Recent results on NNPDF parton distribution and fragmentation functions

Electron Ion Collider User Group Meeting 2017

Emanuele R. Nocera

Rudolf Peierls Centre for Theoretical Physics - University of Oxford

University of Trieste - July 21 2017

Foreword

Guiding principle: leading-twist collinear factorisation

$$\mathcal{O}_I = \sum_{f=q,\bar{q},g} C_{If}(y,\alpha_s(\mu^2)) \otimes f(y,\mu^2) + \text{p.s. corrections} \qquad f \otimes g = \int_x^1 \frac{dy}{y} f\left(\frac{x}{y}\right) g(y)$$

2 Parametrisation: general, smooth, flexible at an initial scale Q_0^2 $xf_i(x,Q_0^2) = A_{f_i} x^{a_{f_i}} (1-x)^{b_{f_i}} \mathscr{F}(x,\{c_{f_i}\}) \qquad \mathscr{F}(x,\{c_{f_i}\}) \text{ is a neural network}$

A prescription to determine/compute expectation values and uncertainties

$$\begin{split} E[\mathcal{O}] &= \int \mathcal{D}\Delta f \mathcal{P}(\Delta f | data) \mathcal{O}(\Delta f) \quad V[\mathcal{O}] = \int \mathcal{D}\Delta f \mathcal{P}(\Delta f | data) [\mathcal{O}(\Delta f) - E[\mathcal{O}]]^2 \\ & \text{Monte Carlo: } \mathcal{P}(\Delta f | data) \longrightarrow \{\Delta f_k\} \\ E[\mathcal{O}] &\approx \frac{1}{N} \sum_k \mathcal{O}(\Delta f_k) \qquad V[\mathcal{O}] \approx \frac{1}{N} \sum_k [\mathcal{O}(\Delta f_k) - E[\mathcal{O}]]^2 \end{split}$$

Unpolarised PDFs NNPDF3.1	Helicity PDFs NNPDFpol1.1	Fragmentation functions NNFF1.0 (π , K , p)	
arXiv:1706:00428	[NP B887 276]	arXiv:1706.07049	
ALL PDF/FF sets are	available through LHAPDF: http:	//Ihapdf.hepforge.org/	
Emanuele R. Nocera (Oxford)	Recent results on NNPDF PDFs & FFs	July 21 2017 2 /	/ 26

1. NNPDF3.1 [arXiv:1706:00428, submitted to EPJC]

The dataset

A precise knowledge of the gluon PDF is required over all the range in x to exploit the full potential of the LHC

The gluon PDF at large x: $t\bar{t}$ differential distributions

ATLAS and CMS rapidity distributions at $\sqrt{s} = 8$ TeV Significant reduction of gg luminosity uncertainties at $M_X \ge \mathcal{O}(1)$ TeV e.g., at $M_X \sim 2$ TeV, uncertainties decrease from 13% to 5%

Impact of $t\bar{t}$ differential data similar to that of jet data though jet data analysed neglecting NNLO QCD corrections in the matrix element A precision determination of the gluon PDF at large x is now possible at NNLO the situation should only improve thanks to the recent NNLO jet calculation $t\bar{t}$ differential distributions are included in the NNPDF3.1 PDF release

see JHEP 1704 (2017) 044 and 1706.00428 for details

 Emanuele R. Nocera (Oxford)
 Recent results on NNPDF PDFs & FFs
 July 21 2017
 6 / 26

The gluon PDF at medium x: the Z-boson p_T distribution

ATLAS and CMS p_T distributions at $\sqrt{s} = 8$ TeV in various rapidity bins in the Z-peak region

NNLO/NLO K-factors 5%-10% depending on the rapidity/invariant mass region challenge: measurements have sub-percent experimental errors

Complementary information on the gluon PDF

e.g., at $M_X\sim 2$ TeV, uncertainties decrease from 13% to 8%

 $Z \ p_T$ distributions are included in the NNPDF3.1 PDF release

see 1705.00343 and 1706.00428 for details

Quark flavour separation from LHC data

High-precision W and Z production data from ATLAS, CMS and LHCb handle on quark/antiquark flavour separation

Largest impact on light quarks at large x provided by LHCb data error reduction by a factor 2 in NNPDF3.1 at $x\sim 0.1$

Combined effect of (LHC) CMS, LHCb and (Tevatron) D0 W, Z data improved determination of $x(u_V - d_V)$

see R. Thorne's talk at DIS2017 and 1706.00428 for details

The PDF ratio d_V/u_V at large x [EPJC76(2016)383]

$$\frac{d_V}{u_V} \xrightarrow{x \to 1} (1-x)^{b_d} V^{-b_u} V \xrightarrow{b_d} \frac{b_d}{c.r.} k \qquad \frac{F_2^n}{F_2^p} \xrightarrow{x \to 1} \frac{4(1-x)^{b_u}V + (1-x)^{b_d}V}{(1-x)^{b_u}V + 4(1-x)^{b_d}V} \xrightarrow{b_d} \frac{b_d}{c.r.} 1$$

$$case \ b_u_V \gg b_d_V : \ \frac{d_V}{u_V} \xrightarrow{x \to 1} \infty; \ \frac{F_2^n}{F_2^p} \xrightarrow{x \to 1} 4 \quad case \ b_u_V \ll b_d_V : \ \frac{d_V}{u_V} \xrightarrow{x \to 1} 0; \ \frac{F_2^n}{F_2^p} \xrightarrow{x \to 1} \frac{1}{4}$$
No predictive power from current PDF determinations, no discrimination among models unless
$$\frac{d_V}{u_V} \xrightarrow{x \to 1} k \text{ is built in the parametrisation (CT14, CJ16, ABM12)}$$

The EIC may measure the ratio F_2^n/F_2^p with high accuracy, provided neutron beams expected to be less prone to nuclear and/or higher twist corrections than fixed-target DIS Complementary measurements from the LHC (DY) and (particularly) the LHeC (DIS)

Emanuele R. Nocera (Oxford)

Recent results on NNPDF PDFs & FFs

In most PDF fits the strange PDF is suppressed w.r.t up and down sea quark PDFs effect mostly driven by neutrino dimuon data

A symmetric strange sea PDF is preferred by recent collider data in particular by ATLAS W, Z rapidity distributions (2011)

$$R_s(x,Q^2) = \frac{s(x,Q^2) + \bar{s}(x,Q^2)}{\bar{u}(x,Q^2) + \bar{d}(x,Q^2)} \left\{ \begin{array}{c} \sim 0.5 \text{from neutrino and CMS } W + c \text{ data} \\ \sim 1.0 \text{from ATLAS } W, Z \end{array} \right.$$

The new ATLAS data can be accommodated easily in the global fit increased strangeness, though not as much as in a collider-only fit some tension remains between collider and neutrino data

see R. Thorne's talk at DIS2017 and 1706.00428 for details

The strange PDF: K^{\pm} production in SIDIS at an EIC

red points: pseudodata at an EIC (based on PYTHIA + JETSET)

black curves: theory predictions (NNPDF2.0 + DSS07, NLO)

 $0.01 \le y \le 0.95, \sqrt{s} = 70.7 \text{ GeV}$ z integrated in the range [0.2, 0.8]

small $x: d\sigma^{K^+} \approx d\sigma^{K^-}$ large $x: d\sigma^{K^+} \gg d\sigma^{K^-}$ may constrain s^+ and s^-

drawback: K^{\pm} fragmentation a) study FFs separately b) analyse PDFs and FFs simultaneously

LHeC: direct sensitivity to scharm tagging in CC DIS $(W + s \rightarrow c)$

 π^{\pm} production in SIDIS at an EIC allow for a determination of $\bar{u}-\bar{d}$

The charm PDF: perturbative vs fitted

Parametrise the $c^+(x, Q_0^2)$, quark and gluon PDFs on the same footing take into account massive charm-initiated contribution to the DIS structure functions stabilise the dependence of LHC processes upon variations of m_c quantify the nonperturbative charm component in the proton (BHPS? sea-like?) Fitted charm found to differ from perturbative charm at scales $Q \sim m_c$ in NNPDF3.1 preference for a BHPS-like shape shape driven by LHCb W, Z data + EMC data

At $Q=1.65~{\rm GeV}$ charm carry 0.26 ± 0.42 % of the proton momentum but it is affected by large uncertainties, especially if no EMC data are included

Recent results on NNPDF PDFs & FFs

Beyond fixed-order accuracy

 Ndat
 NLO+NLL
 NLO
 NNLO+NLL
 NNLO

 3102
 1.111
 1.113
 1.108
 1.126

Resummed PDFs enhanced at small x, uncertainties reduced

Recent results on NNPDF PDFs & FFs

2. NNFF1.0 [arXiv:1706.07049, accepted for publication in EPJC]

The dataset

 CERN-LEP:
 ALEPH
 [ZP C66 (1995) 353]
 DELPHI
 [EPJ C18 (2000) 203]
 OPAL
 [ZP C63 (1994) 181]

 KEK:
 BELLE
 ($n_f = 4$)
 [PRL 111 (2013) 062002]
 TOPAZ
 [PL B345 (1995) 335]

 DESY-PETRA:
 TASSO
 [PL B94 (1980) 444, ZP C17 (1983) 5, ZP C42 (1989) 189]

 SLAC:
 BABAR
 ($n_f = 4$)
 [PRD88 (2013) 032011]
 SLD
 [PRD58 (1999) 052001]
 TPC
 [PRL61 (1988) 1263]

$$\frac{d\sigma^{h}}{dz} = \frac{4\pi\alpha^{2}(Q^{2})}{Q^{2}}F_{2}^{h}(z,Q^{2}) \quad h = \pi^{+} + \pi^{-}, K^{+} + K^{-}, p + \bar{p} \quad \text{possibly normalised to } \sigma_{\text{tot}}$$

$$N_{\text{dat}} = 428 \text{ (pions)} \qquad N_{\text{dat}} = 385 \text{ (kaons)} \qquad N_{\text{dat}} = 360 \text{ (protons)}$$
Emanuele B. Nocca (Oxford) Recent results on NNPDE PDEs & Es

From observables to fragmentation functions

$$e^{+}(k_{1}) + e^{-}(k_{2}) \xrightarrow{\gamma, Z^{0}} h(P_{h}) + X$$

$$q = k_{1} + k_{2} \qquad q^{2} = Q^{2} > 0 \qquad z = \frac{2P_{h} \cdot q}{Q^{2}}$$

$$F_2^h = \langle e^2 \rangle \left\{ C_{2,q}^{\rm S} \otimes D_{\Sigma}^h + n_f \mathcal{C}_{2,g}^{\rm S} \otimes D_g^h + \mathcal{C}_{2,q}^{\rm NS} \otimes D_{\rm NS}^h \right\}$$

$$\langle e^2 \rangle = \frac{1}{n_f} \sum_{q=1}^{n_f} \hat{e}_q^2 \qquad D_{\Sigma}^h = \sum_{q=1}^{n_f} D_{q^+}^h \qquad D_{\rm NS}^h = \sum_{q=1}^{n_f} \left(\frac{\hat{e}_q^2}{\langle e^2 \rangle} - 1 \right) D_{q^+}^h \qquad D_{q^+}^h = D_q^h + D_{\bar{q}}^h$$

Coefficient functions and splitting functions known up to NNLO [NPB 751 (2006) 18; NPB 749 (2006) 1; PLB 638 (2006) 61; NPB 845 (2012) 133] No sensitivity to individual quark and antiquark FFs

Limited sensitivity to flavour separation via the variation of \hat{e}_q with Q^2 $\hat{e}_u^2/\hat{e}_d^2(Q^2 = 10 \text{ GeV}) \sim 4 \Rightarrow D_{u^+}^h$, $D_{d^+}^h + D_{s^+}^h$; $\hat{e}_u^2/\hat{e}_d^2(Q^2 = M_Z) \sim 0.8 \Rightarrow D_{\Sigma}^h$ Flavor separation between uds and c, b quarks achieved thanks to tagged data Direct sensitivity to D_g^h only beyond LO, as $C_{2,g}^S$ is $\mathcal{O}(\alpha_s^2)$ Indirect sensitivity to D_g^h via scale violations in the time-like DGLAP evolution

Fit settings

Physical parameters: consistent with the NNPDF3.1 PDF set

$$\alpha_s(M_Z)=0.118,\ \alpha(M_Z)=1/128,\ m_c=1.51$$
 GeV, $m_b=4.92$ GeV

Solution of DGLAP equations: numerical solution in *z*-space as implemented in APFEL extensive benchmark performed up to NNLO [JHEP 1503 (2015) 046]

Parametrisation: each FF is parametrised with a feed-forward neural network (2-5-3-1) $Dh(Q_{1}, u) = NN(u) = NN(u)$

 $D_i^h(Q_0, z) = NN(x) - NN(1), \ Q_0 = 5 \text{ GeV}$

$$\begin{split} h &= \pi^+ + \pi^- & h &= K^+ + K^-, h = p + \bar{p} \\ i &= u^+, s^+, c^+, b^+, g & i &= u^+, d^+ + s^+, c^+, b^+, g \\ D_{u^+}^{\pi^\pm} &= D_{d^+}^{\pi^\pm} \text{ (isospin symmetry)} & \text{no further theoretical assumptions} \end{split}$$

we assume charge conjugation, from which $D_{a^+}^{\pi^+} = D_{a^+}^{\pi^-}$

we enforce positivity by construction, assuming quadratic NNs

initial scale above $m_{b},\,\mathrm{but}$ below the lowest c.m. energy of the data, avoid threshold crossing

Heavy flavours: heavy-quark FFs are parametrised independently at the initial scale Q_0 a matched GM-VFNS (like FONLL) may be required if $Q_0 < m_c$ [PRD 94 (2016) 034037]

Kinematic cuts: $z \to 0$: contributions $\propto \ln z$; $z \to 1$: contributions $\propto \ln(1-z)$

 $z_{\min} = 0.075 \ (\sqrt{s} = M_Z); \ z_{\min} = 0.02 \ (\sqrt{s} = M_Z); \ z_{\max} = 0.9$

17 / 26

kinematic corrections $\propto M_h/(sz^2)$ included exactly in the cross sections [PRD 73 (2006) 054020] Minimisation: CMA-ES, verfied with closure tests

Fit quality: π^+

NNLO theory				
Exp.	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$	remarks	
BELLE	70	0.09	lack of correlations	
BABAR	40	0.78	Ø	
TASSO12	4	0.87	small sample	
TASSO14	9	1.70		
TASSO22	8	1.91	} data fluctuations	
TPC	13	0.85	Ø	
TPC-UDS	6	0.49	Ø	
TPC-C	6	0.52	Ø	
TPC-B	6	1.43	Ø	
TASSO30	-	-	not fitted	
TASSO34	9	1.00	Ø	
TASSO44	6	2.34	data fluctuations	
TOPAZ	5	0.80	Ø	
ALEPH	23	0.78	Ø	
DELPHI	21	1.86	tension with OPAL	
DELPHI-UDS	21	1.54	tension with OPAL	
DELPHI-B	21	0.95	Ø	
OPAL	24	1.84	tension with DELPHI	
SLD	34	0.83	Ø	
SLD-UDS	34	0.52	Ø	
SLD-C	34	1.06	Ø	
SLD-B	34	0.36	Ø	
TOTAL	428	0.87	Ø	

Overall good description of the dataset Signs of tension OPAL vs DELPHI (inclusive) Anomalously small $\chi^2/N_{\rm dat}$ for BELLE

Dependence upon perturbative order: π^+

Exp.	N_{dat}	$\underset{\chi^2/N_{\rm dat}}{\rm LO}$	$_{\chi^2/N_{\rm dat}}^{\rm NLO}$	$_{\chi^2/N_{\rm dat}}^{\rm NNLO}$
BELLE	70	0.60	0.11	0.09
BABAR	40	1.91	1.77	0.78
TASSO12	4	0.70	0.85	0.87
TASSO14	9	1.55	1.67	1.70
TASSO22	8	1.64	1.91	1.91
TPC	13	0.46	0.65	0.85
TPC-UDS	6	0.78	0.55	0.49
TPC-C	6	0.55	0.53	0.52
TPC-B	6	1.44	1.43	1.43
TASSO30	-	-	-	-
TASSO34	9	1.16	0.98	1.00
TASSO44	6	2.01	2.24	2.34
TOPAZ	5	1.04	0.82	0.80
ALEPH	23	1.68	0.90	0.78
DELPHI	21	1.44	1.79	1.86
DELPHI-UDS	21	1.30	1.48	1.54
DELPHI-B	21	1.21	0.99	0.95
OPAL	24	2.29	1.88	1.84
SLD	34	2.33	1.14	0.83
SLD-UDS	34	0.95	0.65	0.52
SLD-C	34	3.33	1.33	1.06
SLD-B	34	0.45	0.38	0.36
TOTAL	428	1.44	1.02	0.87

Excellent perturbative convergence FFs almost stable from NLO to NNLO LO FF uncertainties larger than HO

Emanuele R. Nocera (Oxford)

July 21 2017 19 / 26

Dependence upon the dataset: π^+

NNLO theory		NNFF1.0	no BB	BB+LEP
Exp.	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$	$\chi^2/N_{\rm dat}$	$\chi^2/N_{\rm dat}$
BELLE	70	0.09	(4.92)	0.09
BABAR	40	0.78	(144)	0.88
TASSO12	4	0.87	0.52	(0.87)
TASSO14	9	1.70	1.38	(1.71)
TASSO22	8	1.91	1.29	(2.15)
TPC	13	0.85	2.12	(0.81)
TPC-UDS	6	0.49	0.54	(0.77)
TPC-C	6	0.52	0.74	(0.58)
TPC-B	6	1.43	1.60	(1.48)
TASSO30	-	-	-	-
TASSO34	9	1.00	1.17	(1.38)
TASSO44	6	2.34	2.52	(2.97)
TOPAZ	5	0.80	0.92	(1.72)
ALEPH	23	0.78	0.57	0.74
DELPHI	21	1.86	1.97	1.82
DELPHI-UDS	21	1.54	1.56	1.42
DELPHI-B	21	0.95	1.01	0.95
OPAL	24	1.84	1.75	1.92
SLD	34	0.83	0.87	0.95
SLD-UDS	34	0.52	0.53	0.63
SLD-C	34	1.06	0.69	0.96
SLD-B	34	0.36	0.49	0.37
TOTAL	428	0.87	1.06	0.82

no BB: larger uncertainties; different gluon shape and different light flavour separation BB+LEP: comparable uncertainties; slightly different size of gluon and light quarks

Emanuele R. Nocera (Oxford)

Recent results on NNPDF PDFs & FFs

July 21 2017 20 / 26

Dependence upon kinematic cuts: π^+

Excellent consistency in the overlapping region Significantly varied FF shapes at low z Stability upon inclusion of NNLO corrections

NNFF1.0		no ci	uts	con. cuts	
$z_{\min}^{(M_Z)}$	z_{\min}	$z_{\min}^{(M_Z)}$	z_{\min}	$z_{\min}^{(M_Z)}$	z_{\min}
0.02	0.075	0.00	0.00	0.05	0.10

Recent results on NNPDF PDFs & FFs

Fit quality vs perturbative order: K^+

Exp.	N_{dat}	$\underset{\chi^2/N_{\rm dat}}{\rm LO}$	$_{\chi^2/N_{\rm dat}}^{\rm NLO}$	$_{\chi^2/N_{\rm dat}}^{\rm NNLO}$
BELLE	70	0.21	0.32	0.33
BABAR	43	2.86	1.11	0.95
TASSO12	3	1.10	1.03	1.02
TASSO14	9	2.17	2.13	2.07
TASSO22	6	2.14	2.77	2.62
TPC	13	0.94	1.09	1.01
TPC-UDS	-	-	-	-
TPC-C	-	-	-	-
TPC-B	-	-	-	-
TASSO30	-	-	-	-
TASSO34	5	0.27	0.44	0.36
TASSO44	-	-	-	-
TOPAZ	3	0.61	1.19	0.99
ALEPH	18	0.47	0.55	0.56
DELPHI	22	0.28	0.33	0.34
DELPHI-UDS	22	1.38	1.49	1.32
DELPHI-B	22	0.58	0.49	0.52
OPAL	10	1.67	1.57	1.66
SLD	35	0.86	0.62	0.57
SLD-UDS	35	1.31	1.02	0.93
SLD-C	34	0.92	0.47	0.38
SLD-B	35	0.59	0.67	0.62
TOTAL	395	1.02	0.78	0.73

Excellent perturbative convergence FFs almost stable from NLO to NNLO LO FF uncertainties larger than HO

Emanuele R. Nocera (Oxford)

July 21 2017 22 / 26

Fit quality vs perturbative order: p

Exp.	N_{dat}	$_{\chi^2/N_{ m dat}}^{ m LO}$	$\chi^2/N_{\rm dat}$	$_{\chi^2/N_{\rm dat}}^{\rm NNLO}$
BELLE	20	0.10	0.31	0.50
BABAR	43	4 74	3 75	3 25
TASSO12	3	0.69	0.70	0.72
TASSO14	9	1.32	1.25	1.22
TASSO22	9	0.98	0.92	0.93
TPC	20	1.04	1.10	1.08
TPC-UDS	-	-	-	-
TPC-C	-	-	-	-
TPC-B	-	-	-	-
TASSO30	2	0.25	0.19	0.18
TASSO34	6	0.82	0.81	0.78
TASSO44	-	-	-	-
TOPAZ	4	0.79	1.21	1.19
ALEPH	26	1.36	1.43	1.28
DELPHI	22	0.48	0.49	0.49
DELPHI-UDS	22	0.47	0.46	0.45
DELPHI-B	22	0.89	0.89	0.91
OPAL	-	-	-	-
SLD	36	0.66	0.65	0.64
SLD-UDS	36	0.77	0.76	0.78
SLD-C	36	1.22	1.22	1.21
SLD-B	35	1.12	1.29	1.33
TOTAL	360	1.31	1.23	1.17

Excellent perturbative convergence FFs almost stable from NLO to NNLO LO FF uncertainties larger than HO

Emanuele R. Nocera (Oxford)

July 21 2017 23 / 26

Comparison with other recent FF sets: π^+ and K^+

4. Conclusions

Summary

Unpolarised PDFs: full exploitation of the LHC harvest

- increased precision over an extended kinematic region
- theoretical improvements (NNLO, resummations, EW corrections ...)
- complementarity with the EIC program

2 Polarised PDFs: only a polarised EIC could provide a significant advancement

- unprecedented kinematic reach
- check modified evolution at small x
- meanwhile, make the most from the RHIC spin physics program

S Fragmentation Functions: significant phenomenological effort

- improve the methodological sophistication of current analyses
- (ongoing) make the most from LHC data
- ▶ (ongoing) cross-talk between FFs and PDFs requires simultaneous analyses of both

Summary

Unpolarised PDFs: full exploitation of the LHC harvest

- increased precision over an extended kinematic region
- theoretical improvements (NNLO, resummations, EW corrections ...)
- complementarity with the EIC program

2 Polarised PDFs: only a polarised EIC could provide a significant advancement

- unprecedented kinematic reach
- check modified evolution at small x
- meanwhile, make the most from the RHIC spin physics program

③ Fragmentation Functions: significant phenomenological effort

- improve the methodological sophistication of current analyses
- (ongoing) make the most from LHC data
- ▶ (ongoing) cross-talk between FFs and PDFs requires simultaneous analyses of both

Thank you