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..introduction



pdf uncertainties from data

PDFs have to be estimated from experimental data.

∙ Several groups perform global fits.

∙ Different statistical treatments, data sets, theory assumptions, ...
∙ Need tools to combine, compare, benchmark.
∙ Need to distribute in a way useful for the community.
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..pdf parametizations



original ideas

There are two main ways of fitting PDFs from data:

Hessian approach Imagine the functional form is known, and guess
parameters from data by maximum likelihood.

∙ Provide the mean and a eigenvector error set.

Monte Carlo approach Assume a very general functional form and
fix parameters form data by maximum a posteriori.

∙ Provide a set of functional forms, “replicas”.

However

Both can be delivered as Hessian and MC representations.

∙ Can separate fit strategy from representation.

We show how to transform Monte Carlo to Hessian.

5



original ideas

There are two main ways of fitting PDFs from data:

Hessian approach Imagine the functional form is known, and guess
parameters from data by maximum likelihood.

∙ Provide the mean and a eigenvector error set.

Monte Carlo approach Assume a very general functional form and
fix parameters form data by maximum a posteriori.

∙ Provide a set of functional forms, “replicas”.

However

Both can be delivered as Hessian and MC representations.

∙ Can separate fit strategy from representation.

We show how to transform Monte Carlo to Hessian.

5



original ideas

There are two main ways of fitting PDFs from data:

Hessian approach Imagine the functional form is known, and guess
parameters from data by maximum likelihood.
∙ Provide the mean and a eigenvector error set.

Monte Carlo approach Assume a very general functional form and
fix parameters form data by maximum a posteriori.

∙ Provide a set of functional forms, “replicas”.

However

Both can be delivered as Hessian and MC representations.

∙ Can separate fit strategy from representation.

We show how to transform Monte Carlo to Hessian.

5



original ideas

There are two main ways of fitting PDFs from data:

Hessian approach Imagine the functional form is known, and guess
parameters from data by maximum likelihood.
∙ Provide the mean and a eigenvector error set.

Monte Carlo approach Assume a very general functional form and
fix parameters form data by maximum a posteriori.

∙ Provide a set of functional forms, “replicas”.

However

Both can be delivered as Hessian and MC representations.

∙ Can separate fit strategy from representation.

We show how to transform Monte Carlo to Hessian.

5



original ideas

There are two main ways of fitting PDFs from data:

Hessian approach Imagine the functional form is known, and guess
parameters from data by maximum likelihood.
∙ Provide the mean and a eigenvector error set.

Monte Carlo approach Assume a very general functional form and
fix parameters form data by maximum a posteriori.
∙ Provide a set of functional forms, “replicas”.

However

Both can be delivered as Hessian and MC representations.

∙ Can separate fit strategy from representation.

We show how to transform Monte Carlo to Hessian.

5



original ideas

There are two main ways of fitting PDFs from data:

Hessian approach Imagine the functional form is known, and guess
parameters from data by maximum likelihood.
∙ Provide the mean and a eigenvector error set.

Monte Carlo approach Assume a very general functional form and
fix parameters form data by maximum a posteriori.
∙ Provide a set of functional forms, “replicas”.

However

Both can be delivered as Hessian and MC representations.

∙ Can separate fit strategy from representation.

We show how to transform Monte Carlo to Hessian.

5



original ideas

There are two main ways of fitting PDFs from data:

Hessian approach Imagine the functional form is known, and guess
parameters from data by maximum likelihood.
∙ Provide the mean and a eigenvector error set.

Monte Carlo approach Assume a very general functional form and
fix parameters form data by maximum a posteriori.
∙ Provide a set of functional forms, “replicas”.

However

Both can be delivered as Hessian and MC representations.

∙ Can separate fit strategy from representation.

We show how to transform Monte Carlo to Hessian.
5



propagation of uncertainty

Hessian approach Apply simple error propagation formula to the
“eigenvalues” zk, ie f(x,Q2) = f[zk](x,Q2).

∙ Assume small (linear Taylor expansion), and
Gaussian errors.

(∆O[f]) 2 ∝
∑
k

(
∂O
∂zk

)2
, zk ∼ N (0, 1)

Monte Carlo approach Perform a Monte Carlo simulation sampling
from the distribution of replicas.

O ∼ O (f)
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summary

Problem addressed here:

⇒ Determine an unbiased Hessian representation for MC PDFs.
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advantages and disadvantages

Hessian approach:
∙ Linear error propagation.

∙ Errors Gaussian in the space of
parameters.

∙ Straightforward combination
with other sources of
uncertainty.

∙ Efficient and easy
implementation

Monte Carlo approach:

∙ Arbitrary error propagation.
∙ Easy combination of multiple
PDF sets.

∙ Much less functional bias.

8



advantages and disadvantages

Hessian approach:
∙ Linear error propagation.
∙ Errors Gaussian in the space of
parameters.

∙ Straightforward combination
with other sources of
uncertainty.

∙ Efficient and easy
implementation

Monte Carlo approach:

∙ Arbitrary error propagation.
∙ Easy combination of multiple
PDF sets.

∙ Much less functional bias.

8



advantages and disadvantages

Hessian approach:
∙ Linear error propagation.
∙ Errors Gaussian in the space of
parameters.

∙ Straightforward combination
with other sources of
uncertainty.

∙ Efficient and easy
implementation

Monte Carlo approach:

∙ Arbitrary error propagation.
∙ Easy combination of multiple
PDF sets.

∙ Much less functional bias.

8



advantages and disadvantages

Hessian approach:
∙ Linear error propagation.
∙ Errors Gaussian in the space of
parameters.

∙ Straightforward combination
with other sources of
uncertainty.

∙ Efficient and easy
implementation

Monte Carlo approach:

∙ Arbitrary error propagation.
∙ Easy combination of multiple
PDF sets.

∙ Much less functional bias.

8



advantages and disadvantages

Hessian approach:
∙ Linear error propagation.
∙ Errors Gaussian in the space of
parameters.

∙ Straightforward combination
with other sources of
uncertainty.

∙ Efficient and easy
implementation

Monte Carlo approach:
∙ Arbitrary error propagation.

∙ Easy combination of multiple
PDF sets.

∙ Much less functional bias.

8



advantages and disadvantages

Hessian approach:
∙ Linear error propagation.
∙ Errors Gaussian in the space of
parameters.

∙ Straightforward combination
with other sources of
uncertainty.

∙ Efficient and easy
implementation

Monte Carlo approach:
∙ Arbitrary error propagation.
∙ Easy combination of multiple
PDF sets.

∙ Much less functional bias.

8



advantages and disadvantages

Hessian approach:
∙ Linear error propagation.
∙ Errors Gaussian in the space of
parameters.

∙ Straightforward combination
with other sources of
uncertainty.

∙ Efficient and easy
implementation

Monte Carlo approach:
∙ Arbitrary error propagation.
∙ Easy combination of multiple
PDF sets.

∙ Much less functional bias.

8



..the mc2hessian algorithm



alternative

Meta-PDF [arXiv:1401.0013] is an alternative method to combine
different PDF sets:

1. Convert Hessian sets to Monte Carlo.
2. Combine all MC replicas.
3. Fit each replica to a “Hessian like” functional form.
4. Produce final Hessian set from fitted parameters.

∙ Introduces functional bias.
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description of the method

Given a Monte Carlo prior set of PDFs

{f(k)α }k=1,...,Nrep , α = {g,u,d, s, . . .} ,

use a subset of replicas as parameters of linear expansion:

f(k)α ≈ f(k)H,α ≡ f(0)α +

Neig∑
i=1

a(k)i (η(i)α − f(0)α ) , k = 1, . . . ,Nrep
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description of the method

∙ We want to go from Nrep = 1000 MC replicas to Neig eigenvectors.

∙ We are interested in reproducing Gaussian regions of the PDF:

ϵ =

∣∣∣∣σ − (68% c.l)
σ

∣∣∣∣
∙ We construct a figure of merit and optimize with a genetic
algorithm:

ERFσ =
Nx∑
i=1

Nf∑
α=1

∣∣∣∣∣σPDF
H,α (xi,Q2

0)− σPDF
α (xi,Q2

0)

σPDF
α (xi,Q2

0)

∣∣∣∣∣
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selecting the optimal basis

∙ Surface: GA minimum for estimator in function of ϵ and Neig.
∙ Blue curve: surface minimum; black curve: estimator with large ϵ. 13



..phenomenology



lhc phenomenology

LHC inclusive cross-sections @ 13 TeV

Ratio to NNPDF3.0 Monte Carlo

0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

=0.118, NNPDF3.0 NLO
S

αLHC 13 TeV, 

ggH

+
W


W

Z

tt

Monte Carlo

Hessian

=0.118, NNPDF3.0 NLO
S

αLHC 13 TeV, 

Ratio to MMHT14 Native Hessian

0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

=0.120, MMHT14 NLO
S

αLHC 13 TeV, 

ggH

+
W


W

Z

tt

Hessian Orig

Hessian New

=0.120, MMHT14 NLO
S

αLHC 13 TeV, 

∙ Good agreement for LHC inclusive cross-sections, below 10%.
∙ Also for a large number of differential distributions at the LHC 7
TeV.
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..another idea



another idea

∙ Use the whole replica set to form the linear combinations (not a
subset).

∙ Maximize “agreement” of Hessian and MC covariance matrices.
∙ It can be reduced to a lineal algebra problem!

∙ (pick linear combinations of replicas corresponding to the dominant
eigenvalues, using singular value decomposition).
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covariance matrix

Results for 100-eigenvector Hessian.

s̄ d̄ ū g u d s

Original

s̄

d̄

ū

g

u

d

s

s̄ d̄ ū g u d s

Hessian

s̄

d̄

ū

g

u

d

s
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..delivery



delivery

∙ The mc2hessian program is public available at

github.com/scarrazza/mc2hessian
∙ Further optimizations in progress before final release.
∙ NNPDF3.0 Hessian version available in LHAPDF6 soon:

∙ NNPDF30_nlo_as_0118_hessian
∙ NNPDF30_nnlo_as_0118_hessian

∙ Any other MC set can be converted using directly the public code.

20

github.com/scarrazza/mc2hessian


outlook

Current PDF4LHC prescription is to use combined PDF sets.

∙ Combine using a Monte Carlo sample of each set.

∙ Deliver final Hessian set (as experiments prefer).

Hopefully mc2hessian will be used to deliver the Standard PDFs for
tasks like Higgs cross section measurements.
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Questions?

22


	Introduction
	PDF Parametizations
	The mc2hessian algorithm
	Phenomenology
	Another idea
	Delivery

