Collinear polarised PDFs: recent results on helicity and transversity extractions

5th International Workshop on Transverse Polarization Phenomena in Hard Processes

Emanuele R. Nocera

School of Physics and Astronomy - University of Edinburgh

Laboratori Nazionali di Frascati – 13th December 2017

Foreword: (collinear) leading twist PDF map

Foreword: (collinear) leading twist PDF map $f_1 =$ parton $g_1 =$ PShadron $h_1 = -$ $\phi_{ij}(k;P,S) = 2\pi \sum \int \frac{d^3 \mathbf{P}_X}{2E_X} \delta^4(P-k-P_X) \langle P, S | \bar{\psi}_j(0) | X \rangle \langle X | \psi_i(0) | P, S \rangle$ $\phi(x,S) = \frac{1}{2} \left[\mathbf{f_1}(x) \mathbf{/}_{+} + S_L g_1(x) \gamma^5 \mathbf{/}_{+} + \mathbf{h_1} i \sigma_{\mu\nu} \gamma^5 n_+^{\mu} S_T^{\nu} \right]$ In this talk $f_1 \to f$, $q_1 \to \Delta f$ and $h_1 \to h_1$ $f(x) = \frac{1}{4\pi} \int dy^{-} e^{-ixP^{+}y^{-}} \langle P, S | \bar{\psi}_{f}(0, 0, \mathbf{0}_{\perp}) \gamma^{+} \mathcal{P} \psi_{f}(0, y^{-}, \mathbf{0}_{\perp}) | P, S \rangle$ $\Delta f(x) = \frac{1}{4\pi} \int dy^- e^{-ixP^+y^-} \langle P, S | \bar{\psi}_f(0,0,\mathbf{0}_\perp) \gamma^+ \gamma^5 \mathcal{P} \psi_f(0,y^-,\mathbf{0}_\perp) | P, S \rangle$ $h_1(x) = \frac{1}{4\pi} \int dy^- e^{-ixP^+y^-} \langle P, S | \bar{\psi}_f(0,0,\mathbf{0}_\perp) i \sigma^{1+} \gamma^5 \mathcal{P} \psi_f(0,y^-,\mathbf{0}_\perp) | P, S \rangle$

Emanuele R. Nocera (Edinburgh)

1. Collinear helicity

Experimental probes

Process	Reaction	Subprocess	PDFs probed x		$Q^2/p_T^2/M^2 \; [{\rm GeV^2}]$			
	$\ell^{\pm}\{p,d,n\} \to \ell^{\pm}X$	$\gamma^* q \to q$	$\begin{array}{c} \Delta q + \Delta \bar{q} \\ \Delta g \end{array}$	$0.003 \lesssim x \lesssim 0.8$	$1 \lesssim Q^2 \lesssim 70$			
N N N N N N N N N N N N N N N N N N N	$\ell^{\pm}\{p,d\} \to \ell^{\pm}hX$ $\ell^{\pm}\{p,d\} \to \ell^{\pm}DX$	$\gamma^* q \to q$ $\gamma^* g \to c \bar{c}$	$\begin{array}{c} \Delta u \ \Delta \bar{u} \\ \Delta d \ \Delta \bar{d} \\ \Delta g \\ \Delta g \\ \Delta g \end{array}$	$0.005 \lesssim x \lesssim 0.5$ $0.06 \lesssim x \lesssim 0.2$	$\begin{split} &1 \lesssim Q^2 \lesssim 60 \\ &\sim 10 \end{split}$			
N2 N1	$\overrightarrow{p} \overrightarrow{p} \to jet(s)X$ $\overrightarrow{p} p \to W^{\pm}X$ $\overrightarrow{p} \overrightarrow{p} \to \pi X$	$\begin{array}{c} gg \rightarrow qg \\ qg \rightarrow qg \\ u_L \bar{d}_R \rightarrow W^+ \\ d_L \bar{u}_R \rightarrow W^- \\ gg \rightarrow qg \\ qg \rightarrow qg \end{array}$	Δg $\Delta u \ \Delta ar u$ $\Delta d \ \Delta ar d$ Δg	$0.05 \lesssim x \lesssim 0.2$ $0.05 \lesssim x \lesssim 0.4$ $0.05 \lesssim x \lesssim 0.4$	$\begin{aligned} 30 &\lesssim p_T^2 \lesssim 800 \\ &\sim M_W^2 \\ 1 &\lesssim p_T^2 \lesssim 200 \end{aligned}$			
DIS :	DIS: $g_1 = \frac{\sum_q^{n_f} e_q^2}{2n_f} \left(C_{\rm NS} \otimes \Delta q_{\rm NS} + C_{\rm S} \otimes \Delta \Sigma + 2n_f C_g \otimes \Delta g \right)$							
SIDIS :	$g_1^h = \sum_{q,\bar{q}} e_q^2 \left[\Delta q \otimes C_{qq}^{1,h} \otimes D_q^h + \Delta q \otimes C_{gq}^{1,h} \otimes D_g^h + \Delta g \otimes C_{qg}^{1,h} \otimes D_q^h \right]$							
pp:	$\Delta \sigma = \sigma^{(+)+} - \sigma^{(+)-} = \sum_{a,b,(c)} \Delta f_a \otimes (\Delta) f_b(\otimes D_c^h) \otimes \Delta \hat{\sigma}_{ab}^{(c)}$							

Coefficient functions are known up to NNLO for DIS and up to NLO for SIDIS and pp Splitting functions known up to NNLO $[\tt NP\,B889\,(2014)\,351]$

Emanuele R. Nocera (Edinburgh)

Available determinations of polarised PDFs

More than 20 years of NLO studies of polarised PDFs

Gehrmann, Stirling [PRD 53 (1996) 6100], Altarelli, Ball, Forte, Ridolfi [APP B29 (1998) 1145], de Florian, Sassot [PRD 57 (1998) 5803], Glück, Reya, Stratmann, Vogelsang [PRD 63 (2001) 094005] ...

	DSSV	NNPDF	JAM
DIS	Ø	Ø	Ø
SIDIS	\checkmark	\boxtimes	\checkmark
pp	\checkmark (jets, π^0)	\swarrow (jets, W^{\pm})	\boxtimes
statistical treatment	Lagr. mult. $\Delta\chi^2/\chi^2=2\%$	Monte Carlo	Monte Carlo
parametrization	polynomial (23 pars)	neural network (259 pars)	polynomial (10 pars)
features	global fit	minimally biased fit	large- x effects
latest updates	DSSV08 PRD 80 (2009) 034030 DSSV14 PRL 113 (2014) 012001	NNPDFpol1.0 NPB 874 (2013) 36 NNPDFpol1.1 NPB 887 (2014) 276	JAM15 PRD 93 (2016) 074005 JAM17 PRL 119 (2017) 132001

Key players over recent years (all use ZM-VFN scheme and \overline{MS})

Complementary insights from less global studies

Leader, Stamenov, Sidorov [PRD 82 (2010) 114018], Blümlein, Böttcher [NPB 841 (2010) 205], Hirai, Kumano [NPB 813 (2009) 106], Bourrely, Buccella, Soffer [NPA 941 (2015) 307], Khanpour et al. (DIS only, NNLO) [PR D93 (2016) 114024], ...

Emanuele R. Nocera (Edinburgh)

Kinematic coverage and fit quality (from NNPDF)

		N	χ^2/N_{dat}				
	EXPERIMENT	N_{dat}	1.0	1.1	1.2		
	EMC	10	0.44	0.43	0.43		
	SMC	24	0.93	0.90	0.92		
	SMClowx	16	0.97	0.97	0.94		
	E142	8	0.67	0.66	0.55		
	E143	50	0.64	0.67	0.63		
	E154	11	0.40	0.45	0.34		
	E155	40	0.89	0.85	0.98		
	COMPASS-D	15	0.65	0.70	0.57		
	COMPASS-P	15	1.31	1.38	0.93		
	HERMES97	8	0.34	0.34	0.23		
	HERMES	56	0.79	0.82	0.69		
new	COMPASS-P-15	51	0.98*	0.99*	0.65		
new	COMPASS-D-17	15	1.32*	1.32*	0.80		
new	JLAB-E93-009	148	1.26*	1.23*	0.94		
new	JLAB-EG1-DVCS	18	0.45*	0.59*	0.29		
new	JLAB-E06-014	2	2.81*	3.20*	1.33		
	COMPASS (OC)	45	1.22*	1.22	1.22		
	STAR (jets)	41	_	1.05	1.06		
	PHENIX (jets)	6	—	0.24	0.24		
	STAR- $A_L^{W^{\pm}}$ (2012)	24	_	1.05	1.05		
	STAR- $A_{LL}^{W^{\pm}}$	12	—	0.95	0.94		
new	STAR- $A_I^{W^{\pm}}$ (2013)	8	_	2.76*	1.34		
new	STAR (dijets)	14	_	1.34*	1.00		
	TOTAL		0.77	1.05	1.01		

* data set not included in the corresponding fit

Global fits: total up and down (from NNPDF)

- Improved accuracy at small x: new COMPASS data (+ improved unpolarized F_L and F₂ from NNPDF3.1)
- Improved accuracy at large x: new JLAB data (also note that the positivity bound is slightly different)
- A lower cut on W^2 will allow for exploiting the full potential of JLAB data (if we replace $W^2 \ge 6.25 \text{ GeV}^2$ with $W^2 \ge 4.00 \text{ GeV}^2$ the χ^2 deteriorates significantly) (need to include and fit dynamic higher twists, in progress)

Global fits: total up and down at large x

Model	$\Delta d^+/d^+$	Model	$\Delta d^+/d^+$				
$\begin{array}{l} {\rm SU(6)}\\ {\rm RCQM}\\ {\rm QHD} \ (\sigma_{1/2})\\ {\rm QHD} \ (\psi_{\rho}) \end{array}$	$-1/3 \\ -1/3 \\ 1 \\ -1/3$	NJL DSE (<i>realistic</i>) DSE (<i>contact</i>) pQCD	$-0.25 \\ -0.26 \\ -0.33 \\ 1$				
NNPDFpol1.1 ($x = 0.9$) -0.74 ± 3.57 NNPDFpol1.2 ($x = 0.9$) -0.23 ± 1.06							

Beyond leading-twist factorisation

Fit of higher twist terms (up to $\tau = 4$) in JAM15 [PRD 93 (2016) 074005]

 $g_1^{\tau=3} \propto D$ and $g_1^{\tau=4} = H/Q^2$

nonzero twist-3 quark distributions twist-4 quark distributions compatible with zero

Global fits: gluon polarisation

High-p_T di-jets [PRD 95 (2017) 071103] confirm a positive gluon polarization in the proton

Global fits: gluon polarisation

More data available:PHENIX π^0 run 12-13 at 510 GeV [PRD 93 (2016) 011501]
STAR dijets run 12 at 510 GeV [PoS(DIS2016)231]More data to come:STAR dijets run 12-13 at 510 GeV, STAR jets run 12-13 at 510 GeV

More data to con Deep insight:

a high-energy polarised Electron-Ion Collider [PRD 92 (2015) 094030]

Small-x behaviour can be modified by small-x evolution [JHEP1601(2016)072, JHEP1710(2017)198,...]

Global fits: sea quark polarisation $\Delta_s = \Delta ar{u} - \Delta ar{d}$ [arXiv:1702.05077]

 $\int_{0.04}^{0.4} dx \,\Delta_s(x, Q^2 = 10 \,\mathrm{GeV}^2) = +0.06 \pm 0.03$

 $\rightarrow +0.07\pm 0.01$

Preliminary 2013 data [arXiv:1702:02927]

Global fits: sea quark polarisation $\Delta_s = \Delta \bar{u} - \Delta d$

More data available: PHENIX W run 11-13 at 510 GeV [PRD 93 (2016) 051103] Deep insight:

a high-energy polarised Electron-Ion Collider [PRD 88 (2013) 114025] accurate determination of $\Delta \bar{u}$ and $\Delta \bar{d}$ through CC DIS and SIDIS

Global fits: SIDIS and Fragmentation Functions [see also A. Vossen talk]

	DHESS	JAM	NNFF
SIA	Ø	Ø	\checkmark
SIDIS	\checkmark	\boxtimes	\boxtimes
PP	К	\boxtimes	\boxtimes
statistical treatment	Iterative Hessian 68% - 90%	Monte Carlo	Monte Carlo
parametrisation	standard	standard	neural network
pert. order	(N)NLO	NLO	up to NNLO
HF scheme	ZM(GM)-VFN	ZM-VFN	ZM-VFN

Focus on new data: BELLE and BABAR SIA cross sections COMPASS SIDIS multiplicities Overall fair agreement among the three sets (except flavour separation for K^{\pm}) NNFF uncertainties usually larger (especially for the gluon) Note various shapes for the π^{\pm} gluon

Emanuele R. Nocera (Edinburgh)

Global fits: SIDIS and Fragmentation Functions [see also A. Vossen talk]

	DHESS		NNFF
SIA	Ø	Ø	\checkmark
SIDIS	\checkmark	\boxtimes	\boxtimes
PP	М	\boxtimes	\boxtimes
statistical treatment	Iterative Hessian 68% - 90%	Monte Carlo	Monte Carlo
parametrisation	standard	standard	neural network
pert. order	(N)NLO	NLO	up to NNLO
HF scheme	ZM(GM)-VFN	ZM-VFN	ZM-VFN

Focus on new data: BELLE and BABAR SIA cross sections COMPASS SIDIS multiplicities Overall fair agreement among the three sets (except flavour separation for K^{\pm}) NNFF uncertainties usually larger (especially for the gluon) Note various shapes for the π^{\pm} gluon

Emanuele R. Nocera (Edinburgh)

Simultaneous fits: Δs from JAM17 [PRL 119 (2017) 132001, more in J. Ethier talk]

See [PRD96 (2017) 094020] for a simultaneous fit of FFs and the unpolarised strange via reweighting

Emanuele R. Nocera (Edinburgh)

Lattice QCD and (helicity) PDFs [arXiv:1709.01511; arXiv:1711.07916]

Emanuele R. Nocera (Edinburgh)

Comparing lattice QCD and global fit PDF moments

Which precision shall we require to lattice QCD?

Generate lattice QCD pseudodata assuming NNPDFpol1.1 central values for

 $g_A\equiv\langle 1\rangle_{\Delta u^+-\Delta d^+}\text{, }\langle 1\rangle_{\Delta u^+}\text{, }\langle 1\rangle_{\Delta d^+}\text{, }\langle 1\rangle_{\Delta s^+}\text{, }\langle x\rangle_{\Delta u^--\Delta d^-}$

scenario	g_A	$\left<1\right>_{\Delta u}+$	$\left<1\right>_{\Delta d}+$	$\left<1\right>_{\Delta s}+$	$\left\langle x\right\rangle _{\Delta u^{-}-\Delta d^{-}}$
A B C	5% 3% 1%	5% 3% 1%	10% 5% 2%	100% 50% 20%	70% 30% 15%
current	3%	3%	5%	70%	65%

Assume percentage uncertainties according to three scenarios

Reweight NNPDFpol1.1 with lattice pseudodata and look at the impact

Comparing lattice QCD and global fit PDFs

Quasi-PDFs defined as momentum-dependent nonlocal static matrix elements for nucleon states at finite momentum, with an ultraviolet cut-off scale $\Lambda \sim 1/a$

$$\widetilde{q}(x,\Lambda,p_z) = \int \frac{dz}{4\pi} e^{-ixzp_z} \frac{1}{2} \sum_{s=1}^2 \langle p,s | \, \bar{\psi}(z) \gamma_\alpha e^{ig \int_0^z A_z(z')dz'} \psi(0) \, | p,s \rangle$$

Must be related to the corresponding light-front PDF, usually within LaMET

$$\tilde{q}(x,\Lambda,p_z) = \int_{-1}^1 \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\mu}{p_z},\frac{\Lambda}{p_z}\right)_{\mu^2 = Q^2} q(y,Q^2) + \mathcal{O}\left(\frac{\Lambda_{\mathsf{QCD}}^2}{p_z^2},\frac{m^2}{p_z^2}\right)$$

More in M. Constantinou and K. Orginos talks on Wednesday afternoon

Emanuele R. Nocera (Edinburgh)

2. Collinear transversity

Experimental probes

The transversity is a chiral-odd function, two helicity flips are needed

Single hadron production

[NP B395 (1993) 161]

$$A_{UT}^{\sin(\Phi+\Phi_S)} \propto \frac{\sum_q e_q^2 h_1^q \otimes H_1^{\perp q}}{\sum_q e_q^2 f_1^q \otimes D_1^q}$$

Di-hadron fragmentation

NP B420 (1994) 565

 $\begin{aligned} \mathbf{P}_h \times \mathbf{R}_T \cdot \mathbf{S}_T &\propto \sin(\Phi_{R_T} + \Phi_S) \\ \mathbf{R}_T &\neq 0 \qquad \mathbf{P}_h^T = 0 \\ \text{The hadron pair is collinear} \end{aligned}$

Framework of collinear factorisation

$$A_{UT}^{\sin(\Phi_{R_T} + \Phi_S)} \propto -\frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q H_1^{\triangleleft}}{\sum_q e_q^2 f_1^q D_1^q}$$

Kinematic coverage

On the experimental side, the history of transverse polarisation distributions is readily summarised: (almost) no measurements have been performed as yet. [Phys.Rept. 359 (2002) 1]

World data for $F_{2^{p}}$

World data for g₁^p

World data for h_1

Emanuele R. Nocera (Edinburgh)

Experimental data

[See talks by A. Bressan, C. Van Hulse, Z.-E. Meziani, E. Aschenauer, A. Vossen, G. Schnell, B. Surrow, ...]

Collins fragmentation

HERMES [PRL 94 (2005) 012002; PL B693 (2010) 11] COMPASS [PL B673 (2009) 127; PL B744 (2015) 250] JLab [PRL 107 (2011) 072003]

BELLE [PRL 96 (2006) 232002; PRD D78 (2008) 032011] BABAR [PRD 90 (2014) 052003]

Di-hadron fragmentation

HERMES [JHEP 0806 (2008) 017] COMPASS [PL B713 (2012) 10; EPJ WC 85 (2015) 02018]

BELLE [PRL 107 (2011) 072004]

STAR [PRL 115 (2015) 242501]

Emanuele R. Nocera (Edinburgh)

Transversity from Collins effect [Anselmino at al., specifically PRD 92 (2015) 114023]

Experiment	χ^2	n. points	χ^2 /points
Belle- $z_1 z_2 A_0^{UL}$	14.0	16	0.88
Belle- $z_1 z_2 A_0^{UC}$	13.6	16	0.85
BaBar- $z_1 z_2$ A_0^{UL}	37.3	36	1.04
BaBar- $z_1 z_2 A_0^{UC}$	13.0	36	0.36
BaBar- P_{1T} A_0^{UL}	5.6	9	0.63
BaBar- P_{1T} A_0^{UC}	3.1	9	0.35
Total A_0	86.7	122	0.71
HERMES p	31.6	42	0.75
COMPASS p	40.2	52	0.77
COMPASS d	58.5	52	1.12
Total SIDIS	130.3	146	0.89
Total	217.0	268	$\chi^2_{\rm d.o.f.}=0.84$

$$h_1^q(x,k_{\perp},Q^2) = h_1^q(x,Q^2) \frac{e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle_T}}{\pi \langle k_{\perp}^2 \rangle_T} \qquad h_1^q(x,Q_0^2) = \mathcal{N}_q^T(x,Q_0^2) \frac{1}{2} \left[q(x,Q_0^2) + \Delta q(x,Q_0^2) \right] \\ \mathcal{N}_q^T(x) = N_q^T x^{\alpha} (1-x)^{\beta} \frac{(\alpha+\beta)^{\alpha+\beta}}{\alpha^{\alpha}\beta^{\beta}} \qquad (q=u_v,d_v)$$

Simple, LO, phenomenological model with DGLAP evolution Mild dependence of h_1 on TMD evolution, almost canceled out in asymmetry ratios

Emanuele R. Nocera (Edinburgh)

Transversity from Collins effect [PRD93 (2016) 014009]

Experiment	Observable	dependence	#ndata	χ^2	$\chi^2/ndata$
BELLE [12]	A_0^{UL}	z	16	13.02	0.81
BELLE [12]	A_0^{UC}	z	16	11.54	0.72
BABAR[98]	A_0^{UL}	z	36	34.61	0.96
BABAR [98]	A_0^{UC}	z	36	15.17	0.42
BABAR[98]	A_0^{UL}	$P_{h\perp}$	9	9.09	1.01
BABAR [98]	A_0^{UC}	$P_{h\perp}$	9	4.33	0.48
			122	87.76	0.72

Experiment	hadron	Target	dependence	#ndata	χ^2	$\chi^2/ndata$
COMPASS [97]	π^+	LiD	x	9	11.16	1.24
COMPASS [97]	π^{-}	LiD	x	9	9.08	1.01
COMPASS [97]	π^+	LiD	z	8	3.26	0.41
COMPASS [97]	π^{-}	LiD	z	8	7.29	0.91
COMPASS [97]	π^+	LiD	$P_{h\perp}$	6	4.19	0.70
COMPASS [97]	π^{-}	LiD	$P_{h\perp}$	6	4.50	0.75
COMPASS [96]	π^+	NH ₃	x	9	21.46	2.38
COMPASS [96]	π^{-}	NH_3	x	9	6.23	0.69
COMPASS [96]	π^+	NH_3	z	8	7.80	0.98
COMPASS [96]	π^{-}	NH_3	z	8	10.29	1.29
COMPASS [96]	π^+	NH_3	$P_{h\perp}$	6	3.82	0.64
COMPASS [96]	π^{-}	NH_3	$P_{h\perp}$	6	3.85	0.64
HERMES [95]	π^+	Н	x	7	5.37	0.77
HERMES [95]	π^{-}	H	x	7	12.61	1.80
HERMES [95]	π^+	H	z	7	3.04	0.43
HERMES [95]	π^{-}	Н	z	7	3.23	0.46
HERMES [95]	π^+	Н	$P_{h\perp}$	6	1.60	0.27
HERMES [95]	π^{-}	H	$P_{h\perp}$	6	4.82	0.80
JLAB [9]	π^+	³ He	x	4	3.90	0.98
JLAB [9]	π^{-}	$^{3}\mathrm{He}$	x	4	3.11	0.78
				140	130.65	0.93

at NLL with TMD evolution

same parametrisation as

in [PRD 92 (2015) 114023]

$$h_1(x, Q_0^2) = N_q^T x^{\alpha} (1-x)^{\beta} \frac{(\alpha+\beta)^{\alpha+\beta}}{\alpha^{\alpha}\beta^{\beta}} \frac{1}{2} \left[q(x, Q_0^2) + \Delta q(x, Q_0^2) \right] \qquad (q = u_v, d_v)$$

Good consistency with Anselmino et al.

Mild dependence of h_1 on TMD evolution within the current precision of the data

Emanuele R. Nocera (Edinburgh)

Collinear polarised PDFs

13th December 2017 25 / 32

Transversity from di-hadron fragmentation [JHEP 1505 (2015) 123]

Determine the DiFF from $e^+e^-\ {\rm data}$

Use such a DiFF to extract $h_1^q \mbox{ in SIDIS}$

Make use of Monte Carlo techniques to estimate the PDF uncertainty

Study the stability of the fit upon three parametrisations and two values of α_s

Mild dependence on these choices

Agreement of $h_1^{u_V}$ with Kang et al. (and Anselmino et al.)

Saturation of the Soffer bound in $h_1^{d_V}$ driven by COMPASS deuteron bins 7-8 (more flexibility in the parametrisation)

$$\begin{aligned} xh_1^q(x,Q_0^2) &= \tanh\left[x^{1/2}(A_q + B_q x + C_q x^2 + D_q x^3)\right] x \left[\mathsf{SB}^q(x,Q_0^2) + \mathsf{SB}^{\bar{q}}(x,Q_0^2)\right] \\ \text{rigid } C_q &= D_q = 0 \qquad \text{flexible } C_q = 0 \ D_q \neq 0 \qquad \text{extraflexible } C_q \neq D_q \neq 0 \end{aligned}$$

Transversity from di-hadron fragmentation [See talk by M. Radici]

blue line: Soffer bound red line: Kang et al. pink band: Anselmino et al. cyan band: Bacchetta et al. (prel.) Extend the data set to DiFFs in transversely polarised collisions at RHIC Include STAR 2006 run data [PRL115 (2015) 242501] Effect of the new data: higher precision and better compatibility

Emanuele R. Nocera (Edinburgh)

The isovector charge g_T and lattice [See also lattice talks on Wednesday afternoon]

$$g_T \equiv \delta u - \delta d \qquad \delta q \equiv \int_0^1 dx \left[h_1^q(x) - h_1^{\bar{q}} \right]$$

Emanuele R. Nocera (Edinburgh)

Is lattice in tension with phenomenology?

Simultaneous fit to the Collins asymmetry data from HERMES and COMPASS of

$$f_1^q(x,k_{\perp}^2) = h_1^q(x,k_{\perp}^2) = D_1^{h/q}(z,p_{\perp}^2) = H_1^{\perp h/q}(z,p_{\perp})$$

and to three lattice data sets with reliable estimate of systematic ucnertainties

PDNME [Bhattacharya et al. (2016)] RQCD [Bali et al. (2015)] LHPC [Green et al. (2012)] using Monte Carlo techniques for the representation of uncertainties

arXiv:1710.09858, see also J. Ethier

Excellent description of the data with and without lattice results ($\chi^2/N_{dat} = 0.65$) Lattice results are compatible with measured asymmetries

Lattice results are able to reduce the uncertainty on h_1 and H_1^\perp significantly

Transversity in inclusive DIS [PL B773 (2017) 632, see also A. Accardi talk]

In DIS, on-shell quarks cannot be present in the final state, but they decay into hadrons A nonperturbative spin-flip term associated with M_q couples to h_1

$$\begin{split} \Xi(l^-,\mathbf{l}_T) &\equiv \int \frac{dl^2}{2l^-} \Xi(l) = \frac{\Lambda}{2l^-} \xi_1 \mathbf{1} + \xi_2 \frac{\#^-}{2} + \text{h.t. terms} \\ \xi_1 &= \int d\mu^2 \frac{\mu}{\Lambda} J_1(\mu^2) \equiv \frac{M_q}{\Lambda} \quad \xi_2 = \int d\mu^2 J_2(\mu^2) = 1 \quad \text{(quark spectral functions)} \end{split}$$

from positivity $0 < M_q < \int d\mu^2 \mu J_2(\mu^2) \Longrightarrow M_q = \mathcal{O}(10 - 100 \text{ GeV})$ much larger than m_q

$$\begin{aligned} \frac{d\sigma}{dx_B dy d\Phi_S} \propto \left\{ F_T + \epsilon F_L + S_{\parallel} \lambda_e \sqrt{1 - \epsilon^2} F_{LL} + |\mathbf{S}_T| \lambda_e \sqrt{2\epsilon(1 - \epsilon)} \cos \Phi_S F_{LT}^{\cos \Phi_S} \right\} \\ F_T = x_B \sum_q e_q^2 f_1^q(x_B) \quad F_L = 0 \quad F_{LL} = x_B \sum_q e_q^2 g_1^q(x_B) \\ F_{LT}^{\cos \Phi_S} = -x_B \sum_q e_q^2 \frac{2M}{Q} \left(x_B g_T^q(x_B) + \frac{M_q - m_q}{M} h_1^q(x_B) \right) \end{aligned}$$

Emanuele R. Nocera (Edinburgh)

3. Conclusions

Summary

Ontinuous effort in improving the existing determinations of collinear PDFs

- Data: global fits
 - \longrightarrow inclusion of a variety of obervables, consistency of the QCD framework
 - \longrightarrow increasing experimental precision, extended kinematic range
- Methodology: simultaneous fits
 - \longrightarrow non-trivial interplay between PDFs and FFs
 - \longrightarrow accompanied by an increased sophistication of the fitting techniques
- Theory: improved fits
 - \longrightarrow refinement of the QCD details in the PDF analyses

Possible fruitful interplay between QCD fits and lattice QCD calculations

- An extensive benchmark for helicity PDFs is now available
 - \longrightarrow competitive lattice QCD moments
 - \longrightarrow promising methods to determine the PDF x dependence
- Studies of the impact of lattice QCD on trasversity are promising
 - \longrightarrow lattice QCD results on g_T pin down theh uncertainty on h_1 significantly
- Ombination of all the above will perfectly fit into the EIC program

Summary

Continuous effort in improving the existing determinations of collinear PDFs

- Data: global fits
 - \longrightarrow inclusion of a variety of obervables, consistency of the QCD framework
 - \longrightarrow increasing experimental precision, extended kinematic range
- Methodology: simultaneous fits
 - \longrightarrow non-trivial interplay between PDFs and FFs
 - \longrightarrow accompanied by an increased sophistication of the fitting techniques
- Theory: improved fits
 - \longrightarrow refinement of the QCD details in the PDF analyses

Possible fruitful interplay between QCD fits and lattice QCD calculations

- An extensive benchmark for helicity PDFs is now available
 - \longrightarrow competitive lattice QCD moments
 - \longrightarrow promising methods to determine the PDF x dependence
- Studies of the impact of lattice QCD on trasversity are promising
 - \longrightarrow lattice QCD results on g_T pin down theh uncertainty on h_1 significantly

Ombination of all the above will perfectly fit into the EIC program

Thank you

4. Additional material

From NNPDFpol1.0: SU(2) and SU(3)

Appraising lattice QCD calculations

ation as ume isation tates

Mom.	Collab.	Ref.	N_{f}	9.ie	cretis qu	ark m	te ver	orma	ited S	Value
g_A	CalLat 17 PNDME 16	[arXiv:1704.01114] [PRD 94 (2016) 054508] [PLB 734 (2014) 200]	2+1+1 2+1+1 2+1	0	* * +	•	**+	* * +	\$	1.278(21)(26) 1.195(33)(20)
	Mainz 17 ETMC 17 RQCD 15	[arXiv:1705.06186] [arXiv:1705.03399] [PRD 91 (2015) 054501]	2+1 2 2 2	*	× 0 ×	* * 0	* * * * •	* * * 0	* +	$\begin{array}{c} 0.37(8) \\ 1.278(68)(^{+0}_{-0.087}) \\ 1.212(33)(22) \\ 1.280(44)(46) \\ 1.20(5)(2) \end{array}$
$\langle 1 \rangle_{\Delta u^+}$	ETMC 17	[PLB 732 (2014) 41] [arXiv:1706.02973]	2	•	∘ ★	•	*	*	*	0.830(26)(4)
$\left< 1 \right>_{\Delta d} +$	ETMC 17	[arXiv:1706.02973]	2		*		*	*	*	-0.386(16)(6)
$\left<1\right>_{\Delta s}+$	χ QCD 17 Engelhardt 12 ETMC 17	[PRD 95 (2017) 114509] [PRD 86 (2012) 114510] [arXiv:1706.02973]	2+1 2+1 2	•	○ ■ ★	0	* * *	* * *	†,⊲ ⊲ *	-0.0403(44)(78) -0.031(17) -0.042(10)(2)
$\langle x \rangle_{\Delta u^ \Delta d^-}$	RBC/ UKQCD10	[PRD 82 (2010) 014501]	2+1	•	•	*	*	•		0.256(23)/ 0.205(59)
	ETMC 10	PRD 82 (2010) 094502 [PRD 92 (2015) 114513]	2+1 2		*	0	○ ★	*	*	0.1972(55) 0.229(33)

* Study employing a single physical pion mass ensemble.

 f_{π}^{\dagger} g_A is determined via the ratio g_A/f_{π} employing the physical value for f_{π} .

Approach inspired by the Feynman-Hellmann method is employed.

[†] Partially quenched simulation with $m_{\pi} = 330$ MeV.

[⊲] Some parts of the renormalisation are estimated.