

COLLINEAR PROTON PDFS AND THE Z TRANSVERSE MOMENTUM DISTRIBUTION

Maria Ubiali

Royal Society Dorothy Hodgkin Research Fellow University of Cambridge

Mw topical workshop, CERN theory institute

22nd June 2017

Outline of the talk

- Z transverse momentum distributions
 - Experimental measurements
 - Theoretical predictions
- The analysis
 - Impact of ZpT data in NNPDF3.0
 - Inclusion of ZpT data in NNPDF3.1
 - Study of small pT data
- Conclusions and outlook

Transverse momentum distributions

- Z boson production & decay into leptons benchmark SM process at the LHC.
- Z pT spectrum used to calibrate W pT spectrum for W mass measurement
- Can be measured very accurately at LHC thanks to large production rate and clean signature
- Can be calculated to high accuracy within the SM

 \checkmark O($\alpha_{\rm S}^2$) total xsec prediction - Hamberg et al (1991)

 $\checkmark O(\alpha_S^2)$ differential xsec - Anastasiou et al (2004), Melnikov et al (2006), Catani et al (2009)

 $\checkmark O(\alpha_S^3)$ differential xsec - Boughezal et al (2016), Gehrmann-De Ridder et al (2016)

• Combination of precise experimental data and accurate theory allows this process to be used to determine quantities of fundamental importance, such as PDFs or α_{s}

Topic of my talk Boughezal, Guffanti, Petriello, MU -1705.00343 Ball et al - 1706.00428

Experimental Data

- Experimental precision < 1% up to pT~200 GeV
- Data hugely dominate by correlated systematic uncertainties

- Normalised distributions only
- Three rapidity bins

0.0 < Y <1.0 1.0 < Y < 2.0

→ 64(39) data points (with pT > 30 GeV)

ATLAS 7 TeV measurements ArXiv:1406.3660

Experimental Data

- Experimental precision < 1% up to pT~200 GeV
- Data hugely dominate by correlated systematic uncertainties

- Normalised and Unnormalised
- Six rapidity bins in Z peak region
 0.0 < Y < 0.4 0.4 < Y < 0.8
 0.8 < Y < 1.2 1.2 < Y < 1.6
 1.6 < Y < 2.0 2.0 < Y < 2.4

- Four low-invariant mass bins (12,20) (20,30) (30,46) (46,66) GeV
- One high-invariant mass bin (116,150) GeV
- 184(94) datapoints (with pT > 30 GeV)

Experimental Data

- Experimental precision < 1% up to pT~200 GeV
- Data hugely dominate by correlated systematic uncertainties

- Normalised and un-normalised
- Five rapidity bins in Z peak region 0.0 < Y < 0.4, 0.4 < Y < 0.8, 0.8 < Y < 1.21.2 < Y < 1.6, 1.6 < Y < 2.0
- **50(28)** datapoints (with pT > 30 GeV)

total 300 (161) precise datapoints

arXiv: 1504.03511

Theoretical predictions

 NNLO calculation performed using N-jettiness subtraction scheme, by using recent calculation of Z+j at NNLO and relaxing cuts on final state jet

$$\mu_R = \mu_F = \sqrt{(p_T^Z)^2 + M_{ll}^2}$$

- NNLO/NLO K-factors 5% 10% depending on the rapidity and invariant mass region
- Imposed $p_T > 30$ GeV cut and verified stability upon raising the cut to 50 GeV
- Evaluated impact of approximate EW corrections (Pozzorini et al) cross-checked against exact (Denner et al)

Boughezal, Guffanti, Petriello, MU -1705.00343

ATLAS 7 TeV

ATLAS 8 TeV

Boughezal, Guffanti, Petriello, MU -1705.00343

7/19

10³ 0.8 < |y₇| < 1.2 66 GeV < M_{II} < 116 GeV ATLAS, 8 TeV LHC 10² NNPDF3.0 dơ/dp_T^Z [GeV] NLO - ---NNLO NNLO+EW 10¹ Data H 10⁰ 10⁻¹ NLO - __100 NNPDF3.0 NNLO 1.1 NNLO+EW - - -Ratio th/exp 0.9 **NNLO** 100 Ratio over NNPDF3.0 1.1 1 NNPDF3.0 0.9 CT14 MMHT14 ABMP16 100 p_T^Z [GeV] Z peak

Boughezal, Guffanti, Petriello, MU -1705.00343

ATLAS 8 TeV

- Good example of correlation-dominated observable. Data-theory comparison does not reflect actual value of the χ^2
- NNLO correction generally improves agreement (before fit)
- EW corrections only relevant for the two highest p_T bins in the Z-mass peak
- Similar picture for CMS data (Y < 1.6)

χ² / d.o.f.	NLO	NNLO	NNLO + EW	NNLO
	(NNPDF3.0)	(NNPDF3.0)	(NNPDF3.0)	(ABMP16)
0.8< Y < 1.2	5.8	4.7	2.3	2.1

Correlations with PDFs

ATLASZPT8TEVYDIST - Bin 1 Boughezal, Guffanti, Petriello, MU -1705.00343

- Inclusion of Z pT data at NNLO excluding pT bins below 30 GeV and the one/two largest pT bins affected by small- / large-pT enhancements
- Expect constraint to intermediate-x gluon and light quark distributions

NNLO fit cuts

 $\begin{array}{l} 30 \; GeV < {p_{T}}^{Z} < 500 \; GeV \; (ATLAS \; 7 \; TeV) \\ 30 \; GeV < {p_{T}}^{Z} < 150 \; GeV \; (ATLAS \; 8 \; TeV, \; on \; peak) \\ 30 \; GeV < {p_{T}}^{Z} < 170 \; GeV \; (CMS \; 8 \; TeV) \end{array}$

Extra-statistical uncertainty

- NNLO theory predictions affected by non-negligible Monte Carlo uncertainties
- Numerical uncertainties in theoretical predictions estimated by comparing fluctuations with respect to smooth interpolation

- ATLAS and CMS data at 8 TeV (unnormalised) decrease uncertainty of gluon and light quark distributions at both in HERA-only fits and in global fits
- PDFs stable under extra uncorrelated uncertainty included in the fit (only slightly smaller PDF error reduction when no extra uncertainty is included - barely visible)

Boughezal, Guffanti, Petriello, MU -1705.00343

Impact of 8 TeV Z p_T distributions (HERA)

- ATLAS and CMS data at 8 TeV (unnormalised) decrease uncertainty of gluon and light quark distributions at both in HERA-only fits and in global fits
- PDFs stable under extra uncorrelated uncertainty included in the fit (only slightly smaller PDF error reduction when no extra uncertainty is included - barely visible)

Boughezal, Guffanti, Petriello, MU -1705.00343

Issues with normalised distributions

- ATLAS 7 TeV data (normalised) can be fitted individually but point to a different minimum, so when data added together uncertainty increases!
- Normalised data correlate small pT range with the high pT range used in the analysis

Extra ⊿	χ ² ATLAS 7 TeV	χ ² ATLAS 8 TeV (M)	χ^2 ATLAS 8 TeV (Y)	χ^2 CMS 8 TeV (Y)
1%	1.4	(1.4)	(2.0)	(1.4)
1%	1.7	1.0	1.2	1.3

Issues with normalised distributions

• ATLAS 7 TeV data (normalised) can be fitted individually but point to a different minimum, so when data added together uncertainty increases!

• Normalised data correlate small pT range with the high pT range used in the analysis

Extra Δ	χ ² ATLAS 7 TeV	χ ² ATLAS 8 TeV (M)	χ^2 ATLAS 8 TeV (Y)	χ^2 CMS 8 TeV (Y)
1%	1.4	(1.4)	(2.0)	(1.4)
1%	1.7	1.0	1.2	1.3

The NNPDF3.0 global PDF analysis

• Baseline: NNPDF3.0red with HERA I+II combined data and without jets data

Impact of Z p_T distributions (global 3.0)

Fit (extra ⊿ =1%)	χ ² ATLAS 7 TeV	χ^2 ATLAS 8 TeV (M)	χ^2 ATLAS 8 TeV (Y)	χ^2 CMS 8 TeV (Y)
NNPDF3.0red	(7.0)	(1.0)	(1.1)	(1.4)
NNPDF3.0red + ZpT 8 TeV	(7.9)	1.0	0.9	1.3

14/19

Impact of Z p_T distributions (global 3.0)

Fit (extra ⊿ =1%)	χ^2 ATLAS 7 TeV	χ^2 ATLAS 8 TeV (M)	χ^2 ATLAS 8 TeV (Y)	χ^2 CMS 8 TeV (Y)
NNPDF3.0red	(7.0)	(1.0)	(1.1)	(1.4)
NNPDF3.0red + ZpT 8 TeV	(7.9)	1.0	0.9	1.3

Phenomenological implications

Quark-Antiquark, luminosity 1.3 NN3.0red 1.25 HHH NN3.0red + 8 TeV 1.2 √S = 1.30e+04 GeV 1.15 1.1 ... 20. latio 0.95 0.9 0.85 0.8 10³ 10² M_x [GeV]

Implication for Higgs physics

	Before ZpT data	After ZpT data
H(ggF)	48.22 ± 0.89 (1.8%)	48.61 ± 0.61 (1.3%)
H(VBF)	3.92 ± 0.06 (1.5%)	3.96 ± 0.04 (1.0%)

NNPDF3.1

NNPDF3.1

NNLO, Q = 100 GeV

Shift in light quarks mostly driven by LHCb data and ATLAS W/Z data

NNLO, Q = 100 GeV

Impact of ZpT data on NNPDF3.1

NNPDF3.1 NNLO, Q = 100 GeV NNPDF3.1 NNLO, Q = 100 GeV 1.15 NNPDF3.1 1.15 NNPDF3.1 g (x, Q²) / g (x, Q²) [ref] NNPDF3.1 no top , Q²) / g (x, Q²) [ref] NNPDF3.1 no Z pT `**↓**↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ <u>ک</u>^{0.95} σ σ 0.9 0.9 x^{10⁻²} 10⁻³ 10⁻⁴ 10⁻³ 10⁻² **10**⁻¹ 10-4 **10**⁻¹

Ball et al - 1706.00428

- NNPDF3.1 first analysis to include top differential distributions, ZpT distributions and jets data (NLO supplemented by theory uncertainty)
- ZpT data already well described by NNPDF3.1 before their inclusion thanks to compatibility with pull of precise top differential distribution data and V production data at the LHC
- Moderate but significant impact of ZpT data on gluon (stronger than top at intermediate x and smaller at larger x). Top + ZpT impact competitive with jets data!

Food for thoughts: the small ZpT region

- Data below pT~ 30 GeV excluded from fixed order PDF fits are the most precise
- Can we include small pT data into PDF fit by including resummed predictions?
- What is the size of NP corrections? What are the most accurate predictions? Should they be supplemented by theoretical uncertainties (scales, resummation scales, NP corrections)?
- What is the actual gain?

Conclusions

- Z boson production & decay into leptons benchmark Standard Model (SM) process at LHC
- Combination of precise experimental data and theory allows this process to be used to determine PDFs
- CMS and ATLAS data at 8 TeV (unnormalised) are compatible and lead to reduction in PDF uncertainties. ATLAS 7 TeV data (normalised data in general) can be fitted individually but points to a different minimum. Covariance matrix for normalised experiments built for the whole pT spectrum, pT cuts modify correlations between bins.
- Z pT spectrum sensitive to both soft QCD radiation (at small pT) and to large electroweak Sudakov logarithms (at large pT), interesting to see whether it can be fitted in fixed-order fit and what is the pT range
- In the future: test inclusion of pT resummation, check impact of non-perturbative effects, look at ϕ^* distributions

ATLAS 8 TeV

Bin	Order	$N_{ m dat}$	$\chi^2_{ m d.o.f.}$ (NN30)	$\chi^2_{ m d.o.f.}$ (CT14)	$\chi^2_{ m d.o.f.}$ (MMHT14)	$\chi^2_{ m d.o.f.}$ (ABMP16
$0.0 < y_Z < 0.4$	NLO	10	4.0	3.2	2.4	n.a.
	NNLO	10	2.7	2.7	2.6	2.7
	NNLO+EW	10	3.4	3.2	3.1	5.4
$0.4 < y_Z < 0.8$	NLO	10	5.6	4.6	3.8	n.a.
	NNLO	10	5.4	5.2	5.3	3.3
	NNLO+EW	10	4.0	3.9	3.7	3.8
$0.8 < y_Z < 1.2$	NLO	10	5.8	3.8	3.0	n.a.
	NNLO	10	4.7	4.0	4.3	2.1
	NNLO+EW	10	2.3	2.0	1.9	1.7
$1.2 < y_Z < 1.6$	NLO	10	4.5	3.2	2.5	n.a.
	NNLO	10	5.1	4.0	4.6	3.0
	NNLO+EW	10	3.3	2.6	2.7	2.5
$1.6 < y_Z < 2.0$	NLO	10	4.4	3.2	2.4	n.a.
	NNLO	10	5.4	4.3	5.0	3.7
	NNLO+EW	10	3.9	3.2	3.4	3.0
$2.0 < y_Z < 2.4$	NLO	10	4.1	3.2	2.4	n.a.
	NNLO	10	3.4	3.1	3.3	3.2
	NNLO+EW	10	2.6	2.3	2.4	2.5

- Good example of correlation-dominated observable. Data-theory comparison does not reflect actual value of the χ^2
- NNLO correction generally improves agreement (before fit)
- EW corrections only relevant for the two highest p_T bins in the Z-mass peak
- Similar picture for CMS data (Y < 1.6)

ATLAS 7 TeV

6/19

Test the normalised 8 TeV distributions

- Using the normalised ATLAS 8 TeV data has the same effect as using the normalised ATLAS 7 TeV data
- For this observable we observe a issue in using normalised data which are normalised over a pT range different from the one used in the fit

Impact of ATLAS Z/W data

W/Z ratios after NNPDF3.1

Strangeness in NNPDF3.1

ATLAS 7 TeV in NNPDF3.1

NNLO, Q = 100 GeV 1.15 1.15 NNPDF3.1 NNPDF3.1 g (x, Q²) / g (x, Q²) [ref] 1 0.02 1 0.02 NNPDF3.1 + ATLAS Z pT 7 TeV 1.1 1.1 NNPDF3.1 + ATLAS Z pT 7 TeV d (x, Q²) / d (x, Q²) [ref] ¹⁰⁰ ¹¹⁰ ¹¹¹ ¹ 0.9 0.9 10⁻² 10⁻³ 10^{-3} 10⁻² **10**⁻¹ 10⁻⁴ **10⁻¹** 10⁻⁴

	NNPDF3.1 NNLO	$+ \text{ ATLAS } Z p_T 7 \text{ TeV data}$
ATLAS $Z p_T$ 7 TeV (p_T^{ll}, y_{ll})	[6.78]	3.40
ATLAS $Z p_T 8$ TeV (p_T^{ll}, M_{ll})	0.93	0.98
ATLAS $Z p_T 8$ TeV (p_T^{ll}, y_{ll})	0.93	1.17
CMS $Z p_T$ 8 TeV (p_T^{ll}, M_{ll})	1.32	1.33

NNLO, Q = 100 GeV

Stability under small pT cut

 $pT > 30 \text{ GeV} \rightarrow pT > 50 \text{ GeV}$

Error reduction

NNLO + EW fit

Non-perturbative effects

Non-perturbative effects in Z p_T

- ► Inclusive Z cross section should have $\sim \Lambda^2/M^2$ corrections (~10⁻⁴?)
- ➤ Z p_T is not inclusive so corrections can be ~Λ/M.
- Size of effect can't be probed by turning MC hadronisation on/off [maybe by modifying underlying MC parameters?]
- Shifting Z p_T by a finite amount illustrates what could happen

G. Salam, talk at KITP 2016

Very high stat. NNLO calculation needed

Very high stat. NNLO calculation needed

NNLO

Fluctuations in K-factors lead to bad chi2

Extra-statistical uncertainty

- NNLO theory predictions affected by non-negligible Monte Carlo uncertainties
- Numerical uncertainties in theoretical predictions estimated by comparing fluctuations with respect to smooth interpolation
- Explore 0%, 0.5% and 1% hypothesis

extra Δ	$\chi^2_{ m ATLAS7tev}$	$\chi^2_{ m ATLAS8tev,m}$	$\chi^2_{ m ATLAS8tev,y}$	$\chi^2_{ m CMS8tev}$
1%	(21.8)	(1.00)	(1.56)	(1.55)
1%	(19.6)	0.91	0.70	(1.61)
1%	(16.2)	(1.04)	(1.56)	1.21
1%	(18.0)	0.90	0.77	1.42
0.5%	(27.6)	(1.10)	(2.83)	(2.46)
0.5%	(23.0)	0.99	1.05	(3.01)
0.5%	(20.5)	(1.13)	(3.15)	1.91
0.5%	(21.4)	0.99	1.29	2.44
no	(30.6)	(1.15)	(4.65)	(3.46)
no	(25.5)	1.02	1.66	(4.79)
no	(19.5)	(1.28)	(5.44)	2.51
no	(24.5)	1.03	2.09	3.59

+ 1% extra uncorrelated uncertainty

no extra uncorrelated uncertainty

Fit ATLAS 8 TeV

HERA + 8 TeV ZpT data fits

Fit CMS 8 TeV

Fit both

Including the small ZpT region

