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Artificial Neural Networks

Inspired by biological brain models, Artificial Neural Networks (ANNs) are mathematical algorithms
widely used in a wide range of applications, from HEP to targeted marketing and finance forecasting

From biological to artificial neural networks
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Artificial neural networks aim to excel where domains as their evolution-driven counterparts
outperforms traditional algorithms in tasks such as pattern recognition, forecasting, classification, ...
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Deep Neural Networks

Simple Neural Network Deep Learning Neural Network

@ nput Layer () Hidden Layer @ Output Layer

& A Deep Neural Network (DNN) is a standard multi-layer feed-forward perceptron with a large
number of internal layers

& All types of neural nets eg Recursive, Convolutional, Parametrised etc can be made “deeper” by
adding more hidden layers

& For several applications, the increased complexity achieved this way leads to a significant
improvement in performance
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Geenerative Adversarial Networks

¢ New architecture for an unsupervised neural network training (unlabelled samples)

¢ Based on two independent nets that work separately and act as adversaries:

¢ the Discriminator (D) undergoes training and plays the role of classifier, and

¢ the Generator (G) and is tasked to generate random samples that resemble real samples with a
twist rendering them as fake samples.
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The many uses of GANs
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Which one of these images are real and which ones are fake (generated by the GANs)?
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Convolutional Neural Networks

¢ Convolutional Neural Networks (CNNs) have convolutional layers based on filters

¢ Each filter maps a group of numbers into a number, reducing the dimensionality of the data

¢ Specially useful for pattern recognition (eg for self-driving vehicles)
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http://mathworks.com

Convolutional Neural Networks

& ANNSs can enable an autonomous vision-control drone to recognise and follow forest trails
¢ Image classifier operates directly on pixel-level image intensities

¢ If a trail is visible, the software steers the drone in the corresponding direction

[ Control Signal!

|

Tumn Go  Turn
Left Straight Right

v

Giusti et al, IEEE Robotics and Automation Letters, 2016
Similar algorithms at work in self-driving cars!
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Convolutional Neural Networks

The results of the collisions of high-energy particles can be treated
analogously to image processing using Convolutional Neural Networks
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Recurrent Neural Networks

RNNs use as inputs not just the current “training examples” but also what they have perceived
previously: they have a built-in notion of time ordering useful for time-dependent functions

Recurrent network

—— output layer
input layer N (class/target)

hidden layers: “deep” if > 1

The output of a RNN at time time, y(t), depends both on the current input example x(#) as well
as of its previous output y(#-1) (or activation states of hidden neutrons at #-1)

Juan Rojo QCHS-XIIl, Maynooth, 02/08/2018



Recurrent Neural Networks

Lead to truly game-changer applications, such as random generation of country song lyrics

Tied right now

I got life now he never thought I got by the all
Going up like a house four boy
Nothing his thing out of hands

No one with the danger in the world
I love my black fire as I know

But the short knees just around me
Fun the heart couldnes fall to back
I see a rest of my wild missing far
When I was missing to wait

And if I think

It's a real tame

I say I belong 1s every long night
Maybe lovin' you

http:/[www.mattmoocar.me/blog/ RNNCountryLyrics/
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See also slides of my talk in the
"QCD and New Physics” session!
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anatomy of hadronic collisions

In high-energy hadron colliders the collisions involve composite particles (protons) with internal
substructure (quarks and gluons): the LHC is actually a quark/gluon collider!

Y S I EEEEEEEEEEEESHR | 2
. .

Parton Distributions
Non-perturbative
From global analysis

SH

: “ 9 d : | Quark/gluon collisions
. Y 3 Perturbative
d From SM Lagrangian

Calculations of cross-sections in hadron collisions require the combination of perturbative
cross-sections with non-perturbative parton distribution functions (PDFs)
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the inner life of protons

Distribution of energy that quarks and gluons carry inside proton quantified by Parton Distributions

g(x, Q) ~ .
Y, Q: Energy of the quark/gluon collision
/

Inverse of the resolution length

g(x,Q): Probability of finding a gluon \
inside a proton, carrying a fraction x of the
proton momentum when probed at energy Q

x: Fraction of the proton’s momentum

PDFs determined by non-perturbative QCD dynamics
Extract from experimental data within a global analysis

Olp = 5lq (&87 O‘) & Q(wa Q) Opp = qu (O‘Sa a) & Q(afla Q) & 47(3727 Q)

Lept
Lepton epron +

_QQ q W+

~ Scattered _
| Olq > gu::: q(r2, Q)
Li q 5(1@ (asv a) V

1(2) =

Extract PDFs from lepton-proton collisions Use PDFs to predict proton-proton cross-sections



the inner life of protons

Determine the PDFs at some low scale Q) ~ m, ~ 1 GeV
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... and then evolve upwards using DGLAP to predict LHC cross-sections
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The global QCD fit machinery

Kinematic coverage

Fixed target DIS
Collider DIS «
Fixed target Drell-Yan p <
106 | Collider Inclusive Jet Production i
3 Collider Drell-Yan <I<]<i<‘<]<]
Z transverse momentum <]<1<'
Top-quark pair production 0<]<1<I <I<1<'<|<1
O Black edge: New in NNPDF3.1 & PPN
<
4 <1< <
5 4 4« < <
10° - 4 <45<47 g 4
f 4 Qe < <
] < 444« <
4 Qg M« 4 <
o .d Ifl<1 o R
O O . 0o .o, o .o .o ugjf‘ m - O
o) o) o) o) o o] o) ol <A < « < <
< q44d.. o < < <
o] o] o o o} OOCDOQ Qo @ P .04 < <« <
104 i o o o o 0q0% «© 0O g '« < < 4
f B D DD DD DD DD DD DD D> DD 1D BB I B (05 I B 13 B 1 05 3 O30S B30, > 4D 13 Q> > 556D DD D D> 15D b > D 5>
] D> DD DDBDDDDD DD DD D MDD IDBDBDBISHD B> D> I DD (O D HIS OB IROMYDOSNID DR DD > > > D D
o] o] o] o o OO0 00O (00] o] o
[olNe] o] (o] (o] o]
(@] (@] O O O 00 000 (0] @) O
1 > 0.0 0O 0 o) o
103 i 00 O o o) o
E o o o o B o
] > v Vv
>
] > Vv v
v v v
102 1
] v v v
] v v
VA v v v v v
101 i ViV v vV W
3 v v
v
1074 103 1072 107! 100
X

Highly non-trivial validation of the QCD factorisation framework:
¢ Including O(5000) data points,
& from O(40) experiments,
& some of them with 1% errors,
yet still x2/Ndat=1!
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The global QCD fit machinery

~ . )
Experimental data
Fixed-target & collider DIS
Tevatron and LHC measurements
Jets, DY, top, Z pT, ....
- PP Y

(Statistical framework\

PDF parametrisation,
PDF uncertainties and propagation
Model and theory uncertainties

\_ _J
4 )
Theory calculations
\_ _J
~
NNLO DGLAP evolution
DIS structure functions
APFEL, HOPPET, QCDNUM, ...
|/

Juan Rojo

( )
fit validation, statistical
estimators, diagnosis tools
\_ W,
( )
APFEL WEB
a ) http://apfel.mi.infn.it/
The global QCD fit pelfapietmLinin.
g on-line plotting toolbox
Minimise figure of merit (*) and
determine PDF parameters 4 )
_ ' ) LHAPDF
Ihapdf.hepforge.org
standard interface for
\_ public PDF delivery y
(*) N dat
) = > (o4 = ol ({ai})) (covexp + covin)m, (o577 = o ({ai}))
m,n=1
. APPLgrid, FastNLO, aMCfast....
( )
Fast NLO grids External (N)NLO codes
NNLO QCD & €|  LCFM, NLOjet++, FEWZ,
. NLO EW K-factors y DYNNLO, private codes...
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The global QCD fit machinery

~ . )
Experimental data
Fixed-target & collider DIS
Tevatron and LHC measurements
Jets, DY, top, Z pT, ....
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ANNs as universal unbiased interpolants

ANN’s provide universal unbiased interpolants to parametrise the non-perturbative dynamics that
determines the size and shape of the PDFs from experimental data

Traditional approach

NNPDF approach

M ad-hoc ansatz
g(z,Qo) = Ay (1 — )92~ " (14 cgv/s+dgz+...)

g(z, Qo) = AGANN,(x)

ANN,(2) = ¢ = F [¢®) (), (o))

ni—1

() _ (I—1) +(I-1) (1)
51' —Jg Z Wi fj — 6@'
j=1

Juan Rojo

& ANNs eliminate theory bias introduced in PDF fits
from choice of ad-hoc functional forms

@ NNPDF fits used O(400) free parameters, to be
compared with O(10-20) in traditional PDFs. Results
stable it O(4000) parameters used!
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ANNs as universal unbiased interpolants

Compare two global PDF fits, one based on 2-5-3-1 architecture and another based on 2-20-15-1

20
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Central Value

vicKkK cCc O v

1-sigma differences
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Juan Rojo
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& The results of the fit are very similar (differences << than
1-sigma ranges) if a huge ANN is used

& Implies results are driven by the input experimental
data rather than by the methodological assumptions

& Same level of agreement if fitting basis is changed

Parametrisation with ANNs
of strange sea in NNPDF2.3 ...

s*(x, Q) = (s + ), Qp)
S_(X, Qg) — (S _ E)(.X, Qg)

... and in NNPDF3.1

,//

B(z,Q5) = (uta+d+d+s+s)(eQ)
Ty(2,Q3) = (u+i—d—d)(,Q})
Ty(z,Qo) = (v+u+d+d—2s—25)(z,Q)
V(z, Q%) = (u—a+d—d+s—3)(z,Q3)
Vs(z,Qp) = (u—u—d+d)(z,Qp)
Vs(2,Q0) = (u—u+d—d—2s+25)(z,Q)
20
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ANN training: genetic algorithms

Selection
Initial population \l'
(random sampling)

Mutations

. . and Cross-over
Fit parameters: weights and

thresholds of the ANNs \l'
Naag Goodness-of-fit
V{ai) = > (05 = ol ({a:})) (covexp + covan)h, (o1 = o ({ai})) , f
mon=1 (X2 estimator)

!

Stopping criterion?

No
& GAs specially useful to avoid getting stuck in

local minima
&€ No need to compute analytically X2 gradients \l' Yes

& Low efficiency close to global minima
best-fit parameters
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ANN training: covariance matrix adaptation

Improved exploration of parameter space by using information from previous iterations
when generating the mutants, rather than fully random variations as in GA

x,(:) ~al=l 4 a(i_l)N(O, C(i_l)) , fork=1,... A\

best-fit previous Multigaussian in
mutants .
generation parameter space
Generation 1 Generation 2 Generation 3

Generation 4

Generation 5

Generation 6

Creative Commons
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Avoiding overfitting

For a flexible enough input functional form for the Parton Distributions,
one might end up fitting statistical fluctuations rather than the underlying physical law!

Or

Or

M=0

0 . 1

0 : 1
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Avoiding overfitting

¢ Separate the input measurements into a training and a validation sample

2.56

2.55 [~
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Avoiding overfitting

¢ Separate the input measurements into a training and a validation sample
¢ The validation sample is never trained, only used to monitor the quality of the fit to the training sample
¢ The optimal stopping point is at the global minimum of the validation 2

2.56

2.55 |-

253 |

<BE>

252 |-

251

Training
25 - Validation
2 49 A A A A l s A A l A A A ' l A ' l A A A
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448_7
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,‘i

| Optimal stopping point

Juan Rojo 25 QCHS-XIIl, Maynooth, 02/08/2018



Avoiding overfitting

¢ Separate the input measurements into a training and a validation sample
¢ The validation sample is never trained, only used to monitor the quality of the fit to the training sample

¢ The optimal stopping point is at the global minimum of the validation 2

2.56

255 | - Overlearning is a very subtle effect when fitting
254 | ? - 0O(5000) data points from O(40) experiments

<BE>

253 |
252 |
251 |
Training

25 Validation LJ‘%\J\J_L
540 . ‘ . . . 1 . . . 1 . . . . \ . . 1 . . . ‘

500 1000 1500 2000 2500 300

+neration/10 /
u Undertrained | H Overtrained ﬁ
|

| Optimal stopping point
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The Monte Carlo method

& Construct a sampling of the probability distribution in the space of experimental data based on all
available information on central values, uncertainties, and correlations

Nsys
(art) (k) (k) ~(exp) Z (k) _(sys) (k) (stat) :
O’l :SZ,NO’L ].+ Ti,aai,c _I_'r?/ O-’L , k':].,...,Nrep , Z:].,...,Ndat
\ 7N
MC pseudo-data replicas Correlated Gaussian Uncorrelated Gaussian number of MC replicas
random numbers random numbers

¢ A full global PDF fit is then performed for each MC replica
¢ This results into a sampling of the probability distribution in the space of PDFs (or LHC cross-sections ...)

¢ From this any statistical estimator of the sample can be computed using textbook statistics, e.g.

Central values Variances

Nre N
1« > et (F)rep — F'(F))2
(Frep = w— p_ FW. 5F_\/ S -
rep x rep

Cross-section computed
from the k-th replica PDF set
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Neural network training

Starting from random boundary conditions for the Nyp replicas,
the ANN training ensures that only those functional forms minimising the X2 are selected

X g(Xx, Q2= 2 GeV?2)
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Closure testing the methodology

Methodology validated on closure tests applied to pseudo-data generated from a known underlying theory

Inadequacies in fitting methodology can be disentangled from e.¢. data inconsistencies or theory limitations

> ‘ New Fitting Methodology \

Define Underlying Physical Law
ie input PDFs from MSTWO08, CTI10, NNPDF2.3...

Try harder!

/

Now you can fit
real exp data!

/

Generate random pseudo-data for the NNPDF3.0 dataset
from info of experimental uncertainties and correlations

Closure Test
Perform (NN)PDF fit successful!

Validate resulting PDF set:
[/ Reproduce input PDFs oK!
[/ Both central values and uncertainties
A Expected values of X are determined by pseudo-data
Fail? [/ PDF reweighting equal to refitting (Bayesian inference)
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Closure testing the methodology

Methodology validated on closure tests applied to pseudo-data generated from a known underlying theory

Inadequacies in fitting methodology can be disentangled from e.¢. data inconsistencies or theory limitations

[ Level 0: no fluctuations on pseudo-data, no Monte Carlo replica generation
[ Level 1: with fluctuations on pseudo-data, no Monte Carlo replica generation

[ Level 2: with fluctuations on pseudo-data, with Monte Carlo replica generation

Effectiveness of Genetic Algorithm in Level O Closure Tests
Distribution of single replica fits in level 2 uncertainties
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Discovering New Physics within QCD

How we can ensure that we are not “fitting way” BSM effects in the global PDF analysis?

Our recent discovery of BFKL effects in HERA data illustrates how this can be achieved!

¢ At small-x, logarithmically enhanced terms in 1/x become dominant and need to be resummed
¢ BFKL/high-energy/small-x resummation can be matched to the DGLAP collinear framework

¢ Until recently, no conclusive evidence for the onset of BFKL dynamics had been provided

-~

1 .
DGLAP 5 O 9 dz T g
Evolution in Q2 H 0112 filz,p”) = / _PZ] (— s (p )) fi(z, 1),

e

d OOdV2 2
L e e Pt = [T K (M0 fula?)

Evolution in x dx 12

Within small-x resummation, the NkLO fixed-order DGLAP splitting functions
are complemented with the NF'LLx contributions from BKFL

NFLO+N"LL NFLO N LL
P i (o) =P (v) + APy 7 (),

ABE CCSS, TW + others, 94-08
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Evidence for BFKL dynamics in HERA data

In order to assess the impact of small-x resummation for the description of the small-x and Q2 HERA data,
compute the x2removing data points in the region where resummation effects are expected

Kinematic coverage

10° -
] mm= D.s=25
{ == Den=2
— D.as=15
Collider DIS

104 c

Q%[GeV?]

101 4 "o INY R Fixed-order theory
: “euk Sy should work fine here
Small-x BFKL resummation effects 2 RN
could be important here _—— S
100 ! T T T T T T T '.?7"'l T\' T T T T T T T T T T T TTT]
1073 107 1073 1072 1071 10°
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Evidence for BFKL dynamics in HERA data

Using NNLO+NLLx theory, the NNLO instability at small-x of the x2 disappears

Excellent fit quality to inclusive and charm HERA data achieved in the entire (x,Q2) region

NNPDF3.1sx, HERA NC inclusive data
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Evidence for BFKL dynamics in HERA data

Using NNLO+NLLx theory, the NNLO instability at small-x of the x2 disappears

Excellent fit quality to inclusive and charm HERA data achieved in the entire (x,Q2) region

NNPDF3.1sx, HERA NC inclusive data
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Science After 40 years of studying the strong

Life and Physics .
nuclear force, arevelation
This was the year that analysis of data finally backed up a prediction,
made in the mid 1970s, of a surprising emergent behaviour in the
strong nuclear force

Jon Butterworth

¥ @jonmbutterworth
Thu 28 Dec 2017 17.30 GMT
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| Jon Butterworth,
-~ The Guardian

In the mid 1970s, four Soviet physicists, Batlisky, Fadin, Kuraev and Lipatov,

made some predictions involving the strong nuclear force which would lead to
their initials entering the lore. “BFKL” became a shorthand for a difficult-to-
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Machine Learning for Global PDF fits

[M Machine Learning tools are becoming increasingly important in the toolbox of
HEP physicists

[ ML algorithms are relevant in various aspects of the global PDF fit, from unbiased
parametrisation of the boundary conditions to efficient exploration of high-
dimensionality parameter spaces

[ The validation of novel fitting strategies should ideally be tested at the closure
test level, to avoid interference with unrelated issues such as data incompatibilities

[A Parton distributions could be the key for unravelling new physics at the LHC!
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