A determination of the strong coupling constant from a global PDF analysis

Final HiggsTools meeting, University of Durham

Zahari Kassabov Sep 14th 2017

University of Turin, University of Milan

Why α_s ?

• Rule of thumb: If an observable starts at α_S^N , the relative uncertainty is $\sim n\left(\frac{\Delta\alpha_S}{\alpha_S}\right)$. Has not decreased for a while.

• Example: $ggH \sim \alpha_{\rm S}^2$:

Figure 1: (S.Forte, Lattice 2017)

(and backgrounds like $t\bar{t}jj\sim lpha_{
m S}^4$).

The usually accepted value comes from the PDG Average (PDG review 2016, Bethke, Dissertori, Salam):

 $\alpha_{\rm S}(M_Z^2) = 0.1181 \pm 0.0013$

• "Combined" from determinations from several physical processes.

PDG combination

- Only NNLO or better determinations considered.
- "Pre averaging": Take the unweighted mean and the mean error from each process.
- Final number obtained as a weighted " χ^2 average" over the processes.

Ways to combine quantity determinations

Assume we have two determinations of the quantity x characterized by uncorrelated probability densities $P_1(x)$ and $P_2(x)$.

Uncertainty as prediction output "Union" (e.g. PDF combination)

$$P(x) = \frac{P_1(x) + P_2(x)}{2}$$

Combined uncertainties "Intersection" or "conflation" (Hill, 2008)

$$P(x) = \frac{P_1(x)P_2(x)}{\int P_1(x)P_2(x)dx}$$

(χ^2 averaging for Gaussians)

Ways to combine quantity determinations

Assume we have two determinations of the quantity x characterized by uncorrelated probability densities $P_1(x)$ and $P_2(x)$.

Uncertainty as prediction output "Union" (e.g. PDF combination)

$$P(x) = \frac{P_1(x) + P_2(x)}{2}$$

Combined uncertainties "Intersection" or "conflation" (Hill, 2008)

$$P(x) = \frac{P_1(x)P_2(x)}{\int P_1(x)P_2(x)dx}$$

 $(\chi^2 \text{ averaging for Gaussians})$

Determination vs test to the methodology

$\alpha_{\rm S}$ combination as a sociological construct

"In my opinion one should select few theoretically simplest processes for measuring α_S and consider all other ways as tests of the theory."

G.Altarelli, 2013

- Rule of thumb: Larger uncertainties easier to trust.
- Example: EW precision fits.
 - Small theoretical uncertainties, but must assume Standard Model.
 - PDG value (from Gfitter group, 2014): $\alpha_{\rm S}(M_Z^2) = 0.1196 \pm 0.0030$
- + Example: au decays
 - Leptonic initial state (no PDF dependence) but at very small scale.
 - PDG value: $\alpha_{\rm S}(M_Z^2) = 0.1192 \pm 0.0018$
- Combined $\alpha_{\rm S}(M_Z^2) = 0.1193 \pm 0.0015$

$\alpha_{\rm S}$ combination as a sociological construct

"In my opinion one should select few theoretically simplest processes for measuring α_S and consider all other ways as tests of the theory."

G.Altarelli, 2013

- Rule of thumb: Larger uncertainties easier to trust.
- Example: EW precision fits.
 - Small theoretical uncertainties, but must assume Standard Model.
 - PDG value (from Gfitter group, 2014): $\alpha_{\rm S}(M_Z^2) = 0.1196 \pm 0.0030$
- + Example: au decays
 - Leptonic initial state (no PDF dependence) but at very small scale.
 - PDG value: $\alpha_{\rm S}(M_Z^2) = 0.1192 \pm 0.0018$
- Combined $\alpha_{\rm S}(M_Z^2) = 0.1193 \pm 0.0015$
- $\alpha_{\rm S}$ from PDFs?

$\alpha_{\rm S} \mbox{ from PDFs}$

• Physical mechanism: Scale violations

$$\mu \frac{d}{d\mu} f_{\alpha}(\mathbf{x},\mu) = \frac{\alpha_{\mathsf{S}}(\mu)}{2\pi} \int_{\mathbf{x}}^{1} \frac{d\xi}{\xi} \sum_{b} P_{a}^{b}(\xi,\alpha_{\mathsf{S}}(\mu)) f_{b}(\frac{\mathbf{x}}{\xi},\mu)$$

• Correct value of α_s required to describe data at different scales \rightarrow can obtain α_s as best fit to the data (simultaneously with the PDFs).

• Different physical processes included in the fit.

Challenges extracting $\alpha_{\rm S}$ from PDFs

- + PDF parametrization may bias the $\alpha_{
 m S}$ value
- Correct treatment of experimental systematics (particularly normalization uncertainties).
- Hidden uncertainties in theoretical description of PDFs (e.g. heavy quark treatment).
- Inclusion of PDF uncertainty in the $\alpha_{\rm S}$ determination.
- Accurate estimation of missing higher order uncertainties

Challenges extracting $\alpha_{\rm S}$ from PDFs

- PDF parametrization may bias the $\alpha_{\rm S}$ value[NNPDF]
- Correct treatment of experimental systematics (particularly normalization uncertainties). [NNPDF]
- Hidden uncertainties in theoretical description of PDFs (e.g. heavy quark treatment). [NNPDF 3.1]
- Inclusion of PDF uncertainty in the $\alpha_{\rm S}$ determination. [NNPDF 3.1- $\alpha_{\rm S}$]
- Accurate estimation of missing higher order uncertainties [NNPDF 3.1- $\alpha_{\rm S}$]

Made lots of progress since latest NNPDF determination in 2011.

NNPDF 3.1 2017 is an interesting baseline for an $\alpha_{\rm S}$ determination.

- PDFs generally constrained at percent level in the data region.
- Wealth of new data. Particularly sensitive to α_s are inclusive jets, $t\bar{t}$ distributions, Zp_T distribution.
 - Used only NNLO jets for $\alpha_{\rm S}$ fits where available (upgraded from 3.1).
- Charm PDF explicitly fitted.
- Improved numeric stability.

Impact on the W and Z cross sections

• Much improved accuracy and precision for standard candles.

- Quality of PDF fit is characterized by error function χ^2 .
- Produce best fit-PDFs for a range of values in $\alpha_{\rm S}(M_Z^2)$.
- Determine $\alpha_{\rm S}$ as the minimum of $\chi^2(\alpha_{\rm S})$.

$\alpha_{\rm S}$ uncertainty: the old way

- Read off $\Delta \chi^2 = 1$ from the parabolic fit to the central $\chi^2(\alpha_S)$.
- Unclear relation with the usual PDF uncertainty.
- Ideally we would determine $\alpha_{\rm S}$ simultaneously with the PDFs , instead of as an one parameter fit.

Propagating uncertainties: General strategy

- Our data has uncertainties.
- We view the data as random variables from the distribution $\mathcal{N}(d_i, \boldsymbol{\Sigma}_{i,j})$
 - d_i is the experimentally measured central value for the point *i*.
 - Σ_{ij} *a* covariance between the points *i*, *j*.
- We sample N_{rep} datasets from the distribution, and train a neural network "replica" to each dataset to minimize an error function χ^2 .
- PDF dependent quantities are calculated from statistics over the ensemble of replicas. E.g. "*PDF uncertainty*" is usually the standard deviation over the replicas.

PDF error on $\alpha_{\rm s}$

- Produce N_{rep} datasets.
- Fit each one for a range of values in α_S (we repeat this two times and take the best for each point and apply some selection criteria).
- Fit resulting $\chi^2(\alpha_S)$ to a parabola.
- Compute the error over the ensemble of best fits.
- $\cdot \, \alpha_{
 m S}$ determined on the same footing as the PDF.

• Note, still preliminary, *will* change.

NNLO

 $\alpha_{\rm S}(M_Z^2) = 0.11903 \pm 0.00053 (\rm pdf) \pm 9 \times 10^{-5} (\rm stat)$

NLO

$$\alpha_{\rm S}(M_Z^2) = 0.1214 \pm 0.0007 (\rm pdf)$$

- Difference between NLO and NNLO sizable within uncertainties.
- Proton only fits in preparation.

Minimization function

- If an experiment has *normalization* uncertainties:
 - E.g. $\Sigma_{i,j} = \Sigma_{i,j}^{(unnorm)} + t \Sigma_{i,j}^{(norm)}$, with *t* the prediction for some normalization.
 - Usual χ^2 minimization leads to smaller cross sections for affected datasets (d'Agostini, 1994).
- t0 procedure (NNPDF, 2009) is an effective solution. Essentially, fix the normalization with the result of a previous fit and iterate.
- Large effect when fitting $\alpha_{\rm S}$.

Figure 2: Normalized $\chi^2(\alpha_s)$

We estimate the uncertainties due to fitting a finite number of replicas by bootstrapping.

- 1. Take the set of *N* minima.
- 2. Sample with replacement from it *M* sets of *N* values, with *M* large.
- 3. Compute the *M* means of each of the *M* sets.
- 4. Compute the standard deviation of the *M* means.

$$\Delta_{stat} = 9.5 \times 10^{-5}$$

Effect negligible compared to the PDF uncertainty.

Why parabolas?

- Expect $\chi^2(\alpha_s)$ to Taylor-expand like a parabola around the minimum.
- Not obvious that the expansion is good in the whole range of $\alpha_{\rm s}$ values (from 1.06 to 0.130).
- Computed "Akaike information criterion"

	AIC score
Quadratic polynomial	153 ± 14
Cubic polynomial	155 ± 15

- No evidence that a more complicated functional form is advantageous.
- Also tried fitting $\chi^2(\exp(\alpha_s))$, $\chi^2(\log(\alpha_s))$. Differences much smaller than uncertainties.

$\alpha_{\rm S}$ process by process

- Decompose the error function as $\chi^2(\alpha_S) = \sum_p \chi_p$, $\{p\}$ is a set of physical processes
- Define the preferred $\alpha_{\rm S}$ value for the process: $\alpha_{\rm S}^{(p)} = \min \chi_p^2(\alpha_{\rm S})$

- Note, this is not equivalent to a refit including only that process.
- The values do depend on everything else (how hard is to fit).

"Pulls"

Define

- LHC experiments prefer larger values.
- FT DIS prefer lower values, but not as much as expected from other determinations (this isn't necessarily inconsistent).
- Outliers (Neutrino DIS, Z p_T) still have ~small pull.

- Still discussing these.
- Clearly, will be of the same order as the PDF uncertainties.
- Consider:
 - Difference between NLO and NNLO (e.g. Cacciari-Houdeau method).
 - Dispersion among preferred values.

From au decays and the global electroweak fit, we had:

 $\alpha_{\rm S}(M_Z^2)^{(\tau+{\rm EW})} = 0.1193 \pm 0.0015$

From the NNPDF fit, we have (assuming Δ_{th} =0.0005):

 $\alpha_{\rm S}(M_Z^2)^{(\rm NNPDF)} = 0.11903 \pm 0.0007$

Combining them we have:

 0.11908 ± 0.0006

THANK YOU!

Thank you!