

$\alpha_S(M_Z)$ from PDF fits and collider processes

Juan Rojo

VU Amsterdam & Theory group, Nikhef

Round table on

Determining the strong coupling: status and challenges **Quark Confinement and the Hadron Spectrum 2018** Dublin, 02/08/2018

Pinning down $\alpha_S(M_Z)$ in the LHC era

The strong coupling is one of fundamental parameters of the Standard Model

Finning down $\alpha_S(M_Z)$ with high precision of utmost importance both from the **theory** and **phenomenology** points of view

Pinning down $\alpha_S(M_Z)$ in the LHC era

- The strong coupling is one of fundamental parameters of the Standard Model
- Finning down $\alpha_S(M_Z)$ with high precision of utmost importance both from the **theory** and **phenomenology** points of view
- General Here I (very) briefly discuss status of α_S(M_Z) determinations from high-energy collisions
- These include "PDFs", "Collider", and "Event shapes" (see also Sven's talk)
- *nb* the categorisation is ambiguous: PDF
 fits already include a lot of collider data
- Solution Not a review, just to trigger discussion!

Modern global PDF fits include a wide variety of **lepton-proton and proton-proton collider data**, including several processes that provide a **direct handle on the strong coupling**

NNPDF 18

Based on around 4000 data points from O(15) different processes, in all of them using exact NNLO theory

4

Modern global PDF fits include a wide variety of **lepton-proton and proton-proton collider data**, including several processes that provide a **direct handle on the strong coupling**

NNPDF 18

Based on around **4000 data points** from **O(15) different processes**, in all of them using **exact NNLO theory** Note that a **PDG-like value of** $\alpha_s(M_z)$ **is preferred** by the majority of the most sensitive processes in the fit

5

QCHS2018, Dublin, 02/08/2018

Limitations and Challenges

- Solution \Im No systematic way to **account for theory errors from MHOUs** in the fitted $\alpha_S(M_Z)$ but see encouraging preliminary results in the backup
- Dependence on **methodological settings**: *e.g.* parametrisation, definition of PDF uncertainties
- Dependence on theoretical settings, e.g. differences in heavy quark treatment dominate spread between NNPDF3.1/MMHT14 and ABM16

Juan Rojo

6

QCHS2018, Dublin, 02/08/2018

Limitations and Challenges

- Does not fully account for correlations between PDFs (treated as external input), the fitted collider data, and the resulting α_S(M_Z)
- By construction, cannot be competitive with global fit, since only based on a subset of all available data - but perhaps this could be offset by the superior robustness of a single-process determination?

Event shapes in e⁺e⁻ collisions

 $\begin{array}{ll} 0.1135 \pm 0.0011 & {\rm Thrust} \; ({\rm SCET} \; {\rm NNLO+N^3LL+anlhad}) \\ 0.1123 \pm 0.0015 & {\rm C-parameter} \; ({\rm SCET} \; {\rm NNLO+N^3LL+anlhad}) \end{array}$

Experimentally very clean measurements

- Perturbative calculations available up to high orders and with resummation included
- Most accurate determinations (from SCET) far from the PDG average

Limitations and Challenges

- Sensitive to modelling of **hadronisation** and related **non-perturbative** effects
- Getting a 1% error on α_s(M_z) from a measurement where NP effects range between 5% to 15% ! requires very careful understanding of NP phenomena

Beyond M_Z: the running coupling in bSM scenarios

Collider measurements of α_s(Q) in the TeV scale are sensitive to new bSM coloured sectors in a model-independent way

Experiments should provide both **direct measurements of** $\alpha_{s}(Q)$ (from top, jets, Z pT) as well as the resulting extrapolation down to M_Z assuming the **QCD running**

Beyond M_Z: the running coupling in bSM scenarios

Determination from the inclusive multi jet cross-sections at 8 TeV

CMS 16

H _{T,2} /2	MSTW2008: $\Delta \alpha_s(M_Z) \times 1000$				
(GeV)	$\alpha_s(M_Z)$	exp	PDF	NP	scale
300–420	0.1157	± 15	± 14	±19	$^{+53}_{-0}$
420–600	0.1153	± 11	± 14	± 18	$+57 \\ -0$
600–1000	0.1134	± 13	± 16	±19	$^{+52}_{-0}$
1000–1680	0.1147	±29	±17	± 18	$+63 \\ -11$
300–1680	0.1150	± 10	± 13	± 15	$^{+50}_{-0}$

Collider measurements of α_s(Q) in the TeV scale are sensitive to new bSM coloured sectors in a model-independent way

Experiments should provide both **direct measurements of** $\alpha_s(Q)$ (from top, jets, Z pT) as well as the resulting extrapolation down to M_Z assuming the **QCD running**

Global PDF fits with MHOU estimates

g(x,Q=100 GeV) [NNPDF3.1 NLO Global]

A determination of α_s(M_Z) from a global PDF fit taking into account MHOUs is now within reach

At NLO, **MHOUs are comparable if not larger** than nominal PDF errors in the global fit

Can be estimated by means of fits with scale-varied theories

Construct a combined exp+th covariance matrix which allows to propagate MHOUs from the theory calculations to the fitted PDFs

Juan Rojo

Impact of individual processes

 \Im Even processes with few data points can provide stringent constraints on the fitted $\alpha_s(Q)$ value

For instance, the **O(100) points from** *Z p*^{*T*} data dominate over the **O(1000) points from HERA data**