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overview

• Efficient and accurate PDF process-specific Hessian reduction
algorithm:

(Prior PDF, list of observables) −→ Reduced representation
(SMPDF)

• Suitable for use in experimental analysis:

• Easy to combine independent SMPDFs
• Stable against varying kinematical cuts.
• The accuracy vs Neig balance can be tuned by users.

• Public code: https://github.com/scarrazza/smpdf
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approach

• Motivation:

• General purpose sets require 30 (lower accuracy) to 100 (higher
accuracy) error sets.

• A better balance can be achieved if we only need to reproduce
some processes.

• Other methods:

Reduced META ensemble P. Nadolsky at PDF4LHC November 2014.

• Our approach is based on:

• Correlations on x space.

• Iterative orthogonal projections

• We can combine:

• Combined SM-PDFs including HERAPDF?
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• A better balance can be achieved if we only need to reproduce
some processes.

• Other methods:

Reduced META ensemble P. Nadolsky at PDF4LHC November 2014
(based on Dataset Diagonalization method, J Pumplin arxiv:0904.2425).

• Our approach is based on:
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• A better balance can be achieved if we only need to reproduce
some processes.

• Other methods:

Reduced META ensemble P. Nadolsky at PDF4LHC November 2014.

• Our approach is based on:
• Correlations on x space.

• Provides stability, e.g. can reproduce cross sections for the same
process in a wide kinematical range.

• Iterative orthogonal projections

• We can combine:

• Combined SM-PDFs including HERAPDF?
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• General purpose sets require 30 (lower accuracy) to 100 (higher
accuracy) error sets.

• A better balance can be achieved if we only need to reproduce
some processes.

• Other methods:

Reduced META ensemble P. Nadolsky at PDF4LHC November 2014.

• Our approach is based on:
• Correlations on x space.

• Iterative orthogonal projections
• Allows to reproduce smaller uncertainty contributions required to
reach the tolerance.

• We can combine:

• Combined SM-PDFs including HERAPDF?
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• A better balance can be achieved if we only need to reproduce
some processes.

• Other methods:

Reduced META ensemble P. Nadolsky at PDF4LHC November 2014.

• Our approach is based on:
• Correlations on x space.

• Iterative orthogonal projections

• We can combine:
• Different sets of observables, by generating a common SM-PDF.

• Combined SM-PDFs including HERAPDF?

3

https://indico.cern.ch/event/343303/contribution/15/attachments/675471/928208/eb03.metapdf.pdf


approach

• Motivation:
• General purpose sets require 30 (lower accuracy) to 100 (higher
accuracy) error sets.

• A better balance can be achieved if we only need to reproduce
some processes.

• Other methods:

Reduced META ensemble P. Nadolsky at PDF4LHC November 2014.

• Our approach is based on:
• Correlations on x space.

• Iterative orthogonal projections

• We can combine:
• Results from independent SM-PDFs a posteriori.

• Combined SM-PDFs including HERAPDF?
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example cases

• We have generated SMPDFs for the most important Higgs
production processes:

• Gluon fusion, VBF,hW, hZ, ht̄t

• and the main backgrounds:
• t̄t, W and Z production

• We have considered total cross sections and various differential
distributions (see backup slides 22-24).
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results

Process MC900 NNPDF3.0 MMHT14
TR = 5% TR = 10% TR = 5% TR = 10% TR = 5% TR = 10%

h 15 11 13 8 8 7
t̄t 4 4 5 4 3 3

W, Z 14 11 13 8 10 9
Ladder 17 14 18 11 10 10

• TR (set by user) is the maximum allowed deviation from the
prior for any bin.

• Typical difference is much smaller.
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higgs production in individual channels

Process MC900 NNPDF3.0 MMHT14
TR = 5% TR = 10% TR = 5% TR = 10% TR = 5% TR = 10%

gg → h 4 5 4 4 3 3
VBF hjj 7 5 10 5 4 3
hW 6 5 6 4 6 3
hZ 11 7 6 4 8 5
ht̄t 3 2 4 4 3 2

Total h 15 11 13 8 8 7
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ladder smpdf

Multiple processes can be efficiently stacked together:
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stability
Kinematical ranges that double those used as input:
(phT ∈ (0, 400) GeV, yh ∈ (−5, 5)).
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“breakdown”
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delivery

• The code is public and can be used to generate custom
SM-PDFs from:

• Observables in APPLgrid or text format (e.g. NNLO codes).
• LHAPDF6 Prior PDF (MC or symhessian).

• The aforementioned SM-PDFs will be made public.
• Including the APPLgrids used to generate them.

• Custom SM-PDFs can be generated upon request.
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hessian representation: general strategy

1. Start with prior PDF (Monte Carlo or Symmetric Hessian)

f(k)
α(Prior)(x,Q), k = 1 . . .Nrep

2. Fix the central value to be the same as the prior:

f(0)
α(Hessian)(x,Q) ≡ f(0)

α(Prior)(x,Q)

3. The covariance matrix is given in terms of X:

Xlk(Q) ≡ f(k)α (xi,Q)− f(0)α (xi,Q) , l ≡ Nx(α− 1) + i

cov(Q) = 1
Nrep − 1XX

t

f(k)
α(Hesian)

(xi,Q) = f(0)α (xi,Q) + Xlk(Q) , k = 1, . . . ,Neig .

l can be arbitrarily fine grained. Completely unbiased!
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mc2hessian: global optimization

• In mc2hessian PCA (arxiv:1505.06736, appendix) we optimize
for the absolute value of the covariance matrix, at some scale
Q0.

• This is used for the PDFLHC15_100 sets.

• We compute the Singular Value Decomposition and keep the
Neig largest singular values:

X(Q0) = USVt

• mc2hessian needs ∼ 100 eigenvectors to reproduce the
covariance matrix of the PDF4LHC prior and most
phenomenology at percent level.

12
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compressed hessian

We have:
Xlk(Q) ≡ f(k)α (xi,Q)− f(0)α (xi,Q)

which gives Nrep Hessian parameters, from k = 1, to k = Nrep.

• Any rotation of the space of linear combinations of replicas
gives the same results for linear error propagation of PDF
dependent quantities.

• We can find a subspace with a smaller number of parameters,
which optimizes the agreement for some quantities:

• The reduced PDF representation is:

f̃(k)α (xi,Q) = f(0)α (xi,Q) + X̃lk(Q) , k = 1, . . . ,Neig .
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the sm-pdf strategy

• We can greatly improve the reduction by targeting specific
processes:

{σi} , i = 1, . . . Nσ

sσi =

 1
Nrep − 1

Nrep∑
k=1

(
σ
(k)
i − σ

(0)
i

)2
 1

2

• The worst-case accuracy target can be tuned by user!

TR < max
i∈(1,Nσ)

∣∣∣∣∣1− s̃σi

sσi

∣∣∣∣∣
• This is implemented in an iterative procedure.
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scheme
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correlation based selection

• For each iteration, select points in (x, α,Q) correlated with
variations in σ:

ρ (xi,Qσ, α, σ) ≡
Nrep

Nrep − 1

⟨
X(Qσ)lk ·

(
σ(k) − σ(0)

)⟩
rep −

⟨
X(Qσ1 )lk

⟩
rep ·

⟨
σ(k) − σ(0)

⟩
rep

sPDF
α (xi,Qσ) · sσ

Ξ = {(xi, α) : ρ (xi,Qσ, α, σ) ≥ t · ρmax}

X −→ XΞ (Qσ)

• The correlation threshold t is the only free parameter of the
algorithm: Set to t = 0.9 on phenomenological grounds.

• The correlation-based approach allows to efficiently generalize
to processes with similar PDF dependence, making the
algorithm stable.

• Same SMPDF can be used with different cuts.
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orthogonal projection

• We compute the SVD of XΞ and select one eigenvector:

XΞ(Qσ) = USVt(
P R

)
= V ∈ RNrep ×

(
R1 RNrep−1

)

• We project out the selected eigenvector for the next iteration:

X −→ XR

• We iterate (select more eigenvectors) until we met the tolerance
criteria for the current observable, and move to the next
observable, until we reproduce all.

• See upcoming publication or code for more details.
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a posteriori combination

• Results computed with different SMPDFs can be easily combined
by expressing them in terms of the prior (within the tolerance):

dk(σ)/
√
Nrep − 1 =

Neig∑
j=1

Ptkjd̃j(σ) , k = 1, . . . ,Nrep

dk(σ) = σk − σ0, for σk expressed in terms of the Nrep prior
replicas.

dj(σ) = σj − σ0, for σj computed in terms of the Neig SMPDF
eigenvectors.

• Direct and inverse transformation matrices provided in the
SM-PDF code.

• With appropriate normalization constants and hash-based parameter
names.
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other features of the code

• Python interface for APPlgrid and LHAPDF.
• Phenomenology comparisons for PDFs.

• PDF4LHC Recommendation benchmarking plots.
• Yellow report PDF correlations.

• Correlation plots
• PDF with observable
• Observable PDF uncertainties

• mc2hessian algorithm.
• Observable values as a function of αs or Nf.
• Convolution result as a rich HTML and CSV table.
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code input

Execute with: smpdf higgs.yaml –use-db
#higgs.yaml
#Global parameters that are used until overwritten by parameters
#inside the actiongroups
observables: #Provide the Paths to the APPLGrids, and specify that
             #they are calculated at NLO
   # Higgs
   - {name: 'data/higgs/ggh_13tev.root', order: NLO} 
   - {name: 'data/higgs/ggH_y_13tev.root', order: NLO} 
   - {name: 'data/higgs/hw_13tev.root', order: NLO}
   - {name: 'data/higgs/hz_13tev.root', order: NLO}
   - {name: 'data/higgs/ggH_pt_13tev.root', order: NLO} 
   - {name: 'data/higgs/httbar_13tev.root', order: NLO}
pdfsets:
   - MC900_nnlo #LHAPDF set to be used as prior
actions:
   - smpdf #Generate the SMPDFs from the prior and the observables
   - installgrids #Install the generated sets in the LHAPDF path

#The specification of the actions to actually be performed
#using the avove as default
actiongroups:
   - prefix: H05_ #Begin all exported filenames with this prefix
     smpdf_tolerance: 0.05 #Set T to 5% and execute the default
                           #actions above

   - prefix: H10_ 
     smpdf_tolerance: 0.10 #Set T to 10% and execute the default
                           #actions.

   - prefix: compall
     pdfsets: #Change the PDFsets for this actiongroup
        - MCH_nnlo_100
        - H05_smpdf* #Wildcard expansion is supported.
        - H10_smpdf*
        - MC900_nnlo
     actions: #Perform plots and save the data of the convolution.
        - violinplots
        - obscorrplots
        - ciplots
        - savedata
     base_pdf: MC900_nnlo #Plot values relative to this PDF.
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Questions
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backup: smpdf-higgs process details

Input cross-sections for SM-PDFs for Higgs physics
process distribution grid name Nbins range kin. cuts
gg → h incl xsec ggh_13tev 1 - -

dσ/dpht ggh_pt_13tev 10 [0,200] GeV -
dσ/dyh ggh_y_13tev 10 [-2.5,2.5] -

VBF hjj incl xsec vbfh_13tev 1 - -
dσ/dpht vbfh_pt_13tev 5 [0,200] GeV -
dσ/dyh vbfh_y_13tev 5 [-2.5,2.5] -

hW incl xsec hw_13tev 1 - pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dpht hw_pt_13tev 10 [0,200] GeV pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dyh hw_y_13tev 10 [-2.5,2.5] pT(l) ≥ 10 GeV, |ηl| ≤ 2.5

hZ incl xsec hz_13tev 1 - pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dpht hz_pt_13tev 10 [0,200] GeV pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dyh hz_y_13tev 10 [-2.5,2.5] pT(l) ≥ 10 GeV, |ηl| ≤ 2.5

ht̄t incl xsec httbar_13tev 1 - -
dσ/dpht httbar_pt_13tev 10 [0,200] GeV -
dσ/dyh httbar_y_13tev 10 [-2.5,2.5] -
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backup: smpdf-t̄t process details

Input cross-sections for SM-PDFs for t̄t physics
process distribution grid name Nbins range kin. cuts

t̄t incl xsec ttbar_13tev 1 - -
dσ/dpt̄t ttbar_tbarpt_13tev 10 [40,400] GeV -
dσ/dyt̄ ttbar_tbary_13tev 10 [-2.5,2.5] -
dσ/dptt ttbar_tpt_13tev 10 [40,400] GeV -
dσ/dyt ttbar_ty_13tev 10 [-2.5,2.5] -
dσ/dmt̄t ttbar_ttbarinvmass_13tev 10 [300,1000] -
dσ/dpt̄tt ttbar_ttbarpt_13tev 10 [20,200] -
dσ/dyt̄t ttbar_ttbary_13tev 12 [-3,3] -
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backup: smpdf-ew process details

Input cross-sections for SM-PDFs for electroweak boson production physics

process distribution grid name Nbins range kin. cuts

Z incl xsec z_13tev 1 - pT(l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dpl
−
t z_lmpt_13tev 10 [0,200] GeV pT(l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dyl
−

z_lmy_13tev 10 [-2.5,2.5] pT(l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dpl
+
t z_lppt_13tev 10 [0,200] GeV pT(l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dyl
−

z_lpy_13tev 10 [-2.5,2.5] pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dpzt z_zpt_13tev 10 [0,200] GeV pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dyz z_zy_13tev 5 [-4,4] pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dmll z_lplminvmass_13tev 10 [50,130] GeV pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dpllt z_lplmpt_13tev 10 [0,200] GeV pT(l) ≥ 10 GeV, |ηl| ≤ 2.5

W incl xsec w_13tev 1 - pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dϕ w_cphi_13tev 10 [-1,1] pT(l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dEmiss
t w_etmiss_13tev 10 [0,200] GeV pT(l) ≥ 10 GeV, |ηl| ≤ 2.5

dσ/dplt w_lpt_13tev 10 [0,200] GeV pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dyl w_ly_13tev 10 [-2.5,2.5] pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dmt w_mt_13tev 10 [0,200] GeV pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dpwt w_wpt_13tev 10 [0,200] GeV pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
dσ/dyw w_wy_13tev 10 [-4,4] pT(l) ≥ 10 GeV, |ηl| ≤ 2.5
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backup: selected correlations for hz production
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