadratic and cubic fit to χ2(αs). The means and
standard deviations are taken over curves.

6.3.6 Estimation of theoretical uncertainties
The theory uncertainties on our αs determination include Missing Higher Order Un-
certainties (MHOU), electroweak effects, higher-twist, nuclear corrections and missing
mass corrections, amongst others. Here we only estimate a bound on the MHOU, and
leave a more complete analysis of the issue to further studies.

We may obtain a bound on the MHOU by comparing the results at NLO and
NNLO. Our results differ by

∆αpert
s ≡ |αNNLO

s − αNLO
s | = 0.0022 . (6.3.7)

By taking half the difference between the NLO and NNLO results, we obtain a
conservative estimate of the NNLO uncertainty of

∆NNLO = 0.0011 . (6.3.8)

This estimate is significatively lager than the PDF uncertainty. Therefore it indi-
cates that the theoretical uncertainties are at the very least comparable in size to the
PDF uncertainties we can estimate reliably as demonstrated in the previous section.
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We conclude that we have reached the limit to the current framework for extracting
αs from hadronic data, and that further progress must necessarily account for the
Missing Higher Orders quantitatively. In Sec 6.5 we speculatively outline a possible
method to do so.

6.4 αs determination from a partial dataset

We now return our attention to the results from the partial χ2, Fig 6.3 and interpret
more carefully the results from the partial χ2 fits. While the following discussion
applies to any fit of a theoretical parameter from hadronic data, we restrict ourselves
to determinations of αs for concreteness.

Two categories of determinations based on hadronic measurements enter the World
Average: Those based on PDFs [202, 203, 204, 205], which are essentially obtained by
optimizing Eq 6.2.2 as a function of αs, and the tt̄ production, currently including only
the CMS measurement at 7 TeV [193], which is instead based on minimizing over a
χ2 function that considers explicitly the tt̄ data only, Eq 6.3.4 (we call this the partial
χ2 method). We shall discuss the relation between these categories, and also try to
elucidate the noticeable fact that determinations of αs based on an hadronic dataset,
such as Ref [193] as well as more recent ones like Ref [189], give significatively different
results from the determinations based on the PDFs that they use as input to compute
the predictions in Eq. 2.8.1.

6.4.1 The Partial χ2 method
Several recent determinations of αs based on hadronic data [193, 192, 191, 190, 189,
188] implement the following procedure, which we shall dub Partial χ2:

1. Consider some experimental measurement of hadronic data, P. For example, tt̄
production [193, 190], Prompt photon events [192] jet production [191, 189], and
Z+jet production [188].

2. Compute theory predictions at discrete values of αs, following Eq. 2.8.1 and
suitably interpolating the results from PDF sets fitted with different values of
αs (i.e. where αs(MZ) is a fixed parameter in Eq. 6.2.2).

3. Construct a profile χ2
P(αs) characterizing the agreement between data and the-

ory, Eq 6.3.4.

We point out that the recommendation [4] for estimating αs uncertainties on the
PDFs, of estimating the final result with an upper and a lower PDF variation of
αs(MZ) does not apply when fitting αs itself. In this case the value of αs should be
kept matched with the rest of the calculation. Note that this does not imply that
theory parameters cannot be fixed in PDF fits by default: For example the value of
αs itself is fixed in the PDF4LHC recommendation [4] to a value consistent with the
PDG average [23] on the grounds that it takes into account more information than
that provided by hadronic data; we may trade some internal consistency of the input
D within the PDF fitting framework with potentially more reliable external constrains
on the theory parameters. On the other hand, theoretical parameters that are to be
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fitted do certainly have to be varied consistently in the PDFs. This is a required
condition, but, as we argue next, not sufficient.

We now discuss the relation between the partial χ2 method we just described and
the dataset used to fit the PDF by optimizing the global χ2, Eq. 6.2.2. In particular
it is pertinent to examine why does the partial χ2 appear to constrain αs in all the
examples above. That is, why is the value of χ2

p [αS ,P] different at different values of
αs?

6.4.2 Simultaneous PDF and αs determination from a partial
dataset

We note that if the only data used to fit the PDFs was any of the partial datasets above
(such as e.g. tt̄ production), so that D = P then we would certainly not have enough
constraints to determine the PDFs and αs simultaneously: In fact, we would be able
to obtain an adequate fit, characterized by χ2/(ND − 1) ≈ 1 for any reasonable value
of αs. We would however have big PDF uncertainties, associated to the kinematic
regions that are not constrained by P. For example if we fitted PDFs to tt̄ production
data only, we could obtain a good fit at a higher value of αs(MZ) by compensating
it with a reduced gluon momentum fraction large x as we will show next in a more
general situation. Therefore for D = P, the partial χ2 in Eq. 6.3.4 is flat and does not
allow to determine αs (in this case, χ2

P is also the global χ2, Eq. 6.2.2).
It follows that for these relatively small datasets, the χ2

p [αS ,P] profile funda-
mentally measures the disagreement between the partial data set P and the dataset
included in the PDF fit, D, as a function of αs.

6.4.3 Inconsistency of the partial χ2 method

The partial χ2 method neglects the fact that the dataset used in the PDF fits, D,
constrains αs itself, i.e. that the minimum of Eq. 6.2.2 adopts significantly different
values for different values of αs. That is, given the measurement P, if one makes
enough assumptions on the input data of the PDFs to be able to extract αs(MZ) with
competitive uncertainties, then the prior over αs is not uniform. One cannot simply
disregard the constrains from D on the theory parameters {α} while utilizing them for
the PDF parameters {θ}. In particular, this can lead to evident inconsistencies such as
the value selected by the partial χ2 method being excluded by the PDF on which the
theoretical prediction Eq 2.8.1 is based. This is then a logical contradiction, because
the result, which, as we have shown in Sec. 6.4.2, is based on the agreement with D, is
grounded on a prior that is internally inconsistent to begin with. Moreover, the best
fit PDFs away from the global minimum in ({α}, {θ}) are subject to a large degree of
arbitrariness: In an ideal PDF fit where all theory and data are correct, every dataset
has a χ2 per degree of freedom, χ2/d.o.f ≈ 1. However, when not all constraints can be
satisfied simultaneously (e.g. because the wrong value of αs has been given as input)
the result of the fit depends on the number of points belonging to each particular
dataset: The smaller a dataset is (in comparison to others which cannot be fitted
simultaneously), the less advantageous is it for the global figure of merit Eq. 6.2.2 to
bend the PDF in order to accommodate it. This is clear in the case of the tt̄ data
in the NNPDF 3.1 [12] fits. The default dataset includes a total of 26 tt̄ production
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data points corresponding to the ATLAS [149, 150, 151] and CMS [161, 162, 163]
measurements of the total cross sections and differential distributions, computed at
NNLO [90, 91](see Ref [12] for details). The tt̄ data has a large sensitivity to αs but a
low statistical weight in the fit (26 points to be compared to 3979 in total). Therefore
its description (i.e. the partial χ2, Eq. 6.3.4) deteriorates rapidly as we move move αs

away from the best fit value. However, we can modify the assumptions on D insisting
that the tt̄ data is described at any value of αs. For example we set αs(MZ) = 0.121
where the top data is not so well described in a default NNPDF fit that optimizes
Eq 6.2.2 on a large dataset (we have χ2

tt̄
/d.o.f. = 1.42) and increase the statistical

weight of the top data by fitting 15 identical copies of it. The effect of the reweighting is
to greatly improve the description of tt̄ (the partial χ2 becomes χ2

tt̄
/d.o.f. = 1.02) while

slightly deteriorating the global χ2. The most significative change between the default
fit and that with increased weight happens in the gluon PDF, which is nevertheless
compatible within PDF uncertainties, as we show in Fig. 6.1. Indeed, because of the
high degeneracy in the space of PDF parameters, {θ}, important variations in the
input assumptions (that e.g. change drastically the partial χ2) can be reabsorbed into
relatively small changes in the PDFs (both in terms of deterioration of the global χ2

and distances in PDF space). In this way we have demonstrated that the partial χ2

does not measure significant physical properties of the hard cross section, but rather
properties of the PDF minimization.

In summary, we propose that the most statistically rigorous way to produce an αs

determination from the measurement P is to include it in a PDF fit and determine
simultaneously αs and the PDFs based on the global χ2 that now includes P as well
as the rest of the data D. Therefore if P was already included in the D the result
from optimizing the global χ2 profile Eq 6.2.2 would be unchanged. Since there is no
way to disentangle the D dependence from Eq. 2.8.1, this method is no more PDF
dependent than the partial χ2 minimization, but it solves the shortcomings that we
have described. The correction on the value of αs when P is included will either be
a small or point to a flaw in the theory, experiment description or fitting methodol-
ogy. An important advantage is that the process will then be treated using the full
fledged PDF fitting machinery (as opposed to a naive minimization of Eq. 6.2.2). In
particular, this takes care of implementing the correct treatment of the normalization
uncertainties, which has been observed to make a significant difference in an αs de-
termination (see Sec. 6.3.5). We conclude that it is questionable to consider hadronic
results as independent constrains on αS in World averages, rather than as corrections
to the results from the prior PDFs.

6.5 Preferred values

While we have concluded that the quantities suitable for inclusion in global averages
are those based on minimizing the global χ2 profile, Eq. 6.2.2, it is nevertheless in-
teresting to define a preferred αs value from a given dataset P. Some possible usages
include the assessment of the constraints provided by the measurement, and possi-
bly the study of the higher order corrections (e.g. one could take the dispersion over
ensemble of preferred values of a suitable set of processes as an estimate of Missing
Higher Order Uncertainty). We first list some desirable properties that such definition
should have.
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Figure 6.1: Comparison of gluon PDF between an NNLO-like global fit at NNLO
where we have set αs(MZ) = 0.121 and a fit with the only difference that the weight
with which the tt̄ production data enters the fit has been multiplied by 15. The
reweighting causes noticeable decrease in the gluon at large x (but yet roughly within
uncertaities) to accommodate the tt̄ data which is, which is then described optimally,
with χ2

tt̄
/d.o.f. = 1.02, to be compared to χ2

tt̄
/d.o.f. = 1.42 before the reweighing. The

improvement of the description of the tt̄ data comes at the cost of a deterioration in the
global χ2 (χ2/d.o.f = 1.215 before the reweighing and χ2/d.o.f = 1.229 afterwards).

• Independent on the relation between the number of points in the dataset of
interest, NP and those in the global dataset, ND. Clearly, if we are interested
in intrinsic physical properties, the number of points in the dataset should not
change the result.

• Explicitly depend on the global dataset used in the PDF fit D. Since, as discussed
in the previous section, in general we cannot get rid of the dependence on D, it
needs to be clearly acknowledged.

• Converge to the determination from P alone, in the sense described in Sec. 6.4.2
when it determines αs by itself. While this definition is likely more interesting for
smaller, experimentally cleaner, datasets, this is a logical asymptotic property.

The partial χ2 method discussed in Sec. 6.4.1 has none of these properties and therefore
it is not a particularly good definition of preferred value (it may however approximate
the third property reasonably well in practice). On the other hand, the exercise
illustrated in Fig 6.1 points at a definition that satisfies them:
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Preferred value of αs for the data P The value of αs that corresponds to the
minimum of the global χ2 over values of αs and PDF parameters {θ}, when
the PDF parameters are restricted to result in a good fit for P within its exper-
imental uncertainties, for all values of αs.

The value is preferred in the sense that the constraints from P take precedence
over those from D, in particular regardless of the number of points, thereby satisfying
the first requirement. Once the constrains from P are enforced, a global χ2 which
includes D is minimized, thus satisfying the second condition.

The main difficulty is to algorithmically specify what a good fit means: Intuitively if
the dataset if self consistent at a given value of αs, then we require that χ2

P/d.o.f ≈ 1.
If this is the case at every relevant value of αs then the partial χ2

P of this reweighed
fit is flat and αs is determined based on the agreement with D (but based on PDFs
that have been modified to accommodate P at all values of αs). If P determines αs

by itself (in the sense of Sec 6.4.2) then the partial χ2 will not be flat and will be used
to obtain αs. A suitable interpolating procedure between these two situations could
be obtained in the NNPDF framework by minimizing as a function of {θ} and αs

ERF = χ2 [{θ}, αs,D] + wχ2 [{θ}, αs,P] , (6.5.1)

where w is a large number. Because of the cross validation based regularization, the
effect of w will saturate either when we reach χ2

P/d.o.f ≈ 1, so that only the first
therm varies as a function of αs, or else, if P determines αs, the curvature of profile
will exclusively depend on the second term.

It remains to be studied whether these preferred values can be computed in prac-
tice.



Chapter 7

Conclusions and outlook

In this thesis we have presented several results that contribute to the improved un-
derstanding of the structure of the proton and related phenomenology. In Sec. 3.3
have presented MCH, a Monte Carlo to Hessian method that extends the range of
applicability of the NNPDF global analyses to situations where Hessian errors are re-
quired. It was also used to produce some of the PDF4LHC combined sets discussed in
Chapter 4. We have also presented a method, SM-PDF, that significatively improves
the computational efficiency of PDF error estimates. These developments open some
directions. MCH could be used to elucidate the relation between the Monte Carlo
uncertainties and dynamic tolerances (see Sec. 3.2.2) used by Hessian determinations
of PDFs. This in turn could prove useful to develop a new generation of closure tests
(see Sec 5.1.9) and related validation strategies. Methods similar to SM-PDF could be
used to obtain compact representations of cross section perturbative coefficients that
can be subsequentially combined with arbitrary PDFs.

The PDF4LHC15 sets represented a baseline for the state of art in PDF deter-
minations in 2015. This standard has been suppressed by the NNPDF3.1 analysis
presented in Chapter 5, which is currently unparalleled in the extent of the included
dataset, the sophistication of the theoretical treatment, and the level of validation of
the fitting methodology.

NNPDF3.1 has been used as a foundation of a precise determination of a strong
coupling constant, described in Chapter 6, which has also served to understand the
influence of the PDFs in the extraction of theory parameters.

Both the NNPDF3.1 analysis and the αs determination probe the limits of the
current NNPDF framework and evidence the necessity of extensive new developments,
both within the collaboration and elsewhere. For example, the issues described in
Sec. 5.4 required comprehensive and time consuming tests in order to be understood
and resolved. This highlights the need to develop better diagnostics in together with
the colleagues that provide us with the experimental and theoretical inputs.

The improvements in the PDF analysis have led to reductions in PDF uncertain-
ties that paradoxically has put into question the usefulness of the concept of PDF
uncertainty as it is currently utilized: There is increasing evidence (see e.g. sec 6.3.6)
that the theoretical uncertainties, which are currently not included in PDF determi-
nations, may in fact be dominant. Future generations of PDF fits should certainly
include quantitative estimates of theory uncertainties. The procedure to attain such
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estimates is not clear at the moment, however. The capability of performing scale
variations at NLO was recently implemented in the NNPDF code. Now a significant
amount of testing is required to understand the optimal range of variation of the scales
as well as the correlation model. The extension to NNLO is not easily achievable with
the current technology. We have outlined a possible alternative approach in Sec. 6.5.

The fitting methodology may seem less important when theory uncertainties pre-
dominate. This is however not the case. The ability to cleanly map a variation in the
input parameters, be it of scales or dataset weights, onto a variation of the PDF that is
not affected by defects in the minimization procedure will be crucial to be in position
to formulate a recipe to estimate the theory uncertainties. Currently we have some
evidence (see e.g. Sec 6.3.3) that a markedly better minimization might be achievable.
Additionally a more robust minimization may allow as to dispose of some unpalatable
aspects of our methodology such as preprocessing iterations (see Sec. 5.1.1), the diffi-
culty to impose positivity constraints (see Sec. 5.1.3), or the large amount of replicas
that are discarded (see Sec. 5.1.8 and a practical consequence in Sec. 6.2.2).

In conclusion, reaching a percent level precision in the determination of PDFs has
bred a new set of challenges.
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