Achievements and Open Issues in the Determination of Fragmentation Functions

Thirteenth Conference

on the Intersections of Particle and Nuclear Physics

Emanuele R. Nocera

School of Physics and Astronomy - University of Edinburgh

Indian Wells – 1st June 2018

Outline

- Introduction and open issues
 - Hadrons in the final state, factorisation and evolution
 - Three examples on why we should care about fragmentation functions
- Achievements
 - ▶ Data: global fits of π^{\pm} , K^{\pm} , h^{\pm} and D^{*} fragmentation functions
 - ▶ Theory: impact of GM-VFN scheme, NNLO corrections, small-z resummation
 - Methodology: simultaneous fits of unpolarised/polarised PDFs and FFs
- Conclusions

DISCLAIMER

I will focus on collinear fragmentation functions only

Emphasis on recent achievements and on topics which I've worked on recently

Apologies in advance for not discussing your favourite subject

For an extensive review of topics not addressed in this talk, please see

Prog.Part.Nucl.Phys. 91 (2016) 136

Emanuele R. Nocera (Edinburgh)

FFs: achievements and open issues

1. Introduction and open issues

Factorisation of physical observables [Adv.Ser.Direct.HEP 5 (1988) 1]

up to NNLO [PLB 386 (1996) 422; NPB 487 (1997) 233; PLB 392 (1997) 207]

$$\begin{split} \frac{d\sigma^h}{dxdydz} &= \frac{2\pi\alpha_{em}^2}{Q^2} \left[\frac{1\!+\!(1\!-\!y)^2}{y} 2F_1^h + \frac{2(1\!-\!y)}{y}F_L^h\right] \\ 2F_1^h &= e_q^2 \left\{q \otimes D_q^h + \frac{\alpha_s}{2\pi} \left[q \otimes C_{qq}^1 \otimes D_q^h + q \otimes C_{gq}^1 \otimes D_g^h + g \otimes C_{qg}^1 \otimes D_q^h\right]\right\} \\ F_L^h &= \frac{\alpha_s}{2\pi} \sum_{q,\bar{q}} e_q^2 \left[q \otimes C_{qq}^L \otimes D_q^h + q \otimes C_{gq}^L \otimes D_g^h + g \otimes C_{qg}^L \otimes D_q^h\right] \end{split}$$

up to NLO [NPB 160 (1979) 301; PRD 57 (1998) 5811] partial NNLO [PRD 95 (2017) 034027]

$$\begin{split} E_h \frac{d^3 \sigma}{dp_{T,h}^3} &= \sum_{a,b,c} f_a \otimes f_b \otimes \hat{\sigma}_{ab}^c \otimes D_c^h \\ &= \\ \sum_{i,j,k} \int \frac{dx_a}{x_a} \int \frac{dx_b}{x_b} \int \frac{dz}{z^2} f^{i/p_a}(x_a) f^{j/p_b}(x_b) D^{h/k}(z) \hat{\sigma}^{ij \to k} \delta(\hat{s} + \hat{t} + \hat{u}) \end{split}$$

up to NLO [PRD 67 (2003) 054004; PRD 67 (2003) 054005]

 $\begin{array}{c} e^+ + e^- \rightarrow h + X \\ \text{single-inclusive} \\ \text{annihilation (SIA)} \end{array}$

 $\ell + N \rightarrow \ell' + h + X$ semi-inclusive deepinelastic scattering (SIDIS)

 $N_1 + N_2 \rightarrow h + X$ high- p_T hadron production in pp collisions (PP)

Evolution of FFs: DGLAP equations [NPB 126 (1977) 298]

A set of $(2n_f + 1)$ integro-differential equations $(n_f = number \text{ of active flavours})$

$$\frac{\partial}{\partial \ln \mu^2} D_i(x,\mu^2) = \sum_j^{n_f} \int_x^1 \frac{dz}{z} P_{ji}\left(z,\alpha_s(\mu^2)\right) D_j\left(\frac{x}{z},\mu^2\right)$$

LO [Sov. J. Nucl. Phys. 15 (1973) 438; NPB 126 (1977) 298; NPB 136 (1978) 445] NLO [NPB 175 (1980) 27, PLB 97 (1980) 497, PRD 48 (1993) 116] NNLO [PLB 638 (2006) 61, PLB 659 (2008) 290, NPB 854 (2012) 133]

Must be careful with fixed-order splitting functions as $z \to 0$ $(m = 1, \dots, 2k + 1)$

SPACE-LIKE CASE TIME-LIKE CASE
$$P_{ji} \propto \frac{\alpha_s^{k+1}}{x} \log^{k+1-m} \frac{1}{x} \qquad \qquad P_{ji} \propto \frac{\alpha_s^{k+1}}{z} \log^{2(k+1)-m-1} z$$

Soft gluon logarithms diverge more rapidly in the TL case than in the SL case: as z decreases, the unresummed SGLs spoil the convergence of the FO series for $P(z, \alpha_s)$ if $\log \frac{1}{z} \geq O\left(\alpha_s^{-1/2}\right)$

Fragmentation functions: why should we bother?

Example 1: The strange (polarised) parton distribution and SIDIS

If SIDIS data is used to determine Δs , K^{\pm} FFs for different sets lead to different results Such results may differ significantly among them and w.r.t. the results obtained from DIS \longrightarrow How well do we know kaon FFs?

Can SIDIS data be used to determine s? What is the bias induced by FFs onto PDFs? \longrightarrow How well do we know kaon FFs?

0.6-0.

Fragmentation functions: why should we bother?

Example 2: Heavy quark fragmentation: the D^* case

Constrain the low-*x* (gluon) PDFs through charm production in the forward region [EPJ C75 (2015) 396; JHEP 1602 (2016) 130]

Compute the prompt atmospheric neutrino flux

[PRD 78 (2008) 043005; JHEP 1506 (2015) 110]

Extract information on the medium in heavy ion collisions

[JHEP 1703 (2017) 146]

Fragmentation functions: why should we bother?

Example 3: Ratio of the inclusive charged-hadron spectra measured by CMS and ALICE

Figures taken from [NPB 883 (2014) 615]

Predictions from all available FF sets are not compatible with CMS and ALICE data, not even within scale and PDF/FF uncertainties \longrightarrow How well do we know the gluon FF?

Kretzer

2. Achievements

Available fragmentation function sets (status 2018)

		DEHSS	HKNS	JAM	NNFF	
DATA	SIA SIDIS PP	X X X	√ ⊠ ⊠	⊠ ⊠	∑́ ⊠ ⊠	
1ETH.	statistical treatment	Iterative Hessian 68% - 90%	Hessian $\Delta \chi^2 = 15.94$	Monte Carlo	Monte Carlo	
2	parametrisation	standard	standard	standard	neural network	
R۲	pert. order	(N)NLO	NLO	NLO	LO, NLO, NNLO	
TEO	HF scheme	ZM(GM)-VFN	ZM-VFN	ZM-VFN	ZM-VFN	
Ē	hadron species	π^{\pm} , K^{\pm} , p/\bar{p} , h^{\pm}	π^{\pm} , K^{\pm} , $p/ar{p}$	π^{\pm} , K^{\pm}	π^{\pm} , K^{\pm} , p/\bar{p}	
	latest update	PRD 91 (2015) 014035 PRD 95 (2017) 094019	PTEP 2016 (2016) 113B04	PRD 94 (2016) 114004	EPJ C77 (2017) 516	

+ many others (including analyses for specific hadrons)

Focus on π and K which constitute the largest fraction in measured yields

BKK96 [PRD 53 (1996) 3553]	K^0	AESS11 [PRD 83 (2011) 034002]	η
DSV97 [PRD 57 (1998) 5811]	Λ^0	AKSRV17 [PRD 96 (2017) 034028]	D^*
BFGWO0 [EPJ C19 (2001) 89]	h^{\pm}	LSS15 [PRD 96 (2016) 074026]	SIDIS only

Comparison at NLO (pions): NNFF1.0 - JAM - DEHSS

Differences due to data set, kinematic cuts and fitting methodology

Larger NNFF1.0 uncertainties where less or no data (flexibility of NN parametrisation)

Expect larger uncertainty on $D_g^{\pi^{\pm}}$ than $D_{\Sigma}^{\pi^{\pm}}$ visible in NNFF1.0, but not in DEHSS (bound from pp data?) nor in JAM (functional form?)

Emanuele R. Nocera (Edinburgh)

1st June 2018

11 / 22

Global fit of pion fragmentation functions [PRD 91 (2015) 014035]

experiment		data	norm.	# data	χ^2	·				
		type	N_i	in fit		12 12 12 12 12 12				
Tpc [48]		incl.	1.043	17	17.3	$Q^{2} = 10 \text{ GeV}^{2}$				
		uds tag	1.043	9	2.1	$=$ THIS FT / DSS $=$ 0.8 $\stackrel{?}{=}$				
		c tag	1.043	9	5.9					
		b tag	1.043	9	9.2					
Tasso [49]	34 GeV	incl.	1.043	11	30.2					
	44 GeV	incl.	1.043	7	22.2	_S₁_ u+ū _1 d+ā _1				
Sld [19]		incl.	0.986	28	15.3					
		uds tag	0.986	17	18.5					
		c tag	0.986	17	16.1	$\overline{u} = d$				
		b tag	0.986	17	5.8					
Aleph [16]		incl.	1.020	22	22.9					
Delphi [17]		incl.	1.000	17	28.3	$\begin{bmatrix} \overline{u} = d \\ 0.5 \end{bmatrix}$				
		uds tag	1.000	17	33.3					
		b tag	1.000	17	10.6					
Opal [18, 20]		incl.	1.000	21	14.0	1.5 - THIS FIT with 68 and 90% C L bands -				
		u tag	0.786	5	31.6	DSS 7				
		d tag	0.786	5	33.0					
		s tag	0.786	5	51.3					
		c tag	0.786	5	30.4					
		b tag	0.786	5	14.6					
BABAR [28]		incl.	1.031	45	46.4					
Belle [29]		incl.	1.044	78	44.0	<u>8</u> • • • • • • • • • • • • • • • • • • •				
Hermes [30]		π^{+} (p)	0.980	32	27.8					
		$\pi^{-}(p)$	0.980	32	47.8					
		π^{+} (d)	0.981	32	40.3					
		π^{-} (d)	0.981	32	59.1	$E c = \overline{c}$				
Compass [31]	prel.	π^+ (d)	0.946	199	174.2					
		π^{-} (d)	0.946	199	229.0	0.2 0.4 Z 0.0 0.8 0.2 0.4 Z 0.0 0.8 0.2 0.4 Z Z Z Z				
Phenix [21]		π ⁰	1.112	15	15.8	«				
Star [33-36]	$0 \le n \le 1$	π^0	1.161	7	5.7					
0.8	< n < 2.0	π^0	0.954	7	2.7	D_{++} most precise (<i>B</i> -factory SIA data)				
	n < 0.5	π^{\pm}	1.071	8	4.3	D_{u+u} . most precise (D-factory SIA data)				
	n < 0.5	$\pi^{+}.\pi^{-}/\pi^{+}$	1.006	16	17.2	Von little or no charge symmetry breaking (SIDIS)				
ALICE [32]	7 TeV		0.766	11	27.7	very little of no charge symmetry breaking (SIDIS)				
TOTAL: 073 1154.6				073	1154.6	D : significant shift of the central value (<i>nn</i> data)				

Global fit of kaon fragmentation functions [PRD 95 (2017) 094019]

	-				07										
experiment	data	norm.	# data	χ^2	0.7	F				·					· -
	type	N_i	in fit			t i				1				- K ⁺	1
Tpc [37]	incl.	1.003	12	13.4		t.~ _	_	THIS FI	Т	-	τ		Z	$D_{i}^{n}(z)$	-
Sld [33]	incl.	1.014	18	17.2	0.6	ť 🔨		with 68 and	90% C.L.	bands	1			1 \ /	
	uds tag	1.014	10	31.5		- 🔼		D66.07		-	- \ \		0	$^{2}-10$ CoV	r ² -
	c tag	1.014	10	21.3				D33 07		- 1			Q	=10 Gev	-
	b tag	1.014	10	11.9	0.5	[<mark>/</mark> `				-	F				1
Aleph [30]	incl.	1.026	13	29.7	0.0					-	- X .				-
Delphi [31]	incl.	1.000	12	6.9		t /	V.			1	Z \ \ \				1
	uds tag	1.000	12	13.1		/	No.			-	- \ \ \				-
	b tag	1.000	12	11.0	0.4	t/ 🔼				-					-
Opal 34	u tag	0.778	5	9.6		F/ / -	1.			- 1	F 🔨				- 1
	d tag	0.778	5	7.7		H 🖊		s + s		-		C + i	5		-
	s tag	0.778	5	23.4	0.3	1					E 🚺				1
	c tag	0.778	5	42.5	0.5	ŧ /	1			-	- '				-
	b tag	0.778	5	16.9			<u> </u>			-	t i				-
BABAR [17]	incl.	1.077	45	30.6						1	[1
Belle [18]	incl.	0.996	78	15.6	0.2					-	-				-
Hermes [19]	K^{+} (p) Q^{2}	0.843	36	61.9			u + ū			1	t i				1
	$K^{-}(p) Q^{2}$	0.843	36	29.6						-		· · · · · · · · · · · · · · · · · · ·			-
	K^+ (p) x	1.135	36	75.8	0.1					- 1	- giù	on			-
	K^- (p) x	1.135	36	42.1	0.1	F	S. N			7					7
	K^{+} (d) Q^{2}	0.845	36	44.7			ū 🔪			-					-
	K^{-} (d) Q^{2}	0.845	36	41.9			-			_ 1	t	1820	<u> </u>		1
	K^+ (d) x	1.095	36	48.9	0	E. T.	1111	7 7 7 7 7 7		<u></u>	E. I				-
	K^{-} (d) x	1.095	36	44.4		0.2	0.4	0.6	0.8	1	0.2	0.4	0.6	0.9	
Compass [22]	K^{+} (d)	0.996	309	285.8		0.2	0.4	0.0	0.0	z	0.2	0.4	0.0	0.8	. 1
	K^{-} (d)	0.996	309	265.1											
Star [24]	$K^{+}, K^{-}/K^{+}$	1.088	16	7.6	0.4	E (Janta	theory) / t	haama D	FLLE	· / -	- (data d	haama) (4h		BABAR	T A
ALICE [23] 2.76 TeV	K/π	0.985	15	21.6	0.2	E (data -	(meory)/t	neory D	ELLE	<u> </u>	E (data - t	neory) / m	eory 1	JADAK	<mark>بر</mark> ا
TOTAL:			1194	1271.7	0.2	E		1000		Altin, 1			- 17 T	4 4 4	18
					0						Contraction of the second	A <u>AAAAAAAA</u> A	6666.4¢.	4.4.4.	1 E
					-0.2	-	THIS FI	Т			//	- DSS 0	17		Ē.
					-0.4	F .	with 68 and	90% C.L. bar	ıds	THE A	not fi	tted			
Good flavour	conarati	on (S		(a+a)						- 10 - 3	10000 C				
	separation	011 (3	105 u	araj		0.2	0.4	0.6	0.8	7 1	0.2	0.4	0.6	0.8	7
										~					~

 D_g : significant shift (pp data)

Caution with mass corrections

Emanuele R. Nocera (Edinburgh)

 $D_{u+\bar{u}}$: most precise (*B*-factory SIA data)

Global fit of unidentified charged hadron FFs [NNPDF, in preparation]

Experiment	$\sqrt{s}~[{\rm TeV}]$	N_{dat}		$\chi^2_{\rm b}/N_{\rm dat}$	$\chi^2_{\rm a}/N_{\rm dat}$	
e^+e^-	various	471	(527)	0.83	0.83	
CDF	1.80	7	(49)	2.93	1.36	
	1.96	60	(230)	3.45	1.23	
CMS	0.90	10	(20)	3.78	1.18	
	2.76	11	(22)	9.31	1.13	
	7.00	17	(27)	10.5	0.98	
ALICE	0.90	15	(54)	4.90	1.05	
	2.76	21	(60)	11.8	0.96	
	7.00	26	(65)	5.21	0.91	
Total data set		638	(1054)	2.18	0.90	

Emanuele R. Nocera (Edinburgh)

First global fit of D^* fragmentation functions [PRD 96 (2017) 034028]

See also JHEP 1605 (2016) 125 and F. Ringer's talk

Emanuele R. Nocera (Edinburgh)

Pion fragmentation functions in the GM-VFNs [PRD94 (2016) 034037]

Slide: courtesy of R. Sassot

9.5

Fragmentation functions at NNLO [PR D92 (2015) 114017; EPJ C77 (2017) 516]

		LO	NLO	NNLO
Exp.	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$	$\chi^2/N_{\rm dat}$	$\chi^2/N_{\rm dat}$
BELLE	70	0.60	0.11	0.09
BABAR	40	1.91	1.77	0.78
TASSO12	4	0.70	0.85	0.87
TASSO14	9	1.55	1.67	1.70
TASSO22	8	1.64	1.91	1.91
TPC	13	0.46	0.65	0.85
TPC-UDS	6	0.78	0.55	0.49
TPC-C	6	0.55	0.53	0.52
TPC-B	6	1.44	1.43	1.43
TASSO34	9	1.16	0.98	1.00
TASSO44	6	2.01	2.24	2.34
TOPAZ	5	1.04	0.82	0.80
ALEPH	23	1.68	0.90	0.78
DELPHI	21	1.44	1.79	1.86
DELPHI-UDS	21	1.30	1.48	1.54
DELPHI-B	21	1.21	0.99	0.95
OPAL	24	2.29	1.88	1.84
SLD	34	2.33	1.14	0.83
SLD-UDS	34	0.95	0.65	0.52
SLD-C	34	3.33	1.33	1.06
SLD-B	34	0.45	0.38	0.36
TOTAL	428	1.44	1.02	0.87

Excellent perturbative convergence FFs almost stable from NLO to NNLO LO FF uncertainties larger than HO Effects less evident for K^{\pm} and p/\bar{p}

Small-z resummed fragmentation functions [PRD 95 (2017) 054003]

Slide: courtesy of D. P. Anderle

Simultaneous fits of (pol.) PDFs and FFs [PRL 119 (2017) 132001]

 $\Delta \Sigma = 0.36 \pm 0.09 \qquad \Delta u - \Delta d = 0.05 \pm 0.08$

Simultaneous fits of (unp.) PDFs and FFs [PRD 96 (2017) 094020]

IDEA: iterative reweighting of PDFs and fit of FFs with kaon SIDIS data ($N_{\rm dat} = 906$) HERMES [PRD 87 (2013) 074029] COMPASS [PLB 767 (2017) 133]

Emanuele R. Nocera (Edinburgh)

FFs: achievements and open issues

1st June 2018 20 / 22

3. Conclusions

Summary

A number of hard-scattering processes require an appropriate knowledge of FFs

- probing nucleon momentum, spin and flavour
- studying the prompt atmospheric neutrino flux
- understanding spatial distributions and the dynamics of nuclear matter
- 2 Significant role of new data, including LHC data
 - increased accuracy of fragmentation functions
 - increased precision of fragmentation functions
- Increasing sophistication of the QCD theory
 - needed to catch most of the features of the data
 - includes NNLO, heavy quark mass schemes, resummation
- Exploit the full potential of SIDIS to improve our knowledge of PDFs
 - simultaneous fits feasible, but challenging
 - combine simultaneous and global fits to make the most from the data

Summary

A number of hard-scattering processes require an appropriate knowledge of FFs

- probing nucleon momentum, spin and flavour
- studying the prompt atmospheric neutrino flux
- understanding spatial distributions and the dynamics of nuclear matter
- 2 Significant role of new data, including LHC data
 - increased accuracy of fragmentation functions
 - increased precision of fragmentation functions
- Increasing sophistication of the QCD theory
 - needed to catch most of the features of the data
 - includes NNLO, heavy quark mass schemes, resummation
- Exploit the full potential of SIDIS to improve our knowledge of PDFs
 - simultaneous fits feasible, but challenging
 - combine simultaneous and global fits to make the most from the data

Thank you

Dependence on α_s

$$\alpha_{s}(M_{Z})$$