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The problem

• We want to study the Standard Model and eventually find
deviations.

• We need to compare theoretical predictions to experimental
data.

• Theory predictions at a pp collider:

σX(s,M2
X) =

∑
a,b

∫ 1

xmin

dx1dx2fa(x1,M2
X)fb(x2,M2

X)σ̂a,b→X(x1x2s,M2
X)

• σ̂a,b→X(x1x2s,M2
X) Cross sections for partons a, b interacting at ŝ = x1x2M2

X to produce

the final state X at characteristic scale MX . Can be calculated in perturbation
theory.

• fi(x,M2
X) PDF of parton i carrying a fraction of momentum x at scale Mx . Needs to be

learned from data.
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The solution
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Figure 1: NNPDF Collaboration, arxiv:1706.00428
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This talk

I will describe the NNPDF methodology for determining PDFs

• As an application of Machine Learning: How it compares to
other problems.

• Possible ways to improve it.
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Uncertainties

• We not only want to determine the PDFs, but also provide a
sensible estimate of the uncertainty.

• Sources of uncertainty:
• Uncertainties in input experimental data (part of the input: We
have the covariance matrix).

• Degenerate minima (+inefficiencies in the minimization).
• Theoretical uncertainties (value of αs, fixed order calculations, etc)

• Not a well researched topic in ML.
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Experimental inputs (an oversimplification)
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Experimental Inputs

σX(s,M2
X)︸ ︷︷ ︸

Y

=
∑
a,b

∫ 1

xmin

dx1dx2fa(x1,M2
X)fb(x2,M2

X)σ̂a,b→X(x1x2s,M2
X)︸ ︷︷ ︸

X

• Constraints come in the form of convolutions:

�����f(X) −→ Y

• 4285 data points points. Not a big data problem.
• 7 physical processes from 14 experiments over ~30 years: Need
to deal with inconsistencies.

• Few data constrains on high and low x: Need to deal with
extrapolation.
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Scale dependence: The FastKernel method

Given a set PDFs at some scale Q0, the scale dependence is given by
the solution of the renormalization group equation (DGLAP):

fi(xβ ,Q²) = Γ(Q,Q0)ijβαfj(xα,Q0²)

• Can compute the DGLAP operator and apply to the partonic
cross section. APFEL, [Bertone et al, arxiv:1310.1394].

• Can store the result and perform much faster convolutions.
APFELgrid [Bertone er al, arxiv:1605.02070].

• Only need to deal with the x dependence at some initial scale

f(x,Q²) −→ f(x,Q2
0) := f(x)

8
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Constraints on PDFs

• Sum rules:
•
∑partons

i
∫ 1
0 xfi(x)dx = 1

•
∫ 1
0 (u(x)− ū(x))dx = 2

•
∫ 1
0 (d(x)− d̄(x))dx = 1

•
∫ 1
0 (q(x)− q̄(x))dx = 0, q = s, b, t

• Continuity:
• f(x) x→1−→ 0

• ...and that’s it!
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Outstanding features of the problem

To recapitulate, compared to a typical ML problem:

• We require a statistically sound uncertainty estimate.
• The problem is regression but the available data has a complex
dependence on the PDFs.

• There are some physical constraints.
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Parametrizations for PDFs

• Early models:

f(x) = Cxα(1− x)β

• Parameters can be chosen to satisfy the constraints.
• Can a simple model provide a reliable uncertainty? What is the
“modelization” uncertainty? Is it possible to make any claims if
the data doesn’t fit?

• The NNPDF approach:

• Since we don’t have constraints, we should have a very general
parametrization:

f(x) = CNN(x)xα(1− x)β
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NN(x)

f(x) = CNN(x)xα(1− x)β

• Fully connected.
• Two sigmoid hidden layers.
• One linear layer.
• ×8 PDF flavour combinations = 296 network parameters.

12



Error function

• We minimize the error function

χ2 =
∑
ij

(Di − Oi)Σ
−1
i,j (Dj − Oj)

• Di experimental measurement for point i
• Oi prediction for point i(=f⊗ σ̂).
• Σij covariance between points i and j (corrected for normalization
uncertainties [Ball et al 2009]).

• There is an additional penalty term for positivity observables.
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Propagating experimental unccertainties

Perform Nrep O(1000), fits, sampling pseudodata replicas:

D(r)
i −→ D(r)

i + chol(Σ)i,jξj
ξj ∼ N (0, 1)
i, j = 1..Ndat

r = 1..Nrep

Obtain Nrep PDF replicas. All statistics of the PDFs (and functions
thereof) can be computed from the ensemble of PDF replicas.

No assumptions at all about the Gaussianty of the errors. We also
provide:

• Compressed Monte Carlo sets [Carrazza, et al, arxiv:1504.06469].
• Compressed [Carrazza et al, arxiv:1505.06736] and supercompressed [Carrazza

et al, arxiv:1602.00005] Hessian sets.

14
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Simple example
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Fitting NNPDFs

(Discussed in detail in [Ball et al, arxiv:1410.8849])

The current approach is a genetic algorithm. At each iteration, select
a node with P = 5%

w → w+
ηrδ
Nrite
ite

η = 15
rδ ∼ U(−1, 1)
rite ∼ U(1, 0)

At each iteration, generate 80 mutants, and select best mutant.
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Tradeoffs of the GA

• Advantages:
• Simple to implement and understand.
• Good dealing with complex analytic behaviour.
• Doesn’t require evaluating the gradient.

• Disadvantages:
• May not be close to a global minimum.
• Requires many function evaluations (i.e. convolutions).
• Needs tuning (discussed in later slides).
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Stopping

• We split the data in a training and validation set.
• Roughly 50%, different for each replica.
• We run the GA on the training set for a fixed number of
iterations O(30000).

• We select the minimum of the validation set as the parameters
from the replica.
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Training-validation distribution
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Preprocessing exponents

• We had f(x) = CNN(x)xα(1− x)β .
• α and β chosen at random with ranges set from the results of a
previous fit.

• We iterate the distribution of effective exponents doesn’t
change:

αeff =
log f(x)
log x

∣∣∣∣
x→0

βeff =
log f(x)

log(1− x)

∣∣∣∣
x→1
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Closure tests

• We want to assess the validity of our procedure.
• We want to tune the parameters of the GA, architecture of the
neural net, etc.

• Closure tests
• Assume that the underlying PDF is known.
• Generate data, fluctuating around the prediction of the true PDF.
• Perform a fit and compare with assumed PDF.
• Check that the results are consistent.
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Levels of closure tests

Level 0 Fit predictions of the underlying PDF without
fluctuations.

• Expect χ²/Ndat = 0.
• Tests the adequacy of the architecture and the GA.

Level 1 Fit fluctuations using the experiment covariance matrix.

• Expect χ2/Ndat = 1.
• Test stability of central values.

Level 2 Generate pseudodata replicas on top of the replicas.
• Expect χ2/Ndat = 2 for data replicas.
• Expect χ2/Ndat = 1 for data central values.
• Validate the full procedure.
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Closure test results (using MSTW2008 as Truth)

(a) Level 0 fit (b) Level 2 results

• Level 0 fit perfectly consistent: We reproduce the truth value as
much as possible with the available data.

• At Level 2 (equivalent to our methodology) we reproduce exactly
the fluctuated χ²s.
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Closure tests vs Truth

If MSTW2008 was the truth, we
would reproduce it within
uncertainties!
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Summary: NNPDF methodology

• Parametrize the NNPDFs with neural networks.
• Propagate uncertainties by fitting to pseudodata replicas.
• Fit using a Genetic algorithm
• Use cross validation to avoid overfitting.
• Closure tests to validate the methodology.
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Thank you!
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Backup: Code

• In house C++ with increasing supporting code in Python.
• Core loop (convolution) written in assembly.
• Memory layout optimized.
• APFEL used for evolution.

26


