SPECIALIZED MINIMAL PDFS

PDF4LHC MEETING

Zahari Kassabov In collaboration with S. Carrazza, S. Forte, J.Rojo October 27th 2015

University of Turin, University of Milan

UNIVERSITA DEGLI STUDI DI TORINO

• Suitable for use in experimental analysis:

- Suitable for use in experimental analysis:
 - Easy to combine independent SMPDFs

- Suitable for use in experimental analysis:
 - Easy to combine independent SMPDFs
 - Stable against varying kinematical cuts.

- Suitable for use in experimental analysis:
 - Easy to combine independent SMPDFs
 - Stable against varying kinematical cuts.
 - The accuracy vs N_{eig} balance can be tuned by users.

- Suitable for use in experimental analysis:
 - Easy to combine independent SMPDFs
 - Stable against varying kinematical cuts.
 - The accuracy vs N_{eig} balance can be tuned by users.
- Public code: https://github.com/scarrazza/smpdf

• Motivation:

- Motivation:
 - General purpose sets require 30 (lower accuracy) to 100 (higher accuracy) error sets (to reproduce the combined PDF4LHC Monte Carlo prior, *MC900*).

- Motivation:
 - General purpose sets require 30 (lower accuracy) to 100 (higher accuracy) error sets.
 - A better balance can be achieved if we only need to reproduce some processes.

- Motivation:
 - General purpose sets require 30 (lower accuracy) to 100 (higher accuracy) error sets.
 - A better balance can be achieved if we only need to reproduce some processes.
- Other methods:

Reduced META ensemble P. Nadolsky at PDF4LHC November 2014

(based on Dataset Diagonalization method, J Pumplin arxiv:0904.2425).

- Motivation:
 - General purpose sets require 30 (lower accuracy) to 100 (higher accuracy) error sets.
 - A better balance can be achieved if we only need to reproduce some processes.
- Other methods:

Reduced META ensemble P. Nadolsky at PDF4LHC November 2014.

• Our approach is based on:

- Motivation:
 - General purpose sets require 30 (lower accuracy) to 100 (higher accuracy) error sets.
 - A better balance can be achieved if we only need to reproduce some processes.
- Other methods:

- Our approach is based on:
 - Correlations on *x* space.

- Motivation:
 - General purpose sets require 30 (lower accuracy) to 100 (higher accuracy) error sets.
 - A better balance can be achieved if we only need to reproduce some processes.
- Other methods:

- Our approach is based on:
 - Correlations on x space.
 - Provides stability, e.g. can reproduce cross sections for the same process in a wide kinematical range.

- Motivation:
 - General purpose sets require 30 (lower accuracy) to 100 (higher accuracy) error sets.
 - A better balance can be achieved if we only need to reproduce some processes.
- Other methods:

- Our approach is based on:
 - Correlations on x space.
 - Iterative orthogonal projections

- Motivation:
 - General purpose sets require 30 (lower accuracy) to 100 (higher accuracy) error sets.
 - A better balance can be achieved if we only need to reproduce some processes.
- Other methods:

- Our approach is based on:
 - Correlations on x space.
 - Iterative orthogonal projections
 - Allows to reproduce smaller uncertainty contributions required to reach the tolerance.

- Motivation:
 - General purpose sets require 30 (lower accuracy) to 100 (higher accuracy) error sets.
 - A better balance can be achieved if we only need to reproduce some processes.
- Other methods:

- Our approach is based on:
 - Correlations on *x* space.
 - Iterative orthogonal projections
- We can combine:

- Motivation:
 - General purpose sets require 30 (lower accuracy) to 100 (higher accuracy) error sets.
 - A better balance can be achieved if we only need to reproduce some processes.
- Other methods:

- Our approach is based on:
 - Correlations on x space.
 - Iterative orthogonal projections
- We can combine:
 - Different sets of observables, by generating a common SM-PDF.

- Motivation:
 - General purpose sets require 30 (lower accuracy) to 100 (higher accuracy) error sets.
 - A better balance can be achieved if we only need to reproduce some processes.
- Other methods:

- Our approach is based on:
 - Correlations on *x* space.
 - Iterative orthogonal projections
- We can combine:
 - Results from independent SM-PDFs a posteriori.

- Motivation:
 - General purpose sets require 30 (lower accuracy) to 100 (higher accuracy) error sets.
 - A better balance can be achieved if we only need to reproduce some processes.
- Other methods:

- Our approach is based on:
 - Correlations on *x* space.
 - Iterative orthogonal projections
- We can combine:
- Combined SM-PDFs including HERAPDF?

- We have generated SMPDFs for the most important Higgs production processes:
 - Gluon fusion, VBF,*hW*, *hZ*, *ht* \overline{t}
- and the main backgrounds:
 - \cdot *t* \overline{t} , *W* and *Z* production
- We have considered total cross sections and various differential distributions (see backup slides 22-24).

Process	MC900		NNPDF3.0		MMHT14	
	$T_R = 5\%$	$T_R = 10\%$	$T_R = 5\%$	$T_R = 10\%$	$T_R = 5\%$	$T_R = 10\%$
h	15	11	13	8	8	7
tī	4	4	5	4	3	3
W, Z	14	11	13	8	10	9
Ladder	17	14	18	11	10	10

- T_R (set by user) is the maximum allowed deviation from the prior for any bin.
 - Typical difference is much smaller.

HIGGS PRODUCTION IN INDIVIDUAL CHANNELS

Process	MC900		NNPDF3.0		MMHT14	
	$T_R = 5\%$	$T_R = 10\%$	$T_R = 5\%$	$T_R = 10\%$	$T_R = 5\%$	$T_R = 10\%$
$gg \rightarrow h$	4	5	4	4	3	3
VBF hjj	7	5	10	5	4	3
hW	6	5	6	4	6	3
hZ	11	7	6	4	8	5
htī	3	2	4	4	3	2
Total h	15	11	13	8	8	7

LADDER SMPDF

Multiple processes can be efficiently stacked together:

STABILITY

Kinematical ranges that double those used as input:

 $(p_T^h \in (0, 400) \text{ GeV}, y^h \in (-5, 5)).$

- The code is public and can be used to generate custom SM-PDFs from:
 - Observables in APPLgrid or text format (e.g. NNLO codes).
 - LHAPDF6 Prior PDF (MC or symhessian).
- The aforementioned **SM-PDFs** will be made public.
 - Including the **APPLgrids** used to generate them.
- Custom SM-PDFs can be generated upon request.

1. Start with prior PDF (Monte Carlo or Symmetric Hessian)

$$f_{\alpha}^{(k)}(Prior)(x,Q), k = 1...N_{rep}$$

1. Start with prior PDF (Monte Carlo or Symmetric Hessian)

$$f_{\alpha}^{(k)}(Prior)(x,Q), k = 1...N_{rep}$$

2. Fix the central value to be the same as the prior:

$$f_{\alpha}^{(0)}(Hessian)(x,Q) \equiv f_{\alpha}^{(0)}(Prior)(x,Q)$$

1. Start with prior PDF (Monte Carlo or Symmetric Hessian)

$$f_{\alpha}^{(k)}(Prior)(x,Q), k = 1...N_{rep}$$

2. Fix the central value to be the same as the prior:

$$f_{\alpha}^{(0)}(\text{Hessian})(x,Q) \equiv f_{\alpha}^{(0)}(rior)(x,Q)$$

3. The covariance matrix is given in terms of X:

$$\begin{split} \boxed{X_{lk}(Q) \equiv f_{\alpha}^{(k)}(x_i, Q) - f_{\alpha}^{(0)}(x_i, Q)}, l \equiv N_x(\alpha - 1) + i \\ \operatorname{cov}(Q) = \frac{1}{N_{\operatorname{rep}} - 1} X X^t \\ f_{\alpha}^{(k)}(\operatorname{Hesian})(x_i, Q) = f_{\alpha}^{(0)}(x_i, Q) + X_{lk}(Q), \quad k = 1, \dots, N_{\operatorname{eig}} \end{split}$$

1. Start with prior PDF (Monte Carlo or Symmetric Hessian)

$$f_{\alpha}^{(k)}(Prior)(x,Q), \ k = 1...N_{rep}$$

2. Fix the central value to be the same as the prior:

$$f_{\alpha}^{(0)}(\text{Hessian})(x,Q) \equiv f_{\alpha}^{(0)}(rior)(x,Q)$$

3. The covariance matrix is given in terms of X:

$$\begin{split} \overline{X_{lk}(Q) \equiv f_{\alpha}^{(k)}(x_i, Q) - f_{\alpha}^{(0)}(x_i, Q)}, l \equiv N_x(\alpha - 1) + i \\ \operatorname{cov}(Q) = \frac{1}{N_{\operatorname{rep}} - 1} X X^t \\ f_{\alpha}^{(k)}(\operatorname{Hesian})(x_i, Q) = f_{\alpha}^{(0)}(x_i, Q) + X_{lk}(Q), \quad k = 1, \dots, N_{\operatorname{eig}}. \end{split}$$

l can be arbitrarily fine grained. Completely unbiased!

1. Start with prior PDF (Monte Carlo or Symmetric Hessian)

$$f_{\alpha}^{(k)}(Prior)(x,Q), \ k = 1...N_{rep}$$

2. Fix the central value to be the same as the prior:

$$f_{\alpha}^{(0)}(\text{Hessian})(x,Q) \equiv f_{\alpha}^{(0)}(rior)(x,Q)$$

3. The covariance matrix is given in terms of X:

$$\begin{split} \overline{X_{lk}(Q) \equiv f_{\alpha}^{(k)}(x_i, Q) - f_{\alpha}^{(0)}(x_i, Q)}, l \equiv N_x(\alpha - 1) + i \\ \operatorname{cov}(Q) = \frac{1}{N_{\mathrm{rep}} - 1} X X^t \end{split}$$

$$\int_{\alpha}^{\alpha} (\text{Hesian})^{(X_i, Q)} = \int_{\alpha}^{\alpha} (X_i, Q) + X_{lk}(Q), \quad k = 1, \dots, N_{\text{eig}}$$

l can be arbitrarily fine grained. Completely unbiased!

1. Start with prior PDF (Monte Carlo or Symmetric Hessian)

$$f_{\alpha}^{(k)}(Prior)(x,Q), \ k = 1...N_{rep}$$

2. Fix the central value to be the same as the prior:

$$f_{\alpha}^{(0)}(\text{Hessian})(x,Q) \equiv f_{\alpha}^{(0)}(rior)(x,Q)$$

3. The covariance matrix is given in terms of X:

$$\overline{X_{lk}(Q) \equiv f_{\alpha}^{(k)}(x_i, Q) - f_{\alpha}^{(0)}(x_i, Q)}, l \equiv N_x(\alpha - 1) + i$$
$$\operatorname{cov}(Q) = \frac{1}{N_{rep} - 1} X X^t$$

 $f_{\alpha(\text{Hesian})}^{(k)}(x_i, Q) = f_{\alpha}^{(0)}(x_i, Q) + X_{lk}(Q), \quad k = 1, \dots, N_{\text{eig}}(=N_{\text{rep}}).$

l can be arbitrarily fine grained. Completely unbiased!

mc2hessian: GLOBAL OPTIMIZATION

- In mc2hessian PCA (arxiv:1505.06736, appendix) we optimize for the absolute value of the covariance matrix, at some scale Q_0 .
 - This is used for the PDFLHC15_100 sets.

- In mc2hessian PCA (arxiv:1505.06736, appendix) we optimize for the absolute value of the covariance matrix, at some scale Q_0 .
 - This is used for the PDFLHC15_100 sets.
- We compute the Singular Value Decomposition and keep the N_{eig} largest singular values:

$$X(Q_0) = USV^t$$

- In mc2hessian PCA (arxiv:1505.06736, appendix) we optimize for the absolute value of the covariance matrix, at some scale Q_0 .
 - This is used for the PDFLHC15_100 sets.
- We compute the Singular Value Decomposition and keep the N_{eig} largest singular values:

 $X(Q_0) = USV^t$ $V \in \mathbb{R}^{N_{rep}} \times \mathbb{R}^{N_{rep}}$

- In mc2hessian PCA (arxiv:1505.06736, appendix) we optimize for the absolute value of the covariance matrix, at some scale Q_0 .
 - This is used for the PDFLHC15_100 sets.
- We compute the Singular Value Decomposition and keep the N_{eig} largest singular values:

$$\begin{split} X(Q_0) &= USV^t \\ \left(\begin{array}{cc} P & R \end{array} \right) &= V \in \mathbb{R}^{N_{\rm rep}} \times \left(\begin{array}{cc} \mathbb{R}^{N_{\rm eig}} & \mathbb{R}^{N_{\rm rep}-N_{\rm eig}} \end{array} \right) \end{split}$$

- In mc2hessian PCA (arxiv:1505.06736, appendix) we optimize for the absolute value of the covariance matrix, at some scale Q_0 .
 - This is used for the PDFLHC15_100 sets.
- We compute the Singular Value Decomposition and keep the N_{eig} largest singular values:

$$X(Q_0) = USV^t$$
$$\widetilde{X} = XP$$

- In mc2hessian PCA (arxiv:1505.06736, appendix) we optimize for the absolute value of the covariance matrix, at some scale Q_0 .
 - This is used for the PDFLHC15_100 sets.
- We compute the Singular Value Decomposition and keep the N_{eig} largest singular values:

$$X(Q_0) = USV^t$$
$$\widetilde{X} = XP$$

 mc2hessian needs ~ 100 eigenvectors to reproduce the covariance matrix of the PDF4LHC prior and most phenomenology at percent level.

$$X_{lk}(Q) \equiv f_{\alpha}^{(k)}(x_i, Q) - f_{\alpha}^{(0)}(x_i, Q)$$

which gives N_{rep} Hessian parameters, from k = 1, to $k = N_{rep}$.

$$X_{lk}(Q) \equiv f_{\alpha}^{(k)}(x_i, Q) - f_{\alpha}^{(0)}(x_i, Q)$$

which gives N_{rep} Hessian parameters, from k = 1, to $k = N_{rep}$.

• Any rotation of the space of linear combinations of replicas gives the same results for linear error propagation of PDF dependent quantities.

$$X_{lk}(Q) \equiv f_{\alpha}^{(k)}(X_i, Q) - f_{\alpha}^{(0)}(X_i, Q)$$

which gives N_{rep} Hessian parameters, from k = 1, to $k = N_{rep}$.

- Any rotation of the space of linear combinations of replicas gives the same results for linear error propagation of PDF dependent quantities.
- We can find a subspace with a smaller number of parameters, which optimizes the agreement for some quantities:

$$X_{lk}(Q) \equiv f_{\alpha}^{(k)}(X_i, Q) - f_{\alpha}^{(0)}(X_i, Q)$$

which gives N_{rep} Hessian parameters, from k = 1, to $k = N_{rep}$.

- Any rotation of the space of linear combinations of replicas gives the same results for linear error propagation of PDF dependent quantities.
- We can find a subspace with a smaller number of parameters, which optimizes the agreement for some quantities:

 $X \in \mathbb{R}^{N_x N_{\text{pdf}}} \times \mathbb{R}^{N_{\text{rep}}}$

$$X_{lk}(Q) \equiv f_{\alpha}^{(k)}(X_i, Q) - f_{\alpha}^{(0)}(X_i, Q)$$

which gives N_{rep} Hessian parameters, from k = 1, to $k = N_{rep}$.

- Any rotation of the space of linear combinations of replicas gives the same results for linear error propagation of PDF dependent quantities.
- We can find a subspace with a smaller number of parameters, which optimizes the agreement for some quantities:

 $X \in \mathbb{R}^{N_{\rm x}N_{\rm pdf}} \times (\mathcal{P} \oplus \mathcal{R})$

$$X_{lk}(Q) \equiv f_{\alpha}^{(k)}(X_i, Q) - f_{\alpha}^{(0)}(X_i, Q)$$

which gives N_{rep} Hessian parameters, from k = 1, to $k = N_{rep}$.

- Any rotation of the space of linear combinations of replicas gives the same results for linear error propagation of PDF dependent quantities.
- We can find a subspace with a smaller number of parameters, which optimizes the agreement for some quantities:

$$XP \in \mathbb{R}^{N_x N_{pdf}} \times (\mathcal{P} \oplus \mathcal{R})$$

$$X_{lk}(Q) \equiv f_{\alpha}^{(k)}(X_i, Q) - f_{\alpha}^{(0)}(X_i, Q)$$

which gives N_{rep} Hessian parameters, from k = 1, to $k = N_{rep}$.

- Any rotation of the space of linear combinations of replicas gives the same results for linear error propagation of PDF dependent quantities.
- We can find a subspace with a smaller number of parameters, which optimizes the agreement for some quantities:

$$\widetilde{X} = XP \in \mathbb{R}^{N_x N_{\text{pdf}}} \times \mathbb{R}^{N_{\text{eig}} \ll N_{\text{rep}}}$$

$$X_{lk}(Q) \equiv f_{\alpha}^{(k)}(x_i, Q) - f_{\alpha}^{(0)}(x_i, Q)$$

which gives N_{rep} Hessian parameters, from k = 1, to $k = N_{rep}$.

- Any rotation of the space of linear combinations of replicas gives the same results for linear error propagation of PDF dependent quantities.
- We can find a subspace with a smaller number of parameters, which optimizes the agreement for some quantities:

$$\widetilde{X} = XP \in \mathbb{R}^{N_{\rm x}N_{\rm pdf}} \times \mathbb{R}^{N_{\rm eig} \ll N_{\rm rep}}$$

• The reduced PDF representation is:

$$\widetilde{f}_{\alpha}^{(k)}(x_i,Q) = f_{\alpha}^{(0)}(x_i,Q) + \widetilde{X}_{lk}(Q), \quad k = 1, \dots, N_{\mathrm{eig}}.$$

THE sm-pdf strategy

• We can greatly improve the reduction by targeting specific processes:

$$\{\sigma_i\}, \quad i = 1, \dots, N_{\sigma}$$
$$S_{\sigma_i} = \left(\frac{1}{N_{\text{rep}} - 1} \sum_{k=1}^{N_{\text{rep}}} \left(\sigma_i^{(k)} - \sigma_i^{(0)}\right)^2\right)^{\frac{1}{2}}$$

THE sm-pdf strategy

• We can greatly improve the reduction by targeting specific processes:

$$\{\sigma_i\}, \quad i = 1, \dots, N_{\sigma}$$
$$S_{\sigma_i} = \left(\frac{1}{N_{\text{rep}} - 1} \sum_{k=1}^{N_{\text{rep}}} \left(\sigma_i^{(k)} - \sigma_i^{(0)}\right)^2\right)^{\frac{1}{2}}$$

• The worst-case accuracy target can be tuned by user!

$$T_R < \max_{i \in (1, N_{\sigma})} \left| 1 - \frac{\tilde{s}_{\sigma_i}}{s_{\sigma_i}} \right|$$

THE sm-pdf strategy

• We can greatly improve the reduction by targeting specific processes:

$$\{\sigma_i\}, \quad i = 1, \dots, N_{\sigma}$$
$$S_{\sigma_i} = \left(\frac{1}{N_{\text{rep}} - 1} \sum_{k=1}^{N_{\text{rep}}} \left(\sigma_i^{(k)} - \sigma_i^{(0)}\right)^2\right)^{\frac{1}{2}}$$

• The worst-case accuracy target can be tuned by user!

$$T_R < \max_{i \in (1, N_{\sigma})} \left| 1 - \frac{\tilde{s}_{\sigma_i}}{s_{\sigma_i}} \right|$$

• This is implemented in an iterative procedure.

The SM-PDFs strategy

CORRELATION BASED SELECTION

• For each iteration, select points in (x, α, Q) correlated with variations in σ :

$$\rho\left(x_{i}, Q_{\sigma}, \alpha, \sigma\right) \equiv \frac{N_{\mathrm{rep}}}{N_{\mathrm{rep}} - 1} \frac{\left\langle X(Q_{\sigma})_{lk} \cdot \left(\sigma^{(k)} - \sigma^{(0)}\right) \right\rangle_{\mathrm{rep}} - \left\langle X(Q_{\sigma})_{lk} \right\rangle_{\mathrm{rep}} \cdot \left\langle \sigma^{(k)} - \sigma^{(0)} \right\rangle_{\mathrm{rep}}}{S_{\alpha}^{\mathrm{PDF}}(x_{i}, Q_{\sigma}) \cdot s_{\sigma}}$$

$$\Xi = \{ (x_i, \alpha) : \rho (x_i, Q_\sigma, \alpha, \sigma) \ge t \cdot \rho_{\max} \}$$
$$X \longrightarrow X_{\Xi} (Q_\sigma)$$

CORRELATION BASED SELECTION

• For each iteration, select points in (x, α, Q) correlated with variations in σ :

$$\rho\left(X_{i}, Q_{\sigma}, \alpha, \sigma\right) \equiv \frac{N_{\mathrm{rep}}}{N_{\mathrm{rep}} - 1} \frac{\left\langle X(Q_{\sigma})_{lk} \cdot \left(\sigma^{(k)} - \sigma^{(0)}\right) \right\rangle_{\mathrm{rep}} - \left\langle X(Q_{\sigma_{1}})_{lk} \right\rangle_{\mathrm{rep}} \cdot \left\langle \sigma^{(k)} - \sigma^{(0)} \right\rangle_{\mathrm{rep}}}{S_{\alpha}^{\mathrm{PDF}}(X_{i}, Q_{\sigma}) \cdot s_{\sigma}}$$

$$\Xi = \{ (X_i, \alpha) : \rho (X_i, Q_\sigma, \alpha, \sigma) \ge t \cdot \rho_{\max} \}$$
$$X \longrightarrow X_{\Xi} (Q_\sigma)$$

• The correlation threshold t is the only free parameter of the algorithm: Set to t = 0.9 on phenomenological grounds.

CORRELATION BASED SELECTION

• For each iteration, select points in (x, α, Q) correlated with variations in σ :

$$\rho\left(X_{i}, Q_{\sigma}, \alpha, \sigma\right) \equiv \frac{N_{\mathrm{rep}}}{N_{\mathrm{rep}} - 1} \frac{\left\langle X(Q_{\sigma})_{lk} \cdot \left(\sigma^{(k)} - \sigma^{(0)}\right) \right\rangle_{\mathrm{rep}} - \left\langle X(Q_{\sigma_{1}})_{lk} \right\rangle_{\mathrm{rep}} \cdot \left\langle \sigma^{(k)} - \sigma^{(0)} \right\rangle_{\mathrm{rep}}}{S_{\alpha}^{\mathrm{PDF}}(X_{i}, Q_{\sigma}) \cdot s_{\sigma}}$$

$$\Xi = \{ (X_i, \alpha) : \rho (X_i, Q_\sigma, \alpha, \sigma) \ge t \cdot \rho_{\max} \}$$
$$X \longrightarrow X_{\Xi} (Q_\sigma)$$

- The correlation threshold t is the only free parameter of the algorithm: Set to t = 0.9 on phenomenological grounds.
- The correlation-based approach allows to efficiently generalize to processes with similar PDF dependence, making the algorithm stable.
 - Same SMPDF can be used with different cuts.

• We compute the SVD of X_{Ξ} and select one eigenvector:

$$\begin{split} X_{\Xi}(Q_{\sigma}) &= USV^{t} \\ \left(\begin{array}{cc} P & R \end{array}\right) &= V \in \mathbb{R}^{N_{\mathrm{rep}}} \times \left(\begin{array}{cc} \mathbb{R}^{1} & \mathbb{R}^{N_{\mathrm{rep}}-1} \end{array}\right) \end{split}$$

• We compute the SVD of X_{\pm} and select one eigenvector:

$$\begin{split} X_{\Xi}(Q_{\sigma}) &= USV^{t} \\ \left(\begin{array}{cc} P & R \end{array} \right) &= V \in \mathbb{R}^{N_{\mathrm{rep}}} \times \left(\begin{array}{cc} \mathbb{R}^{1} & \mathbb{R}^{N_{\mathrm{rep}}-1} \end{array} \right) \end{split}$$

• We project out the selected eigenvector for the next iteration:

$$X \longrightarrow XR$$

• We compute the SVD of X_{Ξ} and select one eigenvector:

$$\begin{split} X_{\Xi}(Q_{\sigma}) &= USV^{t} \\ \left(\begin{array}{cc} P & R \end{array} \right) &= V \in \mathbb{R}^{N_{\mathrm{rep}}} \times \left(\begin{array}{cc} \mathbb{R}^{1} & \mathbb{R}^{N_{\mathrm{rep}}-1} \end{array} \right) \end{split}$$

• We project out the selected eigenvector for the next iteration:

$$X \longrightarrow XR$$

• We iterate (select more eigenvectors) until we met the tolerance criteria for the current observable, and move to the next observable, until we reproduce all.

• We compute the SVD of X_{Ξ} and select one eigenvector:

$$\begin{split} X_{\Xi}(Q_{\sigma}) &= USV^{t} \\ \left(\begin{array}{cc} P & R \end{array} \right) &= V \in \mathbb{R}^{N_{\mathrm{rep}}} \times \left(\begin{array}{cc} \mathbb{R}^{1} & \mathbb{R}^{N_{\mathrm{rep}}-1} \end{array} \right) \end{split}$$

• We project out the selected eigenvector for the next iteration:

$$X \longrightarrow XR$$

- We iterate (select more eigenvectors) until we met the tolerance criteria for the current observable, and move to the next observable, until we reproduce all.
- See upcoming publication or code for more details.

A POSTERIORI COMBINATION

• Results computed with different SMPDFs can be easily combined by expressing them in terms of the prior (within the tolerance):

$$d_k(\sigma)/\sqrt{N_{\mathrm{rep}}-1} = \sum_{j=1}^{N_{\mathrm{eig}}} P_{kj}^t \widetilde{d}_j(\sigma), \qquad k = 1, \dots, N_{\mathrm{rep}}$$

- $d_k(\sigma) = \sigma_k \sigma_0$, for σ_k expressed in terms of the N_{rep} prior replicas.
- $d_j(\sigma) = \sigma_j \sigma_0$, for σ_j computed in terms of the N_{eig} SMPDF eigenvectors.
- Direct and inverse transformation matrices provided in the SM-PDF code.
 - With appropriate normalization constants and hash-based parameter names.

OTHER FEATURES OF THE CODE

- Python interface for APPlgrid and LHAPDF.
- Phenomenology comparisons for PDFs.
 - PDF4LHC Recommendation benchmarking plots.
 - Yellow report PDF correlations.
- Correlation plots
 - PDF with observable
 - Observable PDF uncertainties
- mc2hessian algorithm.
- Observable values as a function of α_s or N_f .
- Convolution result as a rich HTML and CSV table.

Execute with: smpdf higgs.yaml -use-db

#higgs.yaml

#Global parameters that are used until overwritten by parameters #inside the actiongroups

observables: #Provide the Paths to the APPLGrids, and specify that #they are calculated at NLO

Higgs

- {name: 'data/higgs/ggh_13tev.root', order: NLO}
- {name: 'data/higgs/ggH_y_l3tev.root', order: NLO}
- {name: 'data/higgs/hw_13tev.root', order: NLO}
- {name: 'data/higgs/hz 13tev.root', order: NLO}
- {name: 'data/higgs/ggH_pt_13tev.root', order: NLO}
- {name: 'data/higgs/httbar_13tev.root', order: NLO}

pdfsets:

- MC900_nnlo #LHAPDF set to be used as prior

actions:

- smpdf #Generate the SMPDFs from the prior and the observables
- installgrids #Install the generated sets in the LHAPDF path

#The specification of the actions to actually be performed #using the avove as default

actiongroups:

- prefix: H05_ #Begin all exported filenames with this prefix smpdf_tolerance: 0.05 #Set T to 5% and execute the default #actions above
- prefix: H10_ smpdf_tolerance: 0.10 #Set T to 10% and execute the default #actions.
- prefix: compall
 - pdfsets: #Change the PDFsets for this actiongroup
 - MCH_nnlo_100
 - H05_smpdf* #Wildcard expansion is supported.
 - H10_smpdf*
 - MC900 nnlo

actions: #Perform plots and save the data of the convolution.

- violinplots
- obscorrplots
- ciplots
- savedata

base_pdf: MC900_nnlo #Plot values relative to this PDF.

QUESTIONS

Input cross-sections for SM-PDFs for Higgs physics						
process	distribution	grid name	N _{bins}	range	kin. cuts	
$gg \rightarrow h$	incl xsec	ggh_13tev	1	-	-	
	$d\sigma/dp_t^h$	ggh_pt_13tev	10	[0,200] GeV	-	
	$d\sigma/dy^h$	ggh_y_13tev	10	[-2.5,2.5]	-	
VBF hjj	incl xsec	vbfh_13tev	1	-	-	
	$d\sigma/dp_t^h$	vbfh_pt_13tev	5	[0,200] GeV	-	
	$d\sigma/dy^h$	vbfh_y_13tev	5	[-2.5,2.5]	-	
hW	incl xsec	hw_13tev	1	-	$p_T(l) \geq 10$ GeV, $ \eta^l \leq 2.5$	
	$d\sigma/dp_t^h$	hw_pt_13tev	10	[0,200] GeV	$p_T(l) \geq$ 10 GeV, $ \eta^l \leq$ 2.5	
	$d\sigma/dy^h$	hw_y_13tev	10	[-2.5,2.5]	$p_{ au}(l) \geq$ 10 GeV, $ \eta^l \leq$ 2.5	
hZ	incl xsec	hz_13tev	1	-	$p_T(l) \geq 10$ GeV, $ \eta^l \leq 2.5$	
	$d\sigma/dp_t^h$	hz_pt_13tev	10	[0,200] GeV	$p_T(l) \geq$ 10 GeV, $ \eta^l \leq$ 2.5	
	$d\sigma/dy^h$	hz_y_13tev	10	[-2.5,2.5]	$p_{ au}(l) \geq$ 10 GeV, $ \eta^l \leq$ 2.5	
htī	incl xsec	httbar_13tev	1	-	-	
	$d\sigma/dp_t^h$	httbar_pt_13tev	10	[0,200] GeV	-	
	$d\sigma/dy^h$	httbar_y_13tev	10	[-2.5,2.5]	-	

Input cross-sections for SM-PDFs for $t\bar{t}$ physics							
process	distribution	grid name	$N_{\rm bins}$	range	kin. cuts		
tī	incl xsec	ttbar_13tev	1	-	-		
	$d\sigma/dp_t^{\overline{t}}$	ttbar_tbarpt_13tev	10	[40,400] GeV	-		
	$d\sigma/dy^{\overline{t}}$	ttbar_tbary_13tev	10	[-2.5,2.5]	-		
	$d\sigma/dp_t^t$	ttbar_tpt_13tev	10	[40,400] GeV	-		
	$d\sigma/dy^t$	ttbar_ty_13tev	10	[-2.5,2.5]	-		
	$d\sigma/dm^{t\bar{t}}$	ttbar_ttbarinvmass_13tev	10	[300,1000]	-		
	$d\sigma/dp_t^{tar{t}}$	ttbar_ttbarpt_13tev	10	[20,200]	-		
	$d\sigma/dy^{t\bar{t}}$	ttbar_ttbary_13tev	12	[-3,3]	-		

Input cross-sections for SM-PDFs for electroweak boson production physics						
process	distribution	grid name	N _{bins}	range	kin. cuts	
Z	incl xsec	z_13tev	1	-	$p_T(l) \ge 10$ GeV, $ \eta^l \le 2.5$	
	$d\sigma/dp_t^{l}$	z_lmpt_13tev	10	[0,200] GeV	$p_T(l) \geq$ 10 GeV, $ \eta^l \leq$ 2.5	
	$d\sigma/dy^l$	z_lmy_13tev	10	[-2.5,2.5]	$p_T(l) \ge 10$ GeV, $ \eta^l \le 2.5$	
	$d\sigma/dp_t^{l+}$	z_lppt_13tev	10	[0,200] GeV	$p_T(l) \ge 10$ GeV, $ \eta^l \le 2.5$	
	$d\sigma/dy^{l}$	z_lpy_13tev	10	[-2.5,2.5]	$p_T(l) \geq$ 10 GeV, $ \eta^l \leq$ 2.5	
	$d\sigma/dp_t^Z$	z_zpt_13tev	10	[0,200] GeV	$p_T(l) \ge 10$ GeV, $ \eta^l \le 2.5$	
	$d\sigma/dy^Z$	z_zy_13tev	5	[-4,4]	$p_T(l) \ge 10 \text{ GeV}, \eta^l \le 2.5$	
	$d\sigma/dm^{ll}$	z_lplminvmass_13tev	10	[50,130] GeV	$p_T(l) \ge 10 \text{ GeV}, \eta^l \le 2.5$	
	$d\sigma/dp_t^{ll}$	z_lplmpt_13tev	10	[0,200] GeV	$p_T(l) \ge 10$ GeV, $ \eta^l \le 2.5$	
W	incl xsec	w_13tev	1	-	$p_T(l) \ge 10 \text{ GeV}, \eta^l \le 2.5$	
	$d\sigma/d\phi$	w_cphi_13tev	10	[-1,1]	$p_T(l) \ge 10 \text{ GeV}, \eta^l \le 2.5$	
	$d\sigma/dE_t^{miss}$	w_etmiss_13tev	10	[0,200] GeV	$p_T(l) \ge 10 \text{ GeV}, \eta^l \le 2.5$	
	$d\sigma/dp_t^l$	w_lpt_13tev	10	[0,200] GeV	$p_T(l) \ge 10 \text{ GeV}, \eta^l \le 2.5$	
	$d\sigma/dy^{I}$	w_ly_13tev	10	[-2.5,2.5]	$p_T(l) \ge 10 \text{ GeV}, \eta^l \le 2.5$	
	$d\sigma/dm_t$	w_mt_13tev	10	[0,200] GeV	$p_T(l) \ge 10 \text{ GeV}, \eta^l \le 2.5$	
	$d\sigma/dp_t^W$	w_wpt_13tev	10	[0,200] GeV	$p_T(l) \ge 10 \text{ GeV}, \eta^l \le 2.5$	
	$d\sigma/dy^W$	w_wy_13tev	10	[-4,4]	$p_T(l) \ge 10 \text{ GeV}, \eta^l \le 2.5$	

BACKUP: SELECTED CORRELATIONS FOR hz PRODUCTION

