Determination of the strong coupling constant from a global PDF fit

QCD@LHC 2018, Dresden

Zahari Kassabov

August 30, 2018

Cavendish Laboratory, University of Cambridge

European Research Council

Precision determination of the strong coupling constant within a global PDF analysis NNPDF Collaboration, arxiv:1802.03398

Result:

$$\alpha_S(M_Z) = 0.1185 \pm 0.0005^{(\mathrm{exp})} \pm 0.0001^{(\mathrm{meth})} (\pm 0.011^{(\mathrm{th})})$$

- $\cdot\,$ Good agreement with the PDG average ($\alpha_{S({\rm PDG})}=0.1181\pm0.001$).
- Experimental uncertainties comparable to most precise determinations.
- MHOU uncertainties hard to quantify (not yet included in any PDF).

- Uses large corpus of data.
- \cdot More data \rightarrow more precision.
- $\cdot \,$ More processes \rightarrow more accuracy:
 - Possible experimental errors average out.
 - Problems in the theoretical description can average out [Carrazza, Forte, ZK, Rojo, Rottoli, arxiv:1803.07977].
- Many challenges: PDF fitting methodology, MHOU, higher twist, value of the charm mass, EW corrections, nuclear corrections..
- Fit quality of all data taken into account simultaneously.
- Effect of individual dataset hard to quantify. Looking at partial statistics may be misleading.

Many improvements since last determination [arXiv:1103.2369] (where we had $\alpha_{S\rm NNPDF21}=0.1173\pm0.0007)$

- 3979 data points.
- Includes differential top, Z pT and inclusive jets simultaneously for the first time.
- Exact NNLO theory for all included data.
- Improved methodology for $lpha_S$ extraction.

- + First find the best fit PDF for a set of values of $lpha_S$.
- Then determine χ^2 profile of the best fit PDF and determine α_S as the minimum.

+ Uncertainty determined from $\Delta\chi^2=1$ in the parabola.

Improvements on the old methodology

- $\cdot\,$ Correlation between data fluctuations and α_S not fully taken into account.
- + $\Delta\chi^2=1$ not equivalent to the NNPDF replica-based uncertainty propagation.

Improvements on the old methodology

- $\cdot\,$ Correlation between data fluctuations and α_S not fully taken into account.
- + $\Delta\chi^2 = 1$ not equivalent to the NNPDF replica-based uncertainty propagation.

- Ideally, we would have minimization in $(\alpha_S, {\rm PDF})$ space.

Methodology applied to a toy example

We try to find the best fit to some dataset

Sample a pseudodata replica

We sample from a probability distribution built from the data uncertainties.

Find the best fit value for that data replica

This is subject to constraints, that in particular depend on the value of α_S .

Repeat for another replica (and iterate for a large sample)

This is the standard PDF fitting procedure.

Make predictions for several values of α_S and a single replica

Obtain different PDF predictions for the same replica. Measure fit quality as a function of $\alpha_S.$

- Ideally would minimize simultaneously α_s and the PDF parameters in each replica.
 - Can't do easily because we use precomputed tables that depend on $lpha_s.$

- Ideally would minimize simultaneously α_s and the PDF parameters in each replica.
 - Can't do easily because we use precomputed tables that depend on $lpha_s.$
 - Solution: Repeat the fit for discrete values of α_S to the same data replica c-replica.

- Ideally would minimize simultaneously α_s and the PDF parameters in each replica.
 - · Can't do easily because we use precomputed tables that depend on α_s .
 - Solution: Repeat the fit for discrete values of α_S to the same data replica \longrightarrow c-replica.
- + Each c-replica has a $\chi^2(lpha_S)$ profile.

- Ideally would minimize simultaneously α_s and the PDF parameters in each replica.
 - · Can't do easily because we use precomputed tables that depend on α_s .
 - Solution: Repeat the fit for discrete values of α_S to the same data replica \longrightarrow c-replica.
- + Each c-replica has a $\chi^2(lpha_S)$ profile.
- Each minimum yields one sampled $lpha_S$ value.

- Need to account for various features of the NNPDF methodology: replicas not converging, cross validation split.. See paper for details.
- Need to verify the effect on the $lpha_S$ value.
- In the end, the actual methodology is equivalent to the idea described above within experimental uncertainties.

No reliable method known for PDF based quantities. We have:

$$\alpha_S^{\rm NNLO}(M_Z) = 0.1184 \pm 5 \times 10^{-4}$$

$$\alpha_S^{\rm NLO}(M_Z) = 0.1206 \pm 6 \times 10^{-4}$$

- Methods based on continuation of perturbative series such as Cacciari-Houdeau [arXiv:1105.5152] hampered by:
 - $\cdot~$ Poor fit quality at LO and even at NLO.
 - · Lack of unique series expansion (many processes involved).
- CH yields a theoretical uncertainty of $4\times 10^{-4},$ smaller that the experimental ones. Likely too optimistic.
- PDF fits with scale variation errors currently under development.

For lack of better options, make it be crude and conservative.

$$\Delta \alpha^{\rm th}_S = \frac{1}{2} \left| \alpha^{\rm NLO}_S - \alpha^{\rm NNLO}_S \right| = 0.0011 (0.9\%)$$

Uncertainty likely overblown by the poor fit quality at NLO. E.g.

- $\cdot\,$ ATLAS $Zp_T\,y$ dist: best fit $\chi^2=1.78$ at NLO and 0.94 at NNLO.
- $\cdot~$ For ATLAS $t\bar{t}$ total cross sections, $\chi^2=1.96$ at NLO and 0.85 at NNLO.

Other theoretical uncertainties likely subdominant.

Determinations based on a partial dataset

Consider:

- $\cdot\,$ Can we say that e.g. the Zp_T data "pulls the most" (e.g. talk by R.Thorne)?
- Pulls necessarily depend on th rest of the data. Not an intrinsic property of each dataset.
- Best fit PDF not very meaningful if the fit is bad in the first place! [Z.K, arxiv:1802.05236]

The global χ^2 minimizes to fit $(\alpha_S, {\rm PDF})$ looks like

$$\chi^2\left[\{\theta\},\alpha_S,\mathcal{D}\right] = \sum_{I,J=1}^{N_{\mathcal{D}}} \left(T_I[\{\theta\},\alpha_S] - D_I\right) C_{IJ}^{-1}\left(T_J[\{\theta\},\alpha_S] - D_J\right)$$

where

- + $\{ heta\}$ are the parameters of the PDF.
- $\cdot \ \mathcal{D}$ is the set of $N_{\mathcal{D}}$ data points entering the fit.
- $\cdot T_I$ is the theoretical prediction for the data point indexed by I.
- $\cdot D_I$ is the experimentally measured value.
- $\cdot \ C_{IJ}$ measures the experimental covariance.

The profile of a c-replica is

$$\chi^{2(r)}(\alpha_s) = \min_{\{\theta\}} \chi^2 \left[\{\theta\}, \alpha_S, \mathcal{D}^{(r)} \right]$$

The partial χ^2 is:

$$\chi_p^2\left[\{\theta\}, \alpha_S, \mathcal{P}\right] = \sum_{I,J=1}^{N_{\mathcal{P}}} \left(T_I[\{\theta\}, \alpha_S] - D_I\right) C_{IJ}^{-1}\left(T_J[\{\theta\}, \alpha_S] - D_J\right)$$

where we have replaced \mathcal{D} with \mathcal{P} , a subset of \mathcal{D} with $N_{\mathcal{P}}$ points, and neglected the correlations between the points in \mathcal{P} and \mathcal{D} .

Up to missing correlations, for a set of processes that cover all ${\mathcal D}$

$$\chi^2(\alpha_s) = \sum_p \chi^2_p(\alpha_s)$$

Results from the partial χ^2

Define

$$\alpha_S^p = \arg\min_{\alpha_S} \chi_p^2(\alpha_S)$$

Collider determinations of α_S are essentially based on finding a minimum to th partial χ^2 profile.

By collider determinations I mean determinations of α_S based on cross sections measured at hadron-hadron and hadron-lepton colliders that are used to constrain the strong coupling independently of a PDF fit. G.Salam [arxiv:1712.05165]

Collider determinations depend on the PDF in two ways:

- $$\begin{split} & \text{Best fit PDF changes strongly with } \alpha_S \text{, i.e.} \\ & \{\theta\}(\alpha_S) = \arg\min_{\{\theta\}}\chi^2(\alpha_s,\{\theta\},\mathcal{D}). \end{split}$$
- Global fit quality $\chi^2(lpha_S)$ changes strongly with $lpha_S.$

Claim:

Collider determinations of α_S that optimize the partial χ^2 , but however do not take into account the total χ^2 in the input PDF set are potentially unreliable.

Will show by producing an example that exposes the contradictions.

- Take ZpT , where the apparent preferred value from the partial χ^2 minimization is $\alpha_S^{\mathcal{P}=Zp_T}\sim 0.124.$
- Show that under some assumptions, we can find a *better* preferred value.

- 1. All things being equal, a PDF fit that has lower total χ^2 to data is *better*.
- 2. All things equal, a collider determination of α_S that has lower partial χ^2 to data is better.
- 3. All things equal, an hadronic determination that uses a *better* PDF (in the sense of 1.) is *better*.

- Easier to find contradictions in the data with biggest apparent discrepancies: $Zp_{T}. \label{eq:pressure}$
- Obvious way to improve partial χ^2 : Give more weight to the ZpT data in the (PDF + $\alpha_S)$ fit. $\chi^2_w\approx\chi^2+(w-1)\chi^2_p$
- Optimizing χ^2_w means higher χ^2 because we are not optimizing for it anymore.
- $\cdot\,$ But this can still be a better total χ^2 at a different value of α_S

Weighted fit

- $\cdot \;$ Take w=32 (~same weight to Zp_T and the rest of the data) and
- + $\alpha_S = 0.120$, a value between the total best fit result and the minimum of the partial χ^2 .

$\chi^2/$ d.o.f	$\alpha_S=0.120$ weighted Zp_T	$\alpha_S=0.124~{\rm default}$
Total	1.226	1.281
Zp_T	0.94	1.11

- With the definitions above, we have found that $\alpha_S=0.120$ is a better value for α_S from $Zp_T.$
- + $\alpha_S=0.120$ is not the answer either. But the experiment shows that the partial χ^2 definition is inconsistent.

Conclusions

- We have produced a determination of α_S that is highly competitive within the PDG average.
- MHOU estimation is currently the main limitation. Work underway.

- Global fit are advantageous in that they correctly account for the effect of all data in both α_S and PDFs.

Thank you!

Backup: Theoretical uncertainties intro

- Theoretical effects necessarily have to affect the PDFs in order to affect our determination. Need to be sizable compared to experimental uncertainties.
- But not sufficient: Dependence on $\alpha_S(M_Z)$ required.

Higher twist found to be small compared to experimental uncertainties [arxiv:1303.1189].

Charm mass Improved by parameterizing the charm PDF [arXiv:1605.06515].

Electroweak corrections Kept under control with suitable cuts [arxiv:1706.00428].

Nuclear corrections Studied in [arxiv:1706.00428] and found to be small compared to experimental uncertainties (but subject to limitations of the models).

In conclusion MHOU highly likely to be the dominant theoretical uncertainty.

Backup: Improvement by batch minimization

- The NNPDF methodology discards replicas that do not meet certain convergence criteria (25-30%).
- $\cdot \ \chi^2(lpha_S)$ noisy for each c-replica.
- Solution: Repeat each fit three times, and take the minimum (requiring at least 2 successful replicas).

Backup: Effect of batch minimization

- · Small on central value $\sim O(0.4) \times \Delta^{(\exp)}$.
- Significative on uncertainty. Reduction to up to 27%.
- Convergence already good with two batches.

- $\cdot\,$ Cross validation used in the fits forces that χ^2 is not smaller than $\sim 1.$
- $\cdot \,\, w
 ightarrow \infty$ is not the same as a fit with the data subset only,
 - + Because e.g. Zp_T does not determine all the parameters of PDF+ $\!\alpha_S$
- A high weight makes the discrepancies with the weighted data only statistical, i.e. no bias due to disagreement with other data, as long as the weighed data is self consistent.

Backup: Reweighted profiles

