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PHYSICS AT THE LHC



FACTORIZATION
THE PARTON LUMINOSITY

σX(s,M2
X) =

∑
a,b

∫ 1

xmin
dx1 dx2 fa/h1 (x1)fb/h2

(x2)σ̂qaqb→X
(
x1x2s,M2

X

)
σX(s,M2) =

∑
a,b

∫ 1

τ
dx
x
Lab
(
τ
x

)
σ̂
(
x, αs(M2

H)
)

=
∑

a,b
Lab ⊗ σ̂ab

• PARTON LUMINOSITY Lab(τ) =
∫ 1

τ
dx
x
fa/h1 (x)fb/h2

(τ/x) = fa ⊗ fb

• PARTONIC CROSS SECTION σ̂qaqb→X

EXAMPLE: THE DRELL-YAN PROCESS
(LEADING ORDER)

• HADRONIC C.M. ENERGY: s = (p1 + p2)2

• PARTONIC C.M. ENERGY: ŝ = x1x2s

• MOMENTUM FRACTIONS x1, 2 =
√

ŝ
s

exp±y; AT LEADING ORDER ŝ = M2



THE PDFS

(PDG 2016)

• MOMENTUM PROBABILITY DENSITY xfi(x) AT
TWO DIFFERENT SCALES (LEFT ⇒ LOW SCALE; RIGHT ⇒ HIGH SCALE)

• AS x ≥ 1 KINEMATIC CONSTRAINT fi(x) = 0

• VALENCE SUM RULES
∫
dx(u(x)− ū(x)) = 2

∫
dx(d(x)− d̄(x)) = 2.

• MOMENTUM SUM RULE
∑∫

dxxfi(x) = 1



PDF DETERMINATION
DATA → PARTON DISTRIBUTIONS

ISSUES:
TRIVIAL

• FROM PHYSICAL OBSERVABLES TO PDFS: SOLVE EVOLUTION EQUATIONS,
CONVOLUTE WITH PARTON-LEVEL CROSS-SECTIONS

• DISENTANGLING PDFS: CHOOSE A BASIS OF PDFS (2Nf QUARKS + 1 GLUON) & A SET OF
SUITABLE PHYSICAL PROCESSES TO DETERMINE THEM ALL

NONTRIVIAL

• (1) DETERMINE FUNCTIONS FROM A DISCRETE DATASET

• (2) DETERMINE A PROBABILITY FUNCTIONAL IN THE SPACE OF FUNCTIONS



THE NNPDF APPROACH
BASIC IDEA: MONTE CARLO SAMPLING

OF THE PROBABILITY MEASURE IN THE (FUNCTION) SPACE OF PDFS

• GENERATE A SET OF MONTE CARLO REPLICAS
σ(k) OF THE ORIGINAL DATASET σ(data)

⇒ REPRESENTATION OF P[σ] AT DISCRETE SET
OF POINTS IN DATA SPACE

• FIT A PDF REPLICA TO A DATA REPLICA

⇒ EACH PDF REPLICA f
(k)
i IS A BEST-FIT PDF

SET FOR GIVEN DATA REPLICA

• THE SET OF NEURAL NETS IS A REPRESENTATION
OF THE PROBABILITY DENSITY:

〈fi〉 =
1

Nrep

Nrep∑
k=1

f
(k)
i

SOLUTIONS
• (1) FUNCTIONS FROM DISCRETE DATA ⇒ NEURAL NETWORKS

• (2) PROBABILITY IN FUNCTION SPACE ⇒ MONTE CARLO



NEURAL NETWORKS
• EACH PDF REPLICA FITTED TO A DATA REPLICA
⇒ NEED BEST-FIT, COVARIANCE MATRIX IN PARAMETER SPACE NOT NEEDED

• CAN USE VERY LARGE PARAMETRIZATION

NEURAL NETWORKS

MULTILAYER FEED-FORWARD NETWORKS
• Each neuron receives input from neurons

in preceding layer and feeds output to neu-
rons in subsequent layer

• Activation determined by weights and
thresholds

ξi = g

(∑
j
ωijξj − θi

)
• Sigmoid activation function
g(x) = 1

1+e−βx

EXAMPLE: A 1-2-1 NN
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CURRENTLY: 2-5-3-1 NN FOR EACH OF 8 BASIS PDFS (37X8=296 FREE PARMS.)



PREPROCESSING
• PDFS ARE PARAMETRIZED WITH NEURAL NETWORKS TIMES

PREPROCESSING FUNCTION: fi(x) = xαi(1− x)βiNN(x)

• GOAL IS TO SPEED UP TRAINING WITHOUT BIASING RESULT

• αi, βi RANDOM REPLICA BY REPLICA WITH UNIFORM DISTRIBUTION IN RANGE

• RANGE DETERMINED SELF-CONSISTENTLY AS TWICE THE RANGE OF
EFFECTIVE EXPONENTS αeff,i =

ln fi(x)
ln 1/x

βeff,i =
ln fi(x)
ln(1−x)

EVALUATED AT x = 0.95, 0.65 (β); x = 10−6, 10−3 (α)
EFFECTIVE EXPONENTS FOR QUARK SINGLET VS. PREPROCESSING RANGE

100 & 1000 REPLICAS



GENETIC MINIMIZATION
RANDOM MUTATION OF THE NN PARAMETERS STARTING FROM RANDOM VALUES

• LARGE NUMBER OF MUTANT (∼ 100) PDF SETS GENERATED FROM PARENT

• FIGURE OF MERIT COMPUTED

• BEST-FIT KEPT & PASSED TO NEXT GENERATION

w → w +
ηrδ

N
rite
ite

CHOICES

• MUTATION RATE η

• POINTLIKE VS. NODAL MUTATION

• NUMBER (POINTLIKE) OR PROBABILITY
(NODAL) OF MUTATIONS

• TARGETED WT:
WEIGTHS pi = Ei/E

targ
i

• GA EPOCHS: Nmut
gen



NN TRAINING: EXAMPLE
• HIGHLY REDUNDANT PARAMETRIZATION

• COMPLEXITY INCREASES AS THE FITTING PROCEEDS

• ⇒ THE BEST FIT IS NOT THE ABSOLUTE MINIMUM:
MUST LOOK FOR OPTIMAL LEARNING POINT

UNDERLEARNING



NN TRAINING: EXAMPLE
• HIGHLY REDUNDANT PARAMETRIZATION

• COMPLEXITY INCREASES AS THE FITTING PROCEEDS

• ⇒ THE BEST FIT IS NOT THE ABSOLUTE MINIMUM:
MUST LOOK FOR OPTIMAL LEARNING POINT

PROPER LEARNING



NN TRAINING: EXAMPLE
• HIGHLY REDUNDANT PARAMETRIZATION

• COMPLEXITY INCREASES AS THE FITTING PROCEEDS

• ⇒ THE BEST FIT IS NOT THE ABSOLUTE MINIMUM:
MUST LOOK FOR OPTIMAL LEARNING POINT

OVERLEARNING



OPTIMAL FIT: CROSS-VALIDATION
GENETIC MINIMIZATION:
AT EACH GENERATION, χ2 EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

• WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT



OPTIMAL FIT: CROSS-VALIDATION
GENETIC MINIMIZATION:
AT EACH GENERATION, χ2 EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

• WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT

GO!



OPTIMAL FIT: CROSS-VALIDATION
GENETIC MINIMIZATION:
AT EACH GENERATION, χ2 EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

• WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT

STOP!



OPTIMAL FIT: CROSS-VALIDATION
GENETIC MINIMIZATION:
AT EACH GENERATION, χ2 EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2 OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2 FOR THE DATA IN THE VALIDATION SET
(NOT USED FOR FITTING)

• WHEN THE VALIDATION χ2 STOPS DECREASING, STOP THE FIT

TOO LATE!



STOPPING CRITERIA

STOPPING FOR THE χ2 OF ONE REPLICA

• UP TO NNPDF2.3 “INCREASING” AND “DECREASING” TRAINING AND VALIDATION χ2

DEFINED IN TERMS OF THRESHOLD VALUES δtr AND δval:
INCREASE: χ2

val(Ngen + ∆) > χ2(Ngen + ∆) + δval

• FROM NNPDF3.0 USE LOOKBACK:
FIT IS RUN UP TO SOME LARGE # OF GA GENERATIONS
THEN ONE “LOOKS BACK” FOR ABSOLUTE MIN. OF VALIDATION χ2

• CHECK THAT RESULTS ARE INDEPENDENT OF THE LARGE # OF GA GENS

• CHECK THAT RESULTS ARE INDEPENDENT OF FLUCTUATIONS IN VALUE OF
ABSOLUTE MINIMUM
DIFFERENT STOPPING POINTS, BUT INDISTINGUISHABLE PDFS



CLOSURE TESTS:

THE BASIC IDEA

• ASSUME PDFS KNOWN: GENERATE FAKE EXPERIMENTAL DATA

• CAN DECIDE DATA UNCERTAINTY (ZERO, OR AS IN REAL DATA, OR . . . )

• FIT PDFS TO FAKE DATA

• CHECK WHETHER FIT REPRODUCES UNDERLYING “TRUTH”:

– CHECK WHETHER TRUE VALUE GAUSSIANLY DISTRIBUTED ABOUT FIT

– CHECK WHETHER UNCERTAINTIES FAITHFUL

– CHECK STABILITY

(INDEP. OF METHODOLOGICAL DETAILS)



LEVEL-0 CLOSURE TESTS
• ASSUME VANISHING

EXPERIMENTAL UNCERTAINTY

• MUST BE ABLE TO GET χ2 = 0

• UNCERTAINTY AT DATA POINTS TENDS TO ZERO
(NOT NECESSARILY ON PDF!)
DEFINE φ ≡

√
〈χ2
rep〉 − χ2,

EQUALS FIT UNCERTAINTY/DATA UNCERTAINTY; CHECK
φ→ 0

• BEST FIT ON TOP OF “TRUTH” IN DATA REGION

THE GLUON

χ2 VS TRAINING LENGTH
FRACTIONAL UNCERTAINTY VS TRAINING LENGTH



LEVEL-0, LEVEL-1 AND LEVEL-2
• LEVEL 0: FAKE DATA GENERATED WITH NO UNCERTAINTY
→ INTERPOLATION AND EXTRAPOLATION UNCERTAINTY

• LEVEL 1-2: FAKE DATA GENERATED WITH SAME UNCERTAINTY AS REAL
DATA (INCLUDING CORRELATIONS)

• LEVEL 1: NO PSEUDODATA REPLICAS:
⇒ REPLICAS FITTED TO SAME DATA OVER AND OVER AGAIN
→ FUNCTIONAL UNCERTAINTY DUE TO INFINITY OF EQUIVALENT MINIMA

• LEVEL 2: STANDARD NNPDF METHODOLOGY
⇒ REPLICAS FITTED TO PSEUDODATA REPLICAS
→ DATA UNCERTAINTY

• THREE SOURCES OF UNCERTAINTY COMPARABLE IN DATA REGION

THE GLUON: LEVEL 0, LEVEL 1 AND LEVEL 2



LEVEL-2: CENTRAL VALUES AND UNCERTAINTIES
THE GLUON: FITTED/”TRUE” • CENTRAL VALUES:

COMPARE FITTED VS. “TRUE” χ2

BOTH FOR INDIVIDUAL EXPERIMENTS
& TOTAL DATASET
FOR TOTAL ∆χ2 = 0.001± 0.003

• UNCERTAINTIES: DISTRIBUTION OF DEVIA-
TIONS BETWEEN FITTED AND “TRUE” PDFS
SAMPLED AT 20 POINTS BETWEEN 10−5 AND 1
FIND 0.699% FOR ONE-SIGMA,
0.948% FOR TWO-SIGMA C.L.

LEVEL-2 FITTED χ2 VS “TRUE”
NORM. DISTRIBUTION OF DEVIATIONS



LEVEL-2 STABILITY TESTS
• INCREASE MAXIMUM GA TRAINING LENGTH TO 80K

TESTS EFFICIENCY OF CROSS-VALIDATION

• INCREASE NN ARCHITECTURE TO 2-20-15-1
NUMBER OF FREE PARAMETRES INCREASE BY MORE THAT 10×

• CHANGE PDF PARAMETRIZATION BASIS
OLD: ISOTRIPLET, ū− d̄, s+ s̄, s− s̄;
NEW: ISOTRIPLET, SU(3)-OCTET, BOTH TOTAL (q + q̄) & VALENCE (q − q̄)

STATISTICAL EQUIVALENCE!
DISTANCES BETWEEN REF. AND NEW FIT:

difference in units of standard deviation of the mean

30K GENS VS 80K GENS 2.3 BASIS VS 3.0 BASIS 300 VS 37 PARMS



OPTIMIZATION I
MONTECARLO COMPRESSION

(Carrazza, Latorre, Kassabov, Rojo, 2015)

• CONSTRUCT A VERY LARGE REPLICA SAMPLE

• SELECT (BY GENETIC ALGORITHM) A SUBSET OF REPLICAS WHOSE STATISTICAL
FEATURES ARE AS CLOSE AS POSSIBLE TO THOSE OF THE PRIOR

• ⇒ FOR ALL PDFS ON A GRID OF POINTS
MINIMIZE DIFFERENCE OF: FIRST FOUR MOMENTS, CORRELATIONS; OUTPUT OF
KOLMOGOROV-SMIRNOV TEST (NUMBER OF REPLICAS BETWEEN MEAN AND σ, 2σ,
INFINITY)

• 50 COMPRESSED REPLICA REPRODUCE 1000 REPLICA SET TO PRECENT ACCURACY



OPTIMIZATION II
SMPDF COMPRESSION

• SELECT SUBSET OF THE COVARIANCE MATRIX CORRELATED TO A GIVEN SET OF PROCESSES

• PERFORM SVD ON THE REDUCED COVARIANCE MATRIX, SELECT DOMINANT EIGENVECTOR,
PROJECT OUT ORTHOGONAL SUBSPACE

• ITERATE UNTIL DESIRED ACCURACY REACHED

• COMPRESSED HESSIAN REPRESENTATION OF PROBABILITY DISTN.

• CAN ADD PROCESSES TO GIVEN SET; CAN COMBINE DIFFERENT OPTIMIZED SETS

• WEB INTERFACE AVAILABLE

(Carrazza, SF, Kassabov, Rojo, 2016)

• EG ggH, Hbb̄, W Emiss
T ⇒ 11 EIGENVECTORS

• STUDY CORRELATIONS OF PDFS TO DATA AND AMONG THEMSELVES!



ALL IS WELL?

CAN WE DO BETTER?

• ARCHITECTURE: DO WE NEED SEVEN NNS?

• PREPROCESSING: ARE RESULTS TRULY INDEPENDENT OF IT?

• MINIMIZATION: IS THE GA OPTIMIZED?

• STOPPING: OVER/UNDERLEARNING?

UNCERTAINTIES ARE FAITHFUL, BUT

ARE THEY THE SMALLEST WITH GIVEN DATA?

IS THERE NO INFORMATION LOSS?



EXTRAS



MORE EFFICIENT MINIMIZATION?
• LOOK AT αs DEPENDENCE (CORRELATED REPLICAS)

• SIGNIFICANT FLUCTUATIONS ABOUT PARABOLIC SHAPE
NOT DUE TO FINITE-SIZE MONTE CARLO SAMPLE

BATCH MINIMIZATION

• MINIMIZE EACH REPLICA MORE THEN ONCE & KEEP BEST RESULTS

• SIGNIFICANT STABILIZATION



PDF UNCERTAINTIES: HOW MUCH DO THEY VARY?
• COMPUTE PERCENTAGE PDF UNCERTAINTY ON ALL DATA INCLUDED IN GLOBAL FIT

• COMPARE GLOBAL FITS

PERCENTAGE PDF UNCERTAINTY ON PREDICTIONS
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• MEDIAN SIMILAR

• DISTRIBUTION VERY DIFFERENT!

• NNPDF: SMALLER MODE, BUT FAT TAIL ⇔ GREATER FLEXIBILITY



THE ∆χ2 PROBLEM

• TOLERANCE MIGHT COMPENSATE FOR MISSING FUNCTIONAL UNCERTAINTY

• BUT WHAT IS ∆χ2 FOR AN NNPDF FIT?

• CAN ANSWER USING HESSIAN CONVERSION! ∆χ2 = 16± 15

– NON-PARABOLIC BEHAVIOUR NEAR MINIMUM ON SCALE OF UNCERTAINTIES?

– INEFFICIENCY OF THE MINIMIZATION PROCEDURE?



CLOSURE-TESTING:
THE PARAMETRIZATION DEPENDENCE

GLUON PDF UNCERTAINTY NORMALIZED TO MSTW08

(C. Mascaretti, 2016)

• CLOSURE TEST PERFORMED WITH
DATA GENERATED BASED ON MST08
FUNCTIONAL FORM

• REFITTED EITHER WITH NNPDF OR
MSTW-CT FUNCTIONAL FORM

• LEVEL 0: VANISHING DATA UNCER-
TAINTY
– MSTW-CT: FIT HAS ZERO UN-

CERTAINTY
– NNPDF: ABOUT HALF OF TOTAL

UNCERTAINTY

• LEVEL 1: NOMINAL DATA UNCER-
TAINTY, BUT REPLICAS FITTED W/O
PSEUDODATA
– MSTW-CT: FIT HAS SMALL UN-

CERTAINTY
– NNPDF: ABOUT 2/3 OF FINAL

UNCERTAINTY

• LEVEL 2
– NNPDF UNCERTAINTY LARGER

THAN MSTW-CT
– NNPDF UNCERTAINTY SIMILAR

TO MSTW WITH TOLERANCE

“STANDARD” PARAMETRIZATION
MISSES INTERPOLATION &
FUNCTIONAL UNCERTAINTY?



MC ⇔ HESSIAN

• TO CONVERT HESSIAN INTO MONTECARLO
GENERATE MULTIGAUSSIAN REPLICAS
IN PARAMETER SPACE

• ACCURATE WHEN NUMBER OF REPLICAS
SIMILAR TO THAT WHICH REPRODUCES DATA

(Thorne, Watt, 2012)
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(Carrazza, SF, Kassabov, Rojo, 2015)

• TO CONVERT MONTE CARLO INTO HESSIAN, SAMPLE
THE REPLICAS fi(x) AT A DISCRETE SET OF POINTS &
CONSTRUCT THE ENSUING COVARIANCE MATRIX

• EIGENVECTORS OF THE COVARIANCE MATRIX AS A
BASIS IN THE VECTOR SPACE SPANNED BY THE REPLI-
CAS BY SINGULAR-VALUE DECOMPOSITION

• NUMBER OF DOMINANT EIGENVECTORS SIMILAR TO
NUMBER OF REPLICAS ⇒ ACCURATE REPRESENTATION



NONGAUSSIAN BEHAVIOUR

MONTE CARLO COMPARED TO HESSIAN
CMS W + c production

• DEVIATION FROM GAUSSIANITY E.G. AT
LARGE x DUE TO LARGE UNCERTAINTY +
POSITIVITY BOUNDS
⇒ RELEVANT FOR SEARCHES

• CANNOT BE REPRODUCED IN HESSIAN
FRAMEWORK

• WELL REPRODUCED BY COMPRESSED MC

• DEFINE KULLBACK-LEIBLER DIVERGENCE
DKL =

∫∞
−∞

P (x)
lnP (x)
lnQ(x)

dx

BETWEEN A PRIOR P AND ITS REPRESEN-
TATION Q

• DKL BETWEEN PRIOR AND HESSIAN
DEPENDS ON DEGREE OF GAUSSIANITY

• DKL BETWEEN PRIOR AND COMPRESSED
MC DOES NOT

CAN (A) GAUGE WHEN MC IS MORE ADVANTAGEOUS THAN HESSIAN;
(B) ASSESS THE ACCURACY OF COMPRESSION


