

Towards a Neural Network determination of nuclear PDFs

Rabah Abdul Khalek

Departement of Physics and Astronomy, Vrije Universiteit Amsterdam Nikhef Theory Group

26 Aug - 1 Sep

Physics Motivation

- **Simulations** of relativistic nucleus-nucleus reactions [LHC, RHIC, etc.]
- Understanding the **EMC effect.**
- Lead, Xenon PDF for the LHC heavy-ion program.
- Combining data across different nuclear targets and provide maximum information for the proton PDFs especially strangeness.
- Heavy nuclear targets for ν A DIS measurements (statistics) Important data for the **separation of PDFs flavors**.

nPDF in LHC pPb observables

Data

	EPS09	DSSZ12	ка15	NCTEQ15	epps16	nNNPDF1.0
Order in α_s	LO & NLO	NLO	NNLO	NLO	NLO	NLO
Neutral current DIS $\ell + A/\ell + d$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Drell-Yan dilepton p+A/p+d	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
RHIC pions d+Au/p+p	\checkmark	\checkmark		\checkmark	\checkmark	
Neutrino-nucleus DIS		\checkmark			\checkmark	
Drell-Yan dilepton $\pi + A$					\checkmark	
LHC p+Pb jet data					\checkmark	
LHC p+Pb W, Z data					\checkmark	
Q cut in DIS	1.3 GeV	1 GeV	1 GeV	2 GeV	1.3 GeV	1.3 GeV
datapoints	929	1579	1479	708	1811	605
free parameters	15	25	16	17	20	70
error analysis	Hessian	Hessian	Hessian	Hessian	Hessian	MC
error tolerance $\Delta \chi^2$	50	30	not given	35	52	
Free proton baseline PDFs	стеоб.1	мѕтw2008	jr09	стеобм-like	ст14NLO	NNPDF3.1
Heavy-quark effects		\checkmark		\checkmark	\checkmark	\checkmark
Flavor separation				some	\checkmark	some
Reference	[JHEP 0904 065]	[PR D85 074028]	[PR D93, 014026]	[PR D93 085037]	[EPJ C77 163]	Preliminary

(x,Q)

A - 1

Methodology (1)

Methodology (1)

$$\chi^{2} = \frac{1}{N_{data}} \sum_{n,m}^{N_{data}} (\hat{F}_{2}^{(n)} - F_{2}^{(n)}) Cov_{nm}^{-1} (\hat{F}_{2}^{(m)} - F_{2}^{(m)})$$

Methodology (1)

Parametrizations

 $\begin{aligned} - \mathsf{EM} \ \mathbf{F_2} \left(\mathbf{Q} < \mathbf{M_Z} \right) \\ F_2(x, Q^2, A) &= \sum_{i}^{n_f} \sum_{j}^{n_f} C_i(x, Q^2) \otimes \Gamma_{ij}(x, Q^2) \otimes q_j(x, Q_0^2, A) \\ &= \sum_{i}^{n_f} \widetilde{C}_i(x, Q^2) \otimes \mathbf{q_i}(\mathbf{x}, \mathbf{Q_0^2}, \mathbf{A}) \end{aligned}$

Pre-computed FK tables [NNPDF methodology]

Parametrizations

 $\mathbf{F}_{2}(\mathbf{x}, Q^{2}, A) = \sum_{i}^{n_{f}} \sum_{j}^{n_{f}} C_{i}(x, Q^{2}) \otimes \Gamma_{ij}(x, Q^{2}) \otimes q_{j}(x, Q_{0}^{2}, A)$ $= \sum_{i}^{n_{f}} \widetilde{C}_{i}(x, Q^{2}) \otimes \mathbf{q}_{i}(\mathbf{x}, \mathbf{Q}_{0}^{2}, \mathbf{A})$ $\mathbf{Pre-computed FK tables}$ [NNPDF methodology] $\mathbf{PDF - Proton case}$ $q_{i}^{p}(x, Q_{0}^{2}) = xf_{i}(x, Q_{0}^{2}) \propto \mathbf{x}^{\alpha}(1 - \mathbf{x})^{\beta}\mathbf{NN}(\mathbf{x})$

Parametrizations

 $\mathbf{EM F_2 (Q < M_z)}$ $F_2(x, Q^2, A) = \sum_{i}^{n_f} \sum_{j}^{n_f} C_i(x, Q^2) \otimes \Gamma_{ij}(x, Q^2) \otimes q_j(x, Q_0^2, A)$ $= \sum_{i}^{n_f} \widetilde{C}_i(x, Q^2) \otimes \mathbf{q_i}(\mathbf{x}, \mathbf{Q_0^2}, \mathbf{A})$ $\mathbf{Pre-computed FK tables}$ [NNPDF methodology] $\mathbf{PDF - Proton case}$ $q_i^p(x, Q_0^2) = xf_i(x, Q_0^2) \propto \mathbf{x}^{\alpha}(1-\mathbf{x})^{\beta} \mathbf{NN}(\mathbf{x})$

 $-\mathbf{nPDF} - \mathbf{Direct Fit} - \mathbf{Constraint} - \mathbf{Q}_{i}^{2}(x, A, Q_{0}^{2}) = \mathbf{NN}_{i}(x, A, Q_{0}^{2}) - \mathbf{NN}_{i}(x, A = 1, Q_{0}^{2}) + \mathbf{q}_{i}^{p}(x, Q_{0}^{2})$

-nPDF - Nuclear Modification Fit – $q_i(x, A, Q_0^2) = NN_i(x, A)q^p(x, Q_0)$

Status of recent nPDFs

	_nCTEQ15 [1509.00792]
_EPPS16 [1612.05741]	
$f_i^{\mathbf{p}/A}(x,Q^2) = \underline{R_i^A}(x,Q^2) f_i^{\mathbf{p}}(x,Q^2)$	$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5},$ for $i = u_v, d_v, g, \bar{u} + \bar{d}, s + \bar{s}, s - \bar{s},$
$B^{A}_{a}(x, O^{2}_{a}) = \begin{cases} a_{0} + a_{1}(x - x_{a})^{2} & x \leq x_{a} \\ b_{0} + b_{1}x^{\alpha} + b_{2}x^{2\alpha} + b_{2}x^{3\alpha} & x_{a} \leq x \leq x_{a} \end{cases}$	$\frac{\bar{d}(x,Q_0)}{\bar{u}(x,Q_0)} = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3 x)(1-x)^{c_4}.$
	$c_k \to c_k(A) \equiv c_{k,0} + c_{k,1} \left(1 - A^{-c_{k,2}} \right),$ $k = \{1, \dots, 5\}.$

Status of recent nPDFs

 $\begin{array}{l} \textbf{EPPS16 [1612.05741]} \\ f_{i}^{p/A}(x,Q^{2}) = \underline{R_{i}^{A}(x,Q^{2})} f_{i}^{p}(x,Q^{2}) \\ R_{i}^{A}(x,Q_{0}^{2}) = \begin{cases} a_{0} + a_{1}(x - x_{a})^{2} & x \leq x_{a} \\ b_{0} + b_{1}x^{\alpha} + b_{2}x^{2\alpha} + b_{3}x^{3\alpha} & x_{a} \leq x \leq x_{e} \\ c_{0} + (c_{1} - c_{2}x)(1 - x)^{-\beta} & x_{e} \leq x \leq 1, \end{cases} \\ \begin{array}{l} \textbf{F}_{i}^{p/A}(x,Q_{0}) = c_{0}x^{c_{1}}(1 - x)^{c_{2}}e^{c_{3}x}(1 + e^{c_{4}}x)^{c_{5}}, \\ \text{for} \quad i = u_{v}, d_{v}, g, \bar{u} + \bar{d}, s + \bar{s}, s - \bar{s}, \end{cases} \\ \begin{array}{l} \frac{\bar{d}(x,Q_{0})}{\bar{u}(x,Q_{0})} = c_{0}x^{c_{1}}(1 - x)^{c_{2}} + (1 + c_{3}x)(1 - x)^{c_{4}}. \\ \hline c_{k} \rightarrow c_{k}(A) \equiv c_{k,0} + c_{k,1}\left(1 - A^{-c_{k,2}}\right), \\ k = \{1, \dots, 5\}. \end{cases} \end{array}$

Neural Network

Direct Fit $\hat{F}_2(x, Q^2, A) = \sum_{i}^{n_f} \widetilde{C}_i(x, Q^2) \otimes \mathbf{NN_i}(\mathbf{x}, \mathbf{Q_0^2}, \mathbf{A} | \{\mathbf{w}, \mathbf{b}\})$ {w, b} are the weights and thresholds of the NN

Neural Network

Backpropagation

Neurones Derivatives $\frac{\partial \mathbf{a}_{\mathbf{k}}^{(\ell)}}{\partial \mathbf{w}_{\mathbf{ij}}^{(\ell)}} = \sigma_{\ell}' \left(z_{k}^{(\ell)} \right) \delta_{ik} a_{j}^{(\ell-1)}$ $\frac{\partial \mathbf{a}_{\mathbf{k}}^{(\ell)}}{\partial \mathbf{h}_{\mathbf{k}}^{(\ell)}} = \sigma_{\ell}' \left(z_{\mathbf{k}}^{(\ell)} \right) \delta_{ik}$

Results (1) - WarmUp Fitting F₂^A/F₂^D Ratio

$$NN(x,A) = \frac{F_2^A(x)}{F_2^D(x)}$$

2D fit in (A, x) - Uncorrelated uncertainty

For A = 4

Results (2) - WarmUp

Constraints on A-dependance

Testing the assumption $NN(x,A) = A^n f(x)$ via $\frac{d \ln x}{d \ln x}$

$$\frac{u(NN(x,A))}{d\ln(A)} = n(x)$$

For x = 0.121258

Outlook

 Reproducing EPPS16 and nCTEQ15 results to verify the theory implementation (FK tables).

EMC (He/D)	APFEL	EPPS16	16 Detensinte
$\chi^2_{\rm total}$	18.16	18.0	16 Datapoints

- Running **DIS-only fits** using the NNPDF methodology.
- Trying different NN architectures and different parametrizations
 + constraints, e.g at A=1, nPDF = PDF
- DIS-only Fits should be available in the next few weeks. HardProbes conference in Oct (1-5)
- Next, correlated uncertainties, different processes.

Backup

$$F_2(x, Q^2, A) = \sum_{i}^{n_f} C_i(x, Q^2) \otimes q_i(x, Q^2, A)$$
(2)

where \otimes denotes the Mellin convolution defined as:

$$f(x) \otimes g(x) = \int_0^1 dy \int_0^1 dz f(y) g(z) \delta(x - yz) = \int_x^1 \frac{dy}{y} f(y) g(\frac{x}{y}) = \int_x^1 \frac{dz}{z} f(\frac{x}{z}) g(z)$$
(3)

We can factorize the nPDF dependance out of the convolution via expansion over a set of interpolating functions, spanning Q^2 and x such as:

$$q_i(x,Q^2,A) = \sum_{\beta} \sum_{\tau} q_{i,\beta\tau} I_{\beta}(x) I_{\tau}(Q^2)$$
(4)

where the nPDF $q_{i,\beta\tau}$ may be expressed as a product of nPDF at some initial fitting scale Q_0 and an evolution operator obtained by the solution of the DGLAP equation via the interpolation procedure as:

$$q_{i,\beta\tau} \equiv q_i(x_\beta, Q_\tau^2, A) = \sum_j \sum_\alpha \Gamma_{ij,\alpha\beta}^\tau q_j(x_\alpha, Q_0^2, A)$$
(5)

Finally:

$$F_2(x,Q^2,A) = \sum_i^{n_f} C_i(x,Q^2) \otimes \left[\sum_{\alpha} \sum_{\tau} \sum_j \sum_{\beta} \Gamma_{ij,\alpha\beta}^{\tau} q_j(x_\alpha,Q_0^2) I_\beta(x) I_\tau(Q^2)\right]$$
(6)

contracting the sum over τ , i and β then replacing j with i:

$$F_2(x,Q^2) = \sum_{i}^{n_f} \sum_{\alpha}^{n_x} FK_{i,\alpha}(x,x_{\alpha},Q^2,Q_0^2)q_i(x_{\alpha},Q_0^2)$$
(7)

where:

$$FK_{j,\alpha} = \sum_{i} C_i(x, Q^2) \otimes \left[\sum_{15^{\tau}} \sum_{\beta} \Gamma^{\tau}_{ij,\alpha\beta} I_{\beta}(x) I_{\tau}(Q^2)\right]$$
(8)

Backup

-At LO, DGLAP basis

$$F_{2}^{\gamma}(x, Q^{2}, A) = \frac{1}{A} \left(Z \mathbf{F}_{2}^{\mathbf{p}} + (A - Z) \mathbf{F}_{2}^{\mathbf{n}} \right)$$

= $\frac{5}{18} \Sigma - \left(\frac{\mathbf{Z}}{\mathbf{3A}} - \frac{1}{6} \right) T_{3} + \frac{1}{18} (T_{8} - T_{15}) + \frac{1}{30} (T_{24} - T_{35})$
= $\frac{2}{9} \Sigma - \left(\frac{\mathbf{Z}}{\mathbf{3A}} - \frac{1}{9} \right) T_{3}$

Evolution $(\mathbf{Q}_{0} < \mathbf{M}_{c})$ $\Sigma(Q^{2}) = \Gamma_{qq} \Sigma(Q_{0}^{2}) + \Gamma_{qg} g(Q_{0}^{2})$ $g(Q^{2}) = \Gamma_{gq} \Sigma(Q_{0}^{2}) + \Gamma_{gg} g(Q_{0}^{2})$ $\Gamma^{+} = \Gamma_{T_{3}} = \Gamma_{T_{8}}$ $T_{15}(Q_{0}^{2}) = T_{24}(Q_{0}^{2}) = T_{35}(Q_{0}^{2}) = \Sigma(Q_{0}^{2})$ **3 independent distributions** Σ, g, T_{3} **Evolution basis** $\Sigma = \sum_{i=1}^{n_{f}} q_{i}^{+}$ where: $q^{\pm} = q \pm \bar{q}$ $T_{3} = u^{+} - d^{+}$ $T_{8} = u^{+} + d^{+} - 2s^{+}$ $T_{15} = u^{+} + d^{+} + s^{+} - 3c^{+}$ $T_{24} = u^{+} + d^{+} + s^{+} + c^{+} - 4b^{+}$ $T_{35} = u^{+} + d^{+} + s^{+} + c^{+} + b^{+} - 5t^{+}$

Backup

Q = 5 GeV

