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Introduction

Need to calculate some PDF dependent quantity (PDF+αS uncertainty).

What should I do?

Which PDF set should I use?

The 2015 PDFLHC15 Recommendation [Butterworth et al, 1510.0386]

provides some guidelines.

What is beyond it?
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PDF4LHC Recommendation



Criteria for inclusion

The set of conditions for a PDF determination to be included are:

• Be based on a global dataset.

• Provide NNLO and predictions in a GM-VFNS.

• αS set to the PDG average (and consistent quark masses).

• Account for all known sources of uncertainty.

Benchmarks have shown that these features account for most of the

differences with other determinations.

Although not everyone agrees [Accardi et al, 1603.08906].
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The PDF4LHC recommendation

Recent progress has improved the agreement between the PDFs by the

CT, MMHT and NNPDF groups.

• Added new data which constrains the PDFs.

• Better understanding of parametrization and fitting issues.

• More general parameterization for MMHT and CT

• Closure tests for NNPDF.
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Agreement in the gluon PDF
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Differences between included sets

The agreement between these sets suggests that the spread could be

interpreted in a statistical way, including a crude theoretical uncertainty

estimate. Some differences are:

• The parametrization and fitting procedure.

• Some theoretical parameters (quark masses).

• The precise implementation of the GM-VFNS.

• The way in which the DGLAP evolution equations are solved.

Therefore a statistical combination is deemed desirable.
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Statistical combination

• The combination is based on sets of 300 Monte Carlo replicas

obtained from MMHT14, CT14 and NNPDF3.0.

• This makes 900 computations necessary to estimate the PDF

uncertainty of a given observable, which is impractical.
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Reduced representations

Three methods were implemented for producing compressed sets:

PDF4LHC15 mc [Carrazza et al, 1504.06469] Monte Carlo set to

account for Non-Gaussian effects.

PDF4LHC15 30 [Gao, Nadolsky, 1401.0013] Lower accuracy Hessian

set

PDF4LHC 100 [Carrazza et al, 1505.06736] Higher accuracy

Hessian set (see last year’s talk).

These sets have been benchmarked extensively in the Les Houches 2015

Proceedings.

8
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Accuracy of the uncertainty band

We calculated the PDF uncertainties for each reduced set and the prior,

for all the hadronic observables in the NNDPF dataset:

∆i =:

∣∣∣s(prior)
i − s

(reduced)
i

∣∣∣
s

(prior)
i

, i = 1, . . . ,Ndata
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Non-Gaussianities in the PDF4LHC combination

We investigated how well can the predictions of the PDF4LHC set be

approximated by a Gaussian.

• We computed predictions for a representative set of LHC processses.

• We investigate:

• Effect of non-Gaussianity on the compression quality.

• Check that compressed Monte Carlo reproduces non-Gaussianities

well.

• When it should be favored over the Hessian.
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Kernel Density Estimate

First we construct a continuous probability density from a Monte Carlo

sample (Kernel Density Estimate):

P(σ) =
1

Nrep

Nrep∑
i=1

K (σ − σi ) . (1)

We choose the function K to be a normal distribution

K (σ − σi ) =
1

h
√

2π
e

−(σ−σi )2

h , (2)

here we set the parameter h (bandwidth) so that it is the optimal choice

if the underlying data was Gaussian
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Comparing probability distributions

We use the Kullback–Leibler divergence to measure how much

information we are loosing by approximating the prior P(σ) with the

distribution spanned form each of the optimized representations Q(σ).

DKL(P|Q) =

ˆ +∞

−∞
P(σ)

(
logP(σ)

logQ(σ)

)
dσ

• A Gaussian given by (µ = 〈σi 〉i ,
σ = 1

N−1

(∑
(σi − µ)2

)1/2
).

• The MCH Gaussian.

• The CMC KDE.
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Results
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• MCH as close to the result of the prior as a Gaussian can be.

• CMC ∼ independent of the degree of Gaussianity.
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Process by process
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Absolute scale

We define the estimators:

∆µ =
median− µ

s

∆s =
R − s

s

with

R =
1

2
min{[xmin, xmax];

ˆ xmax

xmin

P(x) = 0.683 .
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Results
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Improved reduction methods

• General purpose reduction require ∼ 100 error sets to reach a

percent level accuracy (PDF4LHC 100, PDF4LHC15 mc).

• Further compression (PDF4LHC15 30) can induce rather large

(> 50%) deviations for certain observables.

• It is possible to reduce the number of error sets when we only want

to reproduce a specific set of processes [Pumplin, 0904.2425] while

retaining accuracy.

• We developed the SMPDF [Carraza et al, 1602.00005] methodology

to realize this.
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SMPDF



SMPDF

• Efficient and accurate PDF process-specific Hessian reduction

algorithm:

(Prior PDF, list of observables) −→ Reduced representation

(SMPDF)

• Suitable for use in experimental analysis:

• Easy to combine independent SMPDFs

• Stable against varying kinematical cuts.

• The accuracy vs Neig balance can be tuned by users.

• Public code: https://github.com/scarrazza/smpdf

18
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Methodology

Based on MCH:

• Write Hessian parameters in terms of a linear combination of MC

replicas.

Xlk(Q) ≡ f (k)
α (xi ,Q)− f (0)

α (xi ,Q)

• Select the most relevant ones (at some scale).

• Trivially apply DGLAP evolution to the linear combination.

Suplemented with:

• Measure of the relevance

• Measure of the accuracy goal

• Procedure to retain information

19
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• Measure of the relevance

• Measure of the accuracy goal

• Procedure to retain information
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• Write Hessian parameters in terms of a linear combination of MC

replicas.

Xlk(Q) ≡ f (k)
α (xi ,Q)− f (0)

α (xi ,Q)

• Select the most relevant ones (at some scale).

• Trivially apply DGLAP evolution to the linear combination.

Suplemented with:

• Measure of the relevance

• Measure of the accuracy goal

• Procedure to retain information

X = USV t(
P R

)
= V ∈ RNrep ×

(
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Iterative procedure

  

The SM-PDFs strategy

Custom observables

Theoretical
predictions

Kinematic sampling

SM-PDFs

Input PDF set

APPLgrid

Plain files

LHAPDF

LHAPDF grid
Reached

Tolerance?

SM-PDF algorithm:

Eigenvector collection

Compute uncertainties
Validation plots

Data output

  No
Yes

Check non-linear 
effects

Next observable

Orthogonal projection
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Example cases

• We have generated SMPDFs for the most important Higgs

production processes:

• Gluon fusion, VBF,hW , hZ , htt̄

• and the main backgrounds:

• tt̄, W and Z production

• We have considered total cross sections and various differential

distributions.
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Results

Process
MC900 NNPDF3.0 MMHT14

TR = 5% TR = 10% TR = 5% TR = 10% TR = 5% TR = 10%

h 15 11 13 8 8 7

tt̄ 4 4 5 4 3 3

W ,Z 14 11 13 8 10 9

Ladder 17 14 18 11 10 10

• TR (set by user) is the maximum allowed deviation from the prior

for any bin.

• Typical difference is much smaller.
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Higgs production in individual channels

Process
MC900 NNPDF3.0 MMHT14

TR = 5% TR = 10% TR = 5% TR = 10% TR = 5% TR = 10%

gg → h 4 5 4 4 3 3

VBF hjj 7 5 10 5 4 3

hW 6 5 6 4 6 3

hZ 11 7 6 4 8 5

htt̄ 3 2 4 4 3 2

Total h 15 11 13 8 8 7
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Ladder SMPDF

Multiple processes can be efficiently stacked together:
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Comparison of Ladder SMPDF and PDF4LHC15 30
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PDFs with scale variations



Motivation

Currently theoretical (MHO) uncertainties in PDFs are:

• Not estimated at all (usually).

• Estimated with crude recipes.

• N3LO uncertainty −→ 1
2
(NNLO − NLO) result [Anastasiou et al,

1602.00695]

• Combination of PDFs (PDF4LHC)
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Application of scale variations

Standard procedure to estimate MHU.

• Uncertainty computed trough a specified set of variations. [HXSWG,

1101.0593]

• But other procedures exist

• Compared for N3LO ggH in [Bovini et al, 1603.08000].
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Application of scale variations

Standard procedure to estimate MHU.

• Uncertainty computed trough a specified set of variations. [HXSWG,

1101.0593]

• But other procedures exist

• Resummation prescription variations, see [Bovini et al, 1603.08000] for

a recent application.

• Cacciari-Houdeau [Cacciari, Houdeau, 1105.5152]

• David-Passarino [David, Passarino, 1307.1843] Estimate the sum

using convergence accelaration methods.

• Compared for N3LO ggH in [Bovini et al, 1603.08000].
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Scale variations in PDFs

MHO determination has unique challenges for PDFs.

• Not clear how to correlate the scales of the different processes that

enter in the fit.

• e.g. µR for DIS and jets?

• Not clear how to relate to other sources of uncertainty.

• e.g. we could do a set of scale variations per replica.

• Intrinsically more difficult because we have a series of functions

rather than of cross-sections.
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Implementing in the NNPDF framework

Roadmap:

1. Male technically possible to vary scales in the NNPDF FastKernel

code.

2. Need to figure out how to correlate the µR variations among

processes.

3. Need to see whether µR or µF gives the biggest contribution.

4. Figure out how to represent the resulting theoretical uncertainty.

5. Look into implementing other MHO prescriptions.
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Thank you!
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