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Chapter 1

Introduction

The Standard Model describes completely three of the known basic interactions of nature and
it is one of the greatest scientific achievement in the second half of the XX century. Various
arguments however suggest that new physics beyond the Standard Model may be required. It
is thus important to carefully verify the coherence of the Standard Model by stringent tests in
order to uncover possible unknown physics. In this perspective precisions measurements at high
energy colliders like LHC become crucial.

Electroweak unification is one of the cornerstones of the Standard Model and predicts the
existence of a symmetry between the electric and the weak interactions which holds at high
energy. The strengths of the fields are related by an arbitrary constant, the Weinberg angle
denoted by sin2 θW . This parameter is known very accurately, but since there exists a certain
tension between different fits it would be of great interest to perform a measurement with a
smaller uncertainty.

The lepton Forward-Backward Asymmetry (AFB) at the LHC is sensitive to the weak mixing
angle. Hence from the measurement of this asymmetry it may be possible to obtain a precise
measurement of sin2 θW . However, systematic uncertainties need to be sufficiently small in order
to measure sin2 θW at the desired level of accuracy. The main source of systematic errors in a
hadron collider is the uncertainty which affects the parton distribution functions (PDFs), which
limits the accuracy of our knowledge of proton structure.

In this thesis we study the impact of PDF uncertainties on a possible future measurement
of sin2 θW at the LHC studying AFB as a function of the invariant mass of the lepton pair in
Drell-Yan neutral current events. We have generated events using the event generator HORACE,
and we have limited our study at the Born level. We have estimated the PDF uncertainties by
means of a template fitting method, and we have combined the results with our estimate of the
statistical uncertainty with an integrated luminosities of 100 fb−1.

The thesis is organized as follows. In Chapter 2 we briefly give an overview of the Standard
Model. In particular, we focus on the electroweak unification and on quantum chromodynamics
(QCD). In Chapter 3 we study the Forward-Backward Asymmetry and its relation to the weak
mixing angle. We describe the electroweak partonic process and we present the basic approaches
on the determination of PDFs and their uncertainties. Finally, in Chapter 4 we study the PDF
and the statistical uncertainties on AFB and we estimate the impact of the uncertainties on the
measurement of the weak mixing angle We draw our conclusions in Chapter 5.



Chapter 2

The Standard Model

The so called Standard Model, formulated in the 1970s, explains practically all experimental data
from high energy physics experiments. According to this theory, a small number of fermions,
six quarks and six leptons, can construct all of matter. The Standard Model also incorporates
their interactions, which are explained in terms of gauge bosons exchanged between the fermion
constituents. The gluon, a massless boson, is the particle mediating the interquark force which
binds the quarks into the nucleons. Another massless boson, the photon, mediates the electro-
magnetic interactions. The weak interactions, responsible for the nuclear β-decays, are mediated
by three bosons, W± and Z0, which have masses two order of magnitude bigger than the proton
mass.

The Standard Model thus provides a theory which describes three of the known basic fields
of nature, but it is still subjected to limitations. Gravitational interactions, putatively mediated
by a spin 2 boson, the graviton, are not included in the Standard Model, and the attempts
performed in order to include gravity, despite the efforts, have made little progress. Moreover,
though in the simplest version of the Standard Model the neutrinos are massless, anomalies in
the Standard Solar Model opened out to the hypothesis of neutrino oscillations and experiments
show that neutrinos do have finite masses. Cosmological observations will require new and
unknown physics beyond the Standard Model in order to explain the existence of dark matter
and dark energy. Finally, it is yet unclear where the number of free parameters needed by the
theory comes from.

Precisions measurements at high energy colliders such as LHC are extremely important in
order to test the Standard Model and eventually to discover new physics behind it.

2.1 Physics of the weak interactions

The first descriptions of the weak interactions was formulated by E. Fermi in 1934. He described
β decay as an interaction between two currents, the former converting a neutron in a proton and
the latter creating an electron and its antineutrino. Fermi hypothesized a contact interaction.
The four fermions were thought to interact in a single point: the wave functions of neutron and
neutrino (equivalent to the outgoing antineutrino) transformed into the wave functions of the
proton and the electron. In this description the matrix element for the β decay can be written
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as

M ∝ (ψ̄pΓψn)(ψ̄eΓψν), (2.1)

where the Γ factors (matrices, in general) contain the quantum numbers of weak interactions.
The nature of these factors was explained years later, when it was discovered that weak force
violates parity.

The theory of a point-like interaction, unfortunately, leads to wrong predictions when applied
to high-energy weak interactions. It is thus necessary to replace the theory of contact interac-
tion with a theory based on a particle-exchange mechanism. The particle which carries that
interaction is an intermediate vector boson and it is denoted W , and must be very massive as
the range of the force is very short. The two currents involved in a weak interaction now couple
to the W boson, which mediates the interaction between different space-time points. The W
boson must come in two oppositely charged versions, as in the interactions it couples to particles
which have different charge. In order to include neutral currents phenomena, we must take into
account the existence of a neutral boson.

2.1.1 Parity violation and the V-A theory

The solution of the θ− τ puzzle in the 1950s led to the conclusion that the force responsible for
the decay does not conserve parity. Lee and Yang examined the experimental informations which
concerned this problem and pointed out that there was no evidence either of conservation or
nonconservation of parity in weak interactions. Further experiments aimed at testing evidences
of violation of parity in other weak processes, and finally C. S. Wu and others observed a large
asymmetry in the decay of 60Co. The mirror process thus behaves differently from its real image
and the weak force can distinguish a left-handed from a right-handed coordinate system.

In 1957 Feynman and Gell-Mann proposed the so called V-A theory, a modification of the
Fermi theory of weak interactions, in order to take into account the recent experimental results.
They considered the matrix element (2.1) and showed that if the interaction factor Γ is a mixture
of vector and axial-vector quantities, and thus if there are a vector (V) and axial-vector (A)
current in the interaction, it is possible to explain the parity violation by the weak force. In fact
vectors and axial-vectors behave differently under parity. The vector changes sign under parity
transformation, but the axial-vector does not: thus if the interaction is characterized by both
the components it will be non-invariant under parity.

The choice of such interaction factors has also another relevant consequence. In fact, weak
interactions couples to fermions in a peculiar way. When the fermions move close to the speed
of light c it is convenient to classify fermion states in a new way. Define the helicity as

H =
σ · p
|p| , (2.2)

where p is the momentum of the particle. The fermion can thus be in the helicity-plus or in the
helicity-minus state, depending on the fact that the spin is aligned or not with the momentum. In
case of massless particle, helicity is a well-defined, Lorentz-invariant quantity, while for massive
particles it is not invariant under Lorentz transformations. Then it is useful to make a further
classification, called chirality or handedness (which coincide with helicity for massless particles).
The eigenstates of chirality have the important property that they are interchanged under parity:
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left-handed (helicity-minus) states become right-handed (helicity-plus) states and conversely.
Weak charged currents, which violate parity, have the important property of coupling uniquely
to left-handed fermions (and right-handed antifermions) only.

2.1.2 Gauge theory of the weak interactions

Gauge invariance is one of the most important concept in modern physics and it applies to all
the four fundamental forces of nature. In a gauge theory we must ensure that the Lagrangian
which describes interactions remains invariant under symmetry transformations performed by
an appropriate symmetry operator. Additional fields must be introduced in order to get a local
symmetry and this lead to the introduction of definite physical forces.

The first gauge theory which has been formalized was QED, which attempts to describe the
interaction of charged particles, in such a way that total electric charge is always conserved.
The gauge invariance of Maxwell’s equations is related, in the quantum form of the theory, to
an invariance under local transformation of the quantum fields. The demand of a certain type
of phase invariance of the electron wave function dictates the form of the interaction: this is the
basis of the gauge principle.

QED is characterized by another crucial property: renormalizability. Higher-order terms in
perturbation theory involve integrals over the four-momenta of intermediate virtual particles.
Those integrals are often formally divergent, and it necessary to impose some form of cut-off
procedure. If divergences can be absorbed in the definition of a finite number of parameters
(such as masses and couplings), the theory is said to be renormalizable. From renormalization
procedure an crucial fact emerges: the coupling constants, such as α, are not actually constant
but vary logarithmically on the energy scale at which measurements are made. We will develop
this last observation further in the section dedicated to strong interaction physics.

Also weak interactions can be described as a gauge theory. Since weak interactions do not
depend on the charge of particles, they must be independent of the electrical charge of the
particles experiencing its action. It is then possible to define a weak isospin in analogy with
the isospin of nucleons and then to require the Lagrangian invariance under the group of weak
isospin rotations, SU(2)W . Furthermore, we demand invariance of the Lagrangian under local
gauge transformation. This can be obtained introducing a field Aα

ν , which is interpreted as the
boson, such that

GSU(2)W (x)L(le, lµ, Aα
ν ) → L(l∗e , l∗µ, Aα∗

ν ), (2.3)

where we have denoted as le and lµ the doublets

le =

(

νe
e−

)

, lµ =

(

νµ
µ−

)

. (2.4)

This leads to two important consequences: the gauge field coincides with a charge triplets
and, moreover, the gauge bosons must be massless.

Apparently, the request of renormalizability implies the masslessness of gauge bosons. Mas-
sive vector fields are not gauge invariant and not renormalizable. However, a mechanism (the so
called Higgs mechanism) to endow gauge bosons with mass without breaking gauge invariance
was discovered in 1964. It was already proved in the early 1960s that whenever a global symmetry
is spontaneously broken a massless, spin 0 particle results (the Goldstone boson). Nevertheless,
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if the symmetry which is broken spontaneously is local, a mass for the gauge bosons may be
generated without altering the number of degrees of freedom of the system. It is thus possible
to start with a gauge-invariant theory and let gauge bosons acquire mass.

The Higgs mechanism implies the existence of a massive spin-0 particle, known as Higgs
boson, which has not been observed yet.

2.2 The electroweak unification and sin2 θW

Early theories of weak interactions did involved divergences at high order, that could be cancelled
only by introducing an increasing number of constants. The Standard Model incorporates the
Higgs mechanism to generate the masses of the W boson. Between 1967 and 1968 S. Glashow, A.
Salam and S. Weinberg independently formulated the principles of the Electroweak unification,
one of the cornerstones of the Standard Model. They predicted that there exists a symmetry
between electric and weak interactions at very high momentum transfer (q2 ≫ 104 GeV2) and
that at low energy the symmetry would be broken: of the four mediating vector bosons involved,
one would be massless (the photon) and the others, namely W+, W− and Z, would become
massive. As a result, at low energy weak interaction are feeble and short-ranged, if compared
with electromagnetic interaction. The theory contains an arbitrary constant, the weak mixing
angle or Weinberg angle denoted by sin2 θW , which relates the strengths of the electromagnetic
and the weak interactions.

This constant is necessary because it turns out that the particle which remains massless - the
photon - must be a linear combination of two gauge bosons of the underlying fundamental theory.
This is necessary in order to reconcile the fact that matter particles which are degenerate under
the weak interactions have a different electric charge, with the desire to preserve simultaneously
gauge invariance of the weak and electromagnetic interactions.

Once gauge bosons acquire mass through the Higgs mechanism, their masses and the elec-
troweak mixing angle become related, according to the following equation:

sin2 θW = 1− M2
W

M2
Z

. (2.5)

This relation holds at the lowest perturbative order, and it gets modified by radiative corrections.
It can be demonstrated that the weak neutral current can be written as [8]:

J0
µ = 2J3

µ − 2 sin2 θWJ
EM
µ , (2.6)

where J3
µ is the third component of the weak isospin current and JEM

µ is the electromagnetic
current. Thus experiments involving neutral currents can be performed in order to evaluate
sin2 θW .

2.3 Strong interaction physics

In the last decades scattering experiments have been the primary source of information on the
structure of nucleons. Beams of energetic leptons (usually electrons) are made to collide with
hadrons and the results of the collision, which is mediated by the electromagnetic interaction, are
collected by detectors. Elastic scattering experiments in the 1950s and in the 1960s suggested
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that the nucleons do not have a point-like structure. In order to resolve the nucleon structure
it was thus necessary to increase the energy of the probing beam. In this way the wavelenght
of the exchanged photon is smaller of the size of the target. As the transferred momentum of
the photon increases, deep inelastic scattering (DIS) arises: the nucleon disintegrates and new
particles are produced.

2.3.1 Structure functions and Bjorken scaling

The main measurement of scattering experiments is the variation of the cross-section with the
scattering angle and the final energy of the lepton. However, other kinematics variables may
be used and it becomes natural to study the variation of the cross-section with the transferred
energy ν and the square of momentum transferred by the photon Q2 = −q2.

If one assumes that the electromagnetic interaction between the electrons and the nucleon
is dominated by single photon exchange, it is possible to obtain a rather simple mathematical
description of a scattering experiment. QED provides a tool to calculate the lepton current and
the propagation factor associated to the photon, but it is impossible to describe the structure of
the nucleon using perturbative methods. It is then necessary to introduce a number of structure
functions which are determined by experiment. It is possible to demonstrate that the differential
cross-section for electron-nucleon scattering can be written as

d2σ

dQ2dν
=

4πα2

Q4

1

M

Ef

Ei

[

M

ν
F2(Q

2, ν) cos2
θ

2
+ 2F1(Q

2, ν) sin2
θ

2

]

. (2.7)

At the beginning, the main goal of DIS experiments was to study the resonance produc-
tion which characterizes the cross-section once θ is fixed. However the data show that as the
transferred momentum increases, the cross-section becomes independent from Q2. J. Bjorken
interpreted these asymptotic behaviour and hypothesized that in the limit Q2, ν → ∞, and for
finite value of the ratio

x =
Q2

2Mν
, (2.8)

the structure functions would depend only on that dimensionless ratio:

F1,2(Q
2, ν)

Q2,ν→∞−→ F1,2(x). (2.9)

A first interpretation of this phenomenon was given in a model proposed by R. P. Feynman,
which is known as parton model. He proposed that the nucleon is made up of partons, smaller
point-like and non-interacting constituents. The structure functions measure the way in which
the nucleon momentum is distributed between the partons.

It is possible to obtain important relations between the structure functions and the properties
of partons comparing the cross-section in Eq. (2.7) to the cross-section describing the interaction
between an electron and a point-like fermion. In order to perform such a comparison, we
hypothesize that each parton has a charge ei and has a probability dP

dβ = fi(β) of carrying a
fraction β of the total momentum of the nucleon. Finally, the total momentum carried by the
partons must be equal to that of the nucleon. Such a relation can be written as

∑

i

∫ 1

0
dx xfi(x) = 1, (2.10)
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where the sum runs over all the partons. The cross-section may finally be calculated as the
incoherent sum of the interactions between the photon and the single partons.

Comparing the results, it is possible to relate the structure functions to the individual parton
distribution, obtaining:

F1(x) =
∑

i

fi(x)e
2
i , (2.11)

F2(x) = x
∑

i

fi(x)e
2
i . (2.12)

The functions fi(x), which must be experimentally determined, are known as parton distribution
functions (PDF).

2.3.2 Quarks and gluons

One of the important relation which can be obtained comparing QED cross-section describing
electron-fermion scattering and the cross-section Eq. (2.7) relates the structure functions in a
simple way:

2xF1(x) = F2(x). (2.13)

If the ratio 2xF1(x)
F2(x)

is experimentally equal to one, this provides evidence for the fact that partons

are spin 1
2 particles, and this is indeed the case. It was then natural to compare the parton

model to the quark model, introduced in 1964 by M. Gell-Mann and G. Zweig. The quark model
explained brilliantly the variety of hadrons hypothesizing that they can be classified if organized
in a SU(3) symmetry scheme. However, the model introduced new physical entities, which Gell-
Mann baptized quarks, with fractional barion number and fractional charge. It seemed unlikely
that nucleons were characterized by internal structure, and the model was perceived more likely
as a mathematical tool than a theoretical explanations of the hadron structure. The success of
the parton model urged the scientific community to seriously reconsider Gell-Mann’s hypothesis.

It is possible to compare the predictions of the Gell-Mann model to the parton model. As
in the quark model the proton is a bound state uud, the following constraints are implied:

∫ 1

0
dx (fu(x)− fū(x)) = 2,

∫ 1

0
dx (fd(x)− fd̄(x)) = 1. (2.14)

The integration over the quark momentum distribution gives the fraction of the momentum that
the quark carries:

Pu =

∫ 1

0
dx x(fu(x)− fū(x)). (2.15)

Measurements confirm indeed these expectations. However, experiment shows that the total
fractional momentum carried by quarks is about one-half of the total proton momentum. We
interpret this fact assuming that the remaining half is carried by neutral gluons, the quanta of
the strong nuclear force which do not experience electromagnetic force.
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2.4 Quantum chromodynamics

The parton model today is viewed as an approximate consequence of the leading order pertur-
bative treatment of QCD, the modern theory of strong interactions. While a full treatment of
QCD is beyond the scope of this thesis, it will be sufficient to state that QCD is, like QED and
electroweak theory, a gauge theory, based on the gauge group SU(3), conventionally called color.

In this respect, QCD is very similar to QED, which describes electric charges as the sources of
the electromagnetic field. Nevertheless, there are important differences between the two theories.
A first difference involves the quanta of their respective fields. The photon in fact is neutral,
and as a result it does not interact with itself. On the contrary, in QCD the SU(3) gauge fields,
the gluons, carry the color charge, and thus they are self-interacting.

In quantum field theories the intrinsic strength of a force, which is related to the coupling
constants which characterize the interactions, depends on the energy scale. In the simpler case of
the electromagnetic field, the strength of the interaction is fixed by the value of the fine structure
constant α. The quantum mechanical effects which arises when the momentum transfer increases
can be described as the creation of virtual electron-positron pairs from the vacuum. The cloud
of virtual positrons shields the bare electron in the same way a dielectric is polarized by a test
particle. Therefore the effective electric charge is appreciably reduced by the positive shield, and
when the transferred momentum increases so does the fine structure constant. In fact the more
the distance from the bare electron decreases, the more the virtual cloud is penetrated and the
bare negative charge is less shielded.

A similar phenomenon exists in QCD, but the effect of color on a polarized medium is
more complex. In fact gluons, which carry color charge, must be taken into account when the
dependence of the strong coupling constant αs from the energy scale is studied. The presence of
gluon-shielding, due to the fact that gluons are self-interacting, provides an anti-screening effect.
The effective color charge is bigger than the original bare charge. The strength of the strong
interactions thus decreases with the transferred momentum, and vanishes asymptotically. The
fact that at infinite energies quarks behave as free particles is known as asymptotic freedom. The
limit of QCD for high-energy hadrons is consistent with the parton model, where observables
are calculated as the incoherent sum of the interactions with the single partons.

Since the strength of coupling in QCD decreases at high energy, it is possible to calculate
perturbatively the effect of color interactions. QCD predictions at large momentum scales are
expected to be particularly accurate and can be experimentally checked.

On the other hand, at low energies the value of the coupling constant rises and thus it is not
possible to perform perturbative calculations. Moreover, quarks can form bound states, which
are the well-known hadrons. We have only a phenomenological knowledge of the nonperturbative
QCD. When a bound qq̄ pair is forced to separate, the potential between the quarks increases.
At some separation length, it becomes convenient for the qq̄ pair to split up in two qq̄ pairs. The
strong color attraction precludes the possibility of observing isolated quarks. This experimentally
checked effect is known as confinement. This fact is observed whenever a high-energy collision
takes place. The additional quarks or gluons produced in the collisions dress themselves into
hadrons and form jets of particle which are seen in the detectors.

The strong nuclear force between hadrons can be thought as a residual-color Van der Waals
force, which reflects the presence of a stronger interactions between the hadrons constituents.
This interpretation is useful because it could be an intuitive explanation of the short-range
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nature of the strong force between hadrons, as Wan der Waals interactions fall off more rapidly
then the Coulomb force.

2.5 Factorization

One of the basic properties of QCD which makes it predictive in the perturbative regime is the
factorization of cross-sections into hard cross-sections and universal parton distribution. Cross-
sections for hard processes can be written as the convolution of a calculable parton interaction
and the parton densities. In case of an hadroproduction processes we have:

σX(s,M2
X) =

∑

a,b

∫ 1

xmin

dx1dx2fa/h1
(x1,M

2
X)fb/h2

(x2,M
2
X)σ̂ab→X(x1x2s,M

2
X), (2.16)

where fa/hi
(xi) is the parton distribution function of partons of flavour a in the ith incoming

hadron, and σab→X is the parton level cross-section for the production of the final state X. The

minimum value xmin is defined as xmin = M2
x

s .
While the parton distribution functions fa/hi

are extracted from experiment, the cross-section
in Eq. (2.16) can be expanded in perturbative series as to get at the desired level of accuracy:

σ̂ab→X(x1x2s,M
2
X) = [σ̂0 + aσ̂1 + a2σ̂2 + . . .], (2.17)

with a =
αs(M2

W
)

2π . Eq. (2.16) is applicable to a wide variety of hard-scattering processes. Most
processes have been calculated to the next-to-leading order (NLO) in perturbation theory, and
thus up and including σ1 terms.

The evolution of parton distributions fa/h1
(x1, Q

2) at any scale is given by the Altarelli-Parisi
(DGLAP) equations. They describe the Q2 dependence of parton distributions, given their form
at some reference scale Q0. Qualitatively, these equations predict that partons tend to radiate
forming new partons at lower x. Hence, parton distributions increase at small x and decrease
at high x as Q2 increases. As we probe hadrons deeper, it seems that they are formed by an
increasing number of constituents. The more the momentum of the probe increases, the more
the continual exchange of momentum between the nucleon constituent becomes appreciable. A
consequence of perturbative QCD is thus that structure functions do not have a constant shape
for all values of the transferred momentum. In QCD, Bjorken scaling is broken by logarithms of
Q2.



Chapter 3

The Forward-Backward Asymmetry

In the Standard Model neutral currents can be defined as a mixture of the third component
of the weak isospin current and the electromagnetic current as in Eq. (2.6). Parity violating
effects by weak currents lead to a charge asymmetry in the angular distribution of Z0 decay [9].
This asymmetry depends on the relative strengths of the weak and electromagnetic currents,
and thus it depends on sin2 θW .

At hadron colliders the study of the Z boson physics allows the determination the weak
mixing angle through the measurement of the Forward-Backward Asymmetry in the neutral
current channel of the Drell-Yan process.

The measurement of the Forward-Backward Asymmetry is traditionally a domain of e+e−

collider experiment. At hadron colliders both practical and theoretical difficulties arise. Firstly,
in pp collision the center of mass frame and the laboratory frame do not coincide, unlike in e+e−

experiments and, moreover, the quark direction is unknown [10]. Secondly, systematical errors,
from which PDF uncertainties are thought to play an important role, must be small in order to
measure the weak mixing angle with the desired accuracy.

In this chapter we briefly present the Drell-Yan process in Section 3.1, we focus on the
electroweak partonic process and its kinematics in Section 3.2 and we finally give an overview
on the approaches used to determine the parton distribution functions and their uncertainties
in Section 3.3.

3.1 The Drell-Yan process

In hadronic colliders, most collisions involve only soft interactions between the constituent quarks
and gluons. It is impossible to treat such collisions with perturbative QCD. In some collisions,
however, two quarks or gluons may exchange a large momentum p⊥ perpendicular to the axis
of collision. In this case, the elementary interactions take place very rapidly and it is possible
to describe the process using perturbative theory. In case of a quark-antiquark scattering into a
final state K, it is thus possible to consider a factorized cross section, which has the form

σ(p(P1) + p(P2) → K +X) =

∫ 1

0
dx1

∫ 1

0
dx2

∑

f

ff (x1)ff̄ (x2) · σ̂(qf (x1P ) + q̄f (x2P ) → K).

(3.1)
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The simplest example of this kind is the Drell-Yan process, in which a massive lepton pair
emerges from a qq̄ annihilation in a proton-proton collision.

Figure 3.1: The Drell-Yan process.

We define

M2 = q2 (3.2)

as the square of the invariant mass of the leptons. It is possible to parametrize the longitudinal
momentum of the virtual boson with its rapidity Y , defined as

q0 =M coshY. (3.3)

where q0 is the time component of the four-momentum of the virtual boson in the pp center of
mass frame. At leading perturbative order, it is possible to express the longitudinal fractions of
the quark momenta in terms of M2 and Y :

x1 =
M√
s
eY , x2 =

M√
s
e−Y . (3.4)

where
√
s is the total energy in the center of mass frame of the colliding protons.

3.2 The electroweak partonic process

The Drell-Yan process pp→ l+l−+X can be described, at the lowest order in the EW interaction,
by the Feynman diagrams for Z0 exchange and photon exchange, described in Figure 3.2. The
corresponding Feynman amplitude can be written as

M = Mγ +MZ , (3.5)

and the cross-section can be computed as

dσ ∝
∑

|Mγ +MZ |2(ŝ, t̂, û), (3.6)
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Figure 3.2: Leading contributions to the Drell-Yan process.

where the sum is taken over the spin and color degrees of freedom of the initial and final state
fermions and ŝ, t̂, û are the kinematical variables of the parton system.

However, while the coupling of a fermion to a photon has only a vector component, the cou-
pling of the same fermion to the Z0 is characterized by both vector and axial-vector components.
Consequently, the cross-section exhibits parity-violating effects. Once a suitable reference frame
is chosen, the differential cross-section at the leading order can be written as [5]

dσ

d cos θ
= A(ŝ)(1 + cos2 θ) +B(ŝ) cos θ, (3.7)

where ŝ is the total energy in the center of mass frame of the colliding partons. The term
which depends linearly from cos θ is asymmetric under parity transformation. Hence because
of the vector and axial-vector couplings, the angular distribution for qq̄ → Z0X → l+l−X is
asymmetric in cos θ. In order to minimize the effects of the unknown transverse momentum of
the incoming quarks [13] a preferential reference frame is chosen. The angle θ∗ is defined [12] as
the polar angle of the negatively charged lepton relative to the incoming quark momenta in the
rest of frame of the lepton pair (Collins-Soper reference frame) :

cos θ∗ = f
2

M(l+l−)
√

M2(l+l−) + p2t (l
+l−)

[p+(l−)p−(l+)− p−(l−)p+(l+)], (3.8)

where

p± =
1√
2
(E ± pz), f =

|pz(l+l−)|
pz(l+l−)

, (3.9)

with E and pz respectively the energy and the longitudinal momentum of the lepton pair. The
Forward-Backward Asymmetry (AFB) is defined as [14]:

AFB(Ml+l−) =
F (Ml+l−)−B(Ml+l−)

F (Ml+l−) +B(Ml+l−)
, (3.10)

where

F (Ml+l−) =

∫ 1

0

dσ

d cos θ∗
d cos θ∗, B(Ml+l−) =

∫ 0

−1

dσ

d cos θ∗
d cos θ∗. (3.11)

The Forward-Backward Asymmetry is defined relative to the quark direction. At LHC,
however, the initial state is symmetric. For this reason, it is necessary to define cos θ∗ with
the extra sign factor f [15]; without that definition the asymmetry would vanish if measured
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in symmetric intervals of rapidity, since the contributions to F (Ml+l−) and B(Ml+l−) would be
equal but opposite in sign.

At LHC AFB is therefore defined according to the sign of rapidity of the lepton pair [16].
For fixed rapidity, the longitudinal momenta of the quarks are determined by Eq. (3.4). Since
valence quarks dominate at high values of x, it is more likely to find a quark with high x
than a sea antiquark. Consequently, as the rapidity increases so does the probability that
the quark direction and the boost direction coincide. Hence the value of AFB depends on the
kinematical region where the data are collected. If measurements are made in the forward region,
where x1 ≫ x2, the probability to find a sea antiquark with high momentum is lower then the
probability to find a quark and thus the asymmetry is more easily observable.

The interest in the Forward-Backward Asymmetry lies in its relation with the electroweak
mixing angle. In fact, a precise determination of AFB enables a precise evaluation of sin2 θW .

Currently, sin2 θleff
1 is known very accurately from global fits to data (mostly from e+e−

collisions), which are sensitive to electroweak parameters. The current best fit value is 0.23153±
0.00016 [19]. However, there is a certain tension between different inputs to global electroweak
fits. In particular, the two most precise determinations (see Fig. 3.3) are about three sigma
apart. A new experimental measurement of sin2 θW is thus of great interest.

Figure 3.3: Comparison of sin2 θleff derived from measurement depending on lepton couplings
(top) and quark couplings (bottom). It is also shown the SM prediction for sin2 θleff as a function
of mH .

1The relation between sin2
θ
l
eff and sin2

θW is well known. See for example [11].
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3.3 Parton distributions

We have used different global set of parton distributions functions in order to inspect the impact
of uncertainties on the Forward-Backward Asymmetry. The set of PDF used are NNPDF2.1,
MSTW2008nlo and CT10. Those collaborations use different methods for evaluating the PDFs
and their uncertainties. In this section we briefly summarize their different approaches.

In order to determinate PDFs at least seven independent functions are needed, which cor-
responds to the three light quarks and antiquarks and to the gluon distribution at some scale.
If heavy quarks are taken into account, the number of functions increases. The problem which
has to be solved thus implies the determination of a probability distribution in a function space.
This is in principle an unsolvable task, because the experimental data are finite in number.

It is possible to get round this apparently unsolvable problem assuming a certain functional
form for the parton distributions, justifying that assumption by the hypothesis of smoothness
of the PDFs in x, with 0 ≤ x ≤ 1. It is thus possible to represent PDFs with a finite accuracy
on a finite basis of functions, and then with a finite number of parameters. There are different
methods to optimize this parameterisation, given a certain accuracy and without introducing
bias.

3.3.1 The “standard” approach: MSTW and CT10

In a standard approach PDFs are determined assuming for them a functional form with some
limiting behaviours suggested by theory at small and large x and at a certain scale Q0. Thus
PDFs are thought to have the form

fi(x,Q
2
0) = xαi(1− x)βigi(x), (3.12)

where the first two terms take into account the limiting behaviour and gi(x) tends to a constant
at the limits. For example, the CT10 parameterisation [21] assumes the following functional
form for valence quarks PDFs:

qv(x, µ0) = q(x, µ0)− q̄(x, µ0) = a0x
α1(1− x)α2 exp(a3x+ a4x

2 + a5
√
x), (3.13)

with parameters a1, . . . a5 varied freely and µ0 = 1.3 GeV. The MSTW collaboration [22] uses a
similar parameterisation for the up and down valence quarks:

xv(x,Q2
0) = Avx

δv (1− x)ηv (1 + ǫv
√
x+ γvx). (3.14)

The total number of free parameters used may vary due to the different possible choices. CT10
parameterises the valence quark combinations uv = u − ū, dv = d − d̄, the ū and d̄ distribu-
tions, the gluon, and s = s̄ distribution (for simplicity an assumption of symmetry between
the strangeness and anti-strangeness PDF is made), for a total number of 26 free parameters.
MSTW on the other hand parameterises uv, dv, s+ s̄, s− s̄, the gluon and also ū± d̄ for a total
of 28 free parameters.

Once a parameterisation has been chosen, the best fit values and the range of uncertainties
of the parameters can be determined minimizing

χ2(
→
a ) =

1

Ndat

∑

i,j

(

di − d̄i(
→
a )

)

covij

(

dj − d̄j(
→
a )

)

. (3.15)
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The sum runs over the data points, covij is the experimental covariance matrix constructed with

the experimental data di and di(
→
a ) are the theoretical predictions obtained from calculations

on the starting PDFs. The vector
→
a represents the set of parameters chosen for the PDFs

parameterisation at the initial scale Q0.
Once the χ2 has been defined, the best set of parameters is the one which provides the

absolute minimum of χ2 in the parameter space. Moreover, the variance of a observable X(
→
a ),

if linear error propagation is assumed, is

σ2X = σij∂iX∂jX, (3.16)

where σij is the covariance matrix of the parameters, which next to the minimum is given by

σij = ∂i∂jχ̄
2|min, (3.17)

which is the Hessian matrix at the minimum of the unnormalized χ̄2 = Ndatχ
2.

In principle, in the Hessian approach the 68% C.L. interval for the parameters can be evalu-
ated as the ellipsoid in the parameter space which is the solution of the equation χ̄2 = χ̄2

min+1.
In such case (3.16) reduces to

σ2X =
1

4

N
∑

k=1

[X(S+
k )−X(S−

k )]
2, (3.18)

where S±

k are pairs of eigenvectors PDF sets which spans the hypersphere in the parameter space
of radius 1, with parameters given by

ai(S
±

k ) = a0i ± eik. (3.19)

Alternatively, asymmetric errors can be calculated as

(σX)2+ =

N
∑

k=1

{max[X(S+
k )−X(S0),X(S−

k )−X(S0), 0]}2, (3.20)

(σX)2+ =

N
∑

k=1

{max[X(S0)−X(S+
k ),X(S0)−X(S−

k ), 0]}2, (3.21)

where S0 is the central set. In practice, it turns out that uncertainties determined in this way
are unrealistically small. It is thus necessary to inflate all uncertainties by a suitable rescaling
factor (tolerance). This suggests some fundamental underlying difficulty.

3.3.2 The Monte Carlo approach: NNPDF

The NNPDF collaboration bases the determination of parton distribution functions on a Monte
Carlo approach, in conjuction with the use of neural networks as unbiased interpolants [23].

The difference between a Monte Carlo approach and a Hessian approach consists in the way
the uncertainty are propagated from the parameter space to observables. We briefly summarize
how uncertainties are computed in a Monte Carlo approach, and then we will examine how
the approach has been used combined with neural networks as parton parameterisation by the
NNPDF collaboration.
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Whereas in a Hessian approach uncertainties are determined using linear error propagation
from the covariance matrix σij , assuming that parameters are Gaussianly distributed in the
parameter space, the probability distribution in a Monte Carlo approach is provided by a sample
of replicas of the whole parameter set. The central value of an observable X is then computed as
the average of the observables Xi computed Nrep times using Nrep different parameter replica:

X =
1

Nrep

Nrep
∑

i

Xi. (3.22)

The uncertainty is computed as the variance:

σ2X =
1

Nrep − 1

Nrep
∑

i

[Xi −X]2. (3.23)

In the Monte Carlo approach then the whole probability distribution can be determined from
the sample of Nrep values of X computed.

In order to obtain correct estimations of the observables values and their uncertainties, it is
necessary to start from a consistent distribution of parameter values. The procedure used can
be summarized into two main stages:

1. Data replicas Fi(1), . . . Fi(N) are generated from experimental data Fi. The ensamble of
replicas is generated with the probability distribution of experimental data and it is large
enough to reproduce their statistical properties. In practice, starting from data di with
covariance matrix covij, Nrep data replicas are generated, in such way that the mean value
of the replicas of the nth data point tends to dn, and the covariance matrix of the data
replicas tends in the limit Nrep → ∞ to the original matrix.

2. In the second step one fits a set of parton distribution to each data replica. A best-
fit parameter vector ~ai, i = 1, . . . Nrep is determined for each replica minimizing χ2 Eq.
(3.15), but the fit is performed on the data replica rather than on the original data. The
PDFs can be parameterised in any preferred way, and then evolved to the scale of the data
in order to minimize χ2.

The problem of sampling the replica distribution in parameter space is then reduced to
the construction of an adequate Monte Carlo representation of the experimental data. It is
possible to check if an ensemble of replicas represents an accurate enough representation of data
comparing means, variance and covariance and comparing the results obtained to the original
data set.

As we have seen, in the standard approach a particular functional form, with a fixed number
of parameters, is chosen, and the problems is reduced to performing a fit on the data in order to
determine the value of those parameters. An obvious limitation of this method is that the choice
of a particular functional form may be a source of bias. This problem is particularly delicate, as
functional forms parameterised by a small number of parameters may be necessary in order for
the fit to converge. Within a Monte Carlo approach, it is possible to choose a parameterisation
with a large number of parameters, because one no longer expands about the absolute minimum
of the χ2. Neural networks are then a particularly convenient choice of parameterisation.
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The NNPDF collaboration parameterises PDFs with neural networks arranged in layers
where each layer communicates only with its next neighbour. A 2-5-3-1 neural networks is used
with 37 free parameters for each PDF. As the six light flavours and antiflavours and the gluon
are parameterised in this way, the total number of parameter is 259, to be compared to the
typical number of parameters (about 30) of the CTEQ and MSTW parameterisations.



Chapter 4

Results

4.1 Introduction

Since the Forward-Backward Asymmetry is sensitive to sin2 θW , a precise measurement of AFB

may allow an accurate determination of the weak mixing angle. This measurement can be
used together with other electroweak parameters to constrain the Higgs mass, and to perform
precision test of the Standard Model [24, 25].

PDFs are expected to be one of the main source of uncertainty on AFB . It is thus necessary
to estimate their impact on the measurement of sin2 θW . In a future precise measurement of
sin2 θW it will be also necessary to determinate precisely the statistical uncertainty, and to
compare it to the PDF uncertainties for fixed integrated luminosity.

We have studied AFB as a function of the invariant mass of the lepton pair, limiting our
study at the Born level. We have first studied the sensitivity of AFB to small variations of
sin2 θW . We have then studied PDF and statistical uncertainties on AFB and we have compared
those uncertainties to the sensitivity, in order to obtain a first qualitative estimate of the impact
of the uncertainties on the measurement of the Weinberg angle. We have then studied at a
quantitative level the impact of the PDF uncertainties by means of a template fitting method.
After studying the PDF uncertainties, we have focused on the statistical uncertainties, and we
have combined the results in order to obtain a complete estimate of the impact of the main
uncertainties on the measurement of sin2 θW from AFB at the LHC.

The chapter is organized as follows. In Sect. 4.2 we illustrate the cuts used and the event
generator settings. In Sect. 4.3 we discuss the sensitivity of AFB to the Weinberg angle. In Sect.
4.4 we show the results which we have obtained studying AFB as a function of the invariant
mass and we compare the uncertainties to the sensitivity of AFB to sin2 θW . In Sect. 4.5 we
give a more refined estimate of the impact of the PDF uncertainties on the value of sin2 θW . We
show in Sect. 4.6 the results for the estimate of the statistical uncertainties on the measurement
of sin2 θW . We sum up the results in Sect. 4.7 and in Sect. 5 we draw our conclusions.

4.2 Generation of events and settings

We have inspected the sensitivity of AFB to the weak mixing angle by studying differential dis-
tributions in Neutral Current Drell-Yan production. We have studied the lepton pair’s invariant
mass distribution between 60 and 120 GeV with a bin size of 0.5 GeV.
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We have generated Drell-Yan neutral current events at Born level with the event generator
HORACE. Monte Carlo event generators are very useful tools because they allow a very flexible
and realistic simulation of the detector set-up, and in particular of the detector acceptances.

We have generated events using the three global PDF sets NNPDF2.1, MSTW 2008 and CT10
with a statistics of 109 events. The events have been generated in two scenarios: ATLAS/CMS
and LHCb. In both scenarios we have considered LHC collisions at 7 TeV, and we have imposed
at 25 GeV the minimum transverse momentum pt of each lepton. We have finally imposed two
different acceptances for the rapidity of each lepton: in ATLAS/CMS kinematics both leptons
are identified in |η| < 2.5, whereas in LHCb kinematics the leptons are identified in 2.0 < η < 4.5.

The results have been obtained using the following values for the input parameters:

Gµ = 1.16637 10−5 GeV−2 mW = 80.398 GeV mZ = 91.1876 GeV
ΓW = 2.141 GeV sin2 θW = 1−m2

W /m
2
Z mH = 115 GeV

EW corrections modify the tree level relation between the Weinberg angle and the masses of
the weak bosons at the per cent level. However, despite the fact that these corrections modify
considerably the effective value of sin2 θW they have a negligible effect on the computation of
the uncertainties since they depend very weakly on the central value.

4.3 AFB sensitivity to the weak mixing angle

The study of the sensitivity of AFB to the weak mixing angle allows one to compare PDF and
statistical uncertainties to the sensitivity and to obtain an estimate of their impact. In this
section we describe how we have estimated the sensitivity of AFB to variations of the weak
mixing angle and we show the results.

In order to inspect the sensitivity of AFB to the weak mixing angle we have generated new
invariant mass distributions in which we have changed the values of the input parameters. Since
the Weinberg angle is not among the input parameters, we have obtained its variation by varying
the mass of the W boson (recall Eq. (2.5)). This choice, that one would make in a realistic
situation, is motivated by the fact that among the input parameters the W boson mass is the
value which is known with the worst experimental accuracy.

We have considered the differences in the Forward-Backward Asymmetry obtained varying
mW by 5, 10 and 20 MeV. With such variations the value of sin2 θW varies approximately by
0.0001, 0.0002, 0.0004. We estimate the sensitivity of AFB to the Weinberg angle considering
the discrepancy between the two distributions obtained varying the W mass of ±δ.

We show in Fig. 4.1 the absolute and relative sensitivity of AFB to the Weinberg angle
obtained by considering the distributions obtained in the ATLAS/CMS kinematics, while in
Fig. 4.2 we show the results in the LHCb kinematics. In both the kinematical regions the
sensitivity is greater in the central region of the plot.

In Fig. 4.3 we compare the sensitivities obtained in the ATLAS/CMS kinematics with those
obtained in the LHCb kinematics. As we have already pointed out, since the Forward-Backward
Asymmetry is favoured is the LHCb kinematics, in this kinematical region the sensitivity to the
Weinberg angle is greater than in the ATLAS/CMS kinematics.
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Figure 4.1: Absolute (left) and relative (right) sensitivity of AFB to the Weinberg angle in the
ATLAS/CMS kinematics, computed with PDFs of the NNPDF collaboration.
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Figure 4.2: Absolute (left) and relative (right) sensitivity of AFB to the Weinberg angle in the
LHCb kinematics, computed with PDFs of the NNPDF collaboration.

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 60  70  80  90  100  110  120

A
bs

ol
ut

e 
V

ar
ia

tio
n

Mll (GeV)

NNPDF2.1, AFB, Born, LHC 7 TeV

LHCb
ATLAS/CMS

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 60  70  80  90  100  110  120

R
el

at
iv

e 
V

ar
ia

tio
n

Mll (GeV)

NNPDF2.1, AFB, Born, LHC 7 TeV

LHCb
ATLAS/CMS
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4.4 PDF and statistical uncertainties on AFB

It is possible to obtain a first qualitative estimate of the impact of PDF and statistical uncer-
tainties on the determination of sin2 θW by the comparison of PDF and statistical uncertainties
on AFB to the sensitivity of AFB to the weak mixing angle. In this section we present the results
obtained studying the impact of PDF and statistical uncertainties on AFB and we compare the
uncertainties to the sensitivity of AFB to variations of sin2 θW .

We study the invariant mass distribution in the two kinematical regions considered and
we compare the results obtained with the different global PDF sets. We have followed the
prescriptions provided by each collaboration in order to compute the PDF uncertainties. We
recall that the NNPDF collaboration estimates the uncertainties as the standard deviation of
the Nrep members

σ2AFB
(Ml+l−) =

1

Nrep − 1

Nrep
∑

i

[Ai
FB(Ml+l−)−AFB(Ml+l−)]

2, (4.1)

while the CTEQ and the MSTW collaborations compute uncertainties in a Hessian approach:

σAFB
(Ml+l−) =

1

2

√

√

√

√

Nrep/2
∑

i

[A
i(+)
FB −A

i(−)
FB ]2. (4.2)

Furthermore, as the the CTEQ collaboration provides uncertainties in the 90% C.L. interval it
is necessary to divide Eq. (4.2) by the rescaling factor C90 = 1.64485 . . . to obtain the 68 % C.L.
intervals, assuming gaussian scaling of the uncertainties. Finally, the uncertainties σiAFB

(Ml+l−)
on the single members have been calculated from the uncertainties on the forward and backward
distributions as

σiAFB
(Ml+l−) =

√

(

∂Ai
FB(Ml+l−)

∂F i(Ml+l−)

)2

σ2
F i(M

l+l−
)
+

(

∂Ai
FB(Ml+l−)

∂Bi(Ml+l−)

)2

σ2
Bi(M

l+l−
)
=

=

√

4(Bi(Ml+l−))2

(F i(Ml+l−) +Bi(Ml+l−))
4
σ2
F i(M

l+l−
)
+

4(F i(Ml+l−))2

(F i(Ml+l−) +Bi(Ml+l−))
4
σ2
Bi(M

l+l−
)
.

(4.3)

We have calculated the statistical uncertainty with different integrated luminosities as

σistat(Ml+l−) =

√

(

∂Ai
FB

∂F i

)2

σ2
stat F i +

(

∂Ai
FB

∂Bi

)2

σ2
stat Bi =

=

√

4(Bi)2

(F i +Bi)4
(F i)2

F iL +
4(F i)2

(F i +Bi)4
(Bi)2

BiL , (4.4)

since the statistical uncertainties on the forward and on the backward distributions are respec-
tively

σstat F i =
F i

√
F iL

σstat Bi =
Bi

√
BiL

. (4.5)
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We first present the results we have obtained in the ATLAS/CMS kinematics. We finally
consider the results obtained in the LHCb kinematics and we make a comparison between the
two kinematical regions.

4.4.1 ATLAS/CMS kinematics

We show the results obtained for the ATLAS/CMS kinematics and we compare the predictions of
the three global PDF sets considered. We found that the predictions for the Forward-Backward
Asymmetry obtained with the different PDF sets are consistent, as Fig. 4.4 shows.

In Fig. 4.5 we show how the uncertainties depend on the invariant mass of the lepton
pair. The results obtained with the three PDF sets in this case are quite different, since the
uncertainties range between 2% (MSTW08) and 8% (NNPDF2.1).

In Fig. 4.6 we compare the results of the different PDF sets we have considered. On the
left of Fig. 4.6 we show the ratios between the values of the Forward-Backward Asymmetry
obtained with different PDF sets. We observe that the discrepancies between the results ob-
tained with NNPDF2.1 and CT10 are at the 2% level, whereas the discrepancies between the
results obtained with those sets and the results obtained with MSTW08 are at the 5% level.
Obviously the discrepancies diverge at the Z peak, where the asymmetry tends to vanish. On
the right of Fig. 4.6 we show the ratio between the PDF uncertainties calculated with the PDF
sets considered. In particular, we observe that the uncertainties obtained with PDFs from the
MSTW08 collaboration are rather smaller than the uncertainties computed with the other two
global sets.

In Fig. 4.7 we show the statistical uncertainties obtained with PDFs from the NNPDF
collaboration computed with different integrated luminosities. Since the statistics is greater at
the Z pole, the statistical uncertainty is smaller in that zone.

We finally show in Fig. 4.8 a comparison between the different sources of uncertainties
considered and the sensitivity to the Weinberg angle. We observe that the uncertainties are
comparable to the sensitivity only in the central region of the plot, whereas in the outer regions
PDF and statistical uncertainties are rather greater than the sensitivity. Moreover, we observe
that an integrated luminosity of 100 fb−1 is needed in order to obtain a statistical uncertainty
comparable to the sensitivity.
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Figure 4.4: The Forward-Backward Asymmetry with uncertainty error bands calculated with
the three global PDF sets considered.
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Figure 4.5: Absolute (left) and relative (right) PDF uncertainties for AFB obtained with the
different PDF sets. From top to bottom: NNPDF; CT10; MSTW.
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Figure 4.6: Comparison between the values of AFB obtained with the different PDF sets and be-
tween their uncertainties. In the pictures whe show the ratio between AFB (right) and the ratio
between AFB uncertainties obtained with different PDF sets (left). From top to bottom: com-
parison between CT10 and NNPDF results; comparison between NNPDF and MSTW results;
comparison between MSTW and CT10 results.
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Figure 4.7: Absolute (left) and relative (right) statistical uncertainties on AFB with different
integrated luminosities in the ATLAS/CMS kinematics, computed with PDFs of the NNPDF
collaboration.
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Figure 4.8: Comparison of the PDF uncertainties with the statistical uncertainties and with
the sensitivity to the electroweak mixing angle at ATLAS/CMS. From top to bottom: NNPDF
results; CT10 results; MSTW results. The statistical uncertainties and the sensitivity to the
weak mixing angle are obtained with PDFs provided by the NNPDF collaboration.
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4.4.2 LHCb kinematics

We show the results obtained for the LHCb kinematics with different PDF sets. The results
obtained with such settings are compared to the results obtained with the cuts used in the
ATLAS/CMS kinematics. We found that the predictions for the Forward-Backward Asymmetry
computed with the PDF sets considered are similar also in the new kinematical region, as Fig.
4.9 shows. In Fig. 4.10 it is possible to appreciate how the Forward-Backward Asymmetry is
particularly favoured in the LHCb kinematics.

We show in Fig. 4.11 the absolute and relative uncertainties obtained with the different PDF
sets in function of the invariant mass. We observe that the uncertainties are at the 1.5% level
for all the PDF sets considered.

In Fig. 4.12 we compare the results obtained with the different PDF sets considered. On
the left of Fig. 4.12 we show a comparison between the values of AFB that we have obtained
with the three PDF sets considered. The discrepancies between the values obtained with CT10
and NNPDF are below the 1% level, whereas the discrepancies between CT10 and MSTW and
between NNPDF and MSTW are at the 2% level, but they decrease at the 1% level forMll > 100
GeV. On the right of Fig. 4.12 the uncertainties obtained with the three PDF sets considered
are compared. We observe that also in the LHCb kinematical settings the MSTW uncertainties
are lightly smaller.

In Fig. 4.13 we show the absolute and relative statistical uncertainty with an integrated
luminosity of 1, 10, 100 fb−1. The statistical uncertainty is smaller at the Z pole since in that
zone the statistics is greater.

In Fig. 4.14 we compare PDF and statistical uncertainties obtained in the ATLAS/CMS
kinematics with those obtained in the LHCb kinematics. The absolute PDF uncertainties in
the two kinematical regions are comparable, while the relative PDF uncertainties in the LHCb
settings are consequently reduced by approximately the same factor which relates the asymmetry
in the two regions.

Finally, Fig. 4.15 shows a comparison between the different sources of uncertainties consid-
ered and the sensitivity to the Weinberg angle. We observe that in this kinematical settings
the region of the plot where the PDF uncertainties and the sensitivity are comparable is greater
than the one in the ATLAS/CMS settings. We finally observe that an integrated luminosity of
100 fb−1 is needed in order to obtain a statistical uncertainty comparable to the sensitivity and
to the PDF uncertainties.
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Figure 4.9: The Forward-Backward Asymmetry with uncertainty error bands calculated with
the three global PDF sets considered.
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Figure 4.11: Absolute (left) and relative (right) PDF uncertainties for AFB obtained with the
different PDF sets. From top to bottom: NNPDF; CT10; MSTW.
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Figure 4.12: Comparison between the values of AFB obtained with the different PDF sets
and between their uncertainties. In the pictures we show the ratio between AFB (right) and
the ratio between AFB uncertainties (left) obtained with different PDF sets. From top to
bottom: comparison between CT10 and NNPDF results; comparison between NNPDF and
MSTW results; comparison between MSTW and CT10 results.
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Figure 4.13: Absolute (left) and relative (right) statistical uncertainties for AFB with different
integrated luminosities in the LHCb kinematics, computed with PDFs of the NNPDF collabo-
ration.
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Figure 4.14: Comparison between the results obtained with PDFs from NNPDF collaboration
with ATLAS/CMS and LHCb acceptances. From top to bottom: absolute (left) and relative
(right) uncertainties for AFB; absolute (left) and relative (right) statistical uncertainties with
L = 100 fb−1.
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Figure 4.15: Comparison of the PDF uncertainties with the statistical uncertainties and with
the sensitivity to the electroweak mixing angle at LHCb. From top to bottom: NNPDF results;
CT10 results; MSTW results. The statistical uncertainties and the sensitivity to the weak mixing
angle are obtained with PDFs provided by the NNPDF collaboration.
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4.5 PDF uncertainties by template fitting method

We observe from Figs. 4.8 and 4.15 that the sensitivity of AFB to the weak mixing angle and the
PDF uncertainties are comparable only between 80 and 100 GeV, whereas in the outer regions
of the plot the PDF uncertainties are considerably greater than the sensitivity. In order to
precisely quantify the impact of the PDF uncertainties on a future measurement of sin2 θW it is
necessary a more refined method. In this section we describe the method we used and we show
the results we obtained.

4.5.1 General strategy

We used a template fitting method in order to explore more precisely the sensitivity of AFB to
the value of sin2 θW . This approach has been applied in Ref. [26] to the evaluation of the PDF
uncertainties in the determination of the W mass at the Tevatron and the LHC.

The method consists in the generation of several template distributions computed by varying
the input parameters, in order to obtain theoretical models which differ one to the other by the
fact that all the input parameters are fixed but the value of sin2 θW . The templates are then
compared with each member of a particular PDF set. We associate to each member a preferred
value of sin2 θW which depends on the template which better fits to the results obtained with
that member. It is then possible to estimate the impact of the PDF uncertainties studying the
spread in sin2 θW induced by the members of the PDF sets considered.

We have generated the templates using the central set of NNPDF2.1 parton distributions,
and varying mW around the nominal mass m0

W = 80.398 GeV with a range of ± 0.100 GeV and
a separation interval of 0.005 GeV. We have then generated new distributions with mW = m0

W

for each member of the PDF sets considered using the same event generator of the templates.
Each template has been compared with the Nrep members of each PDF set and for each member
k = 1, . . . Nrep it has been constructed a reduced χ2 function, defined as

χ2
j,k =

1

Nbins

Nbins
∑

i

(

Ak
FBi

−Aj
FBi

)2

(σki )
2 + (σji )

2
j = 1, . . . Ntemp. (4.6)

For each member there exists a valuemk
W (and equivalently sin2 θkW ) which minimizes χ2

j,k. Each

member induces a shift ∆mk
W = mk

W −m0
W between the preferred value mk

W and the nominal
mass. It is finally possible to estimate the impact of PDF uncertainties on the measurement
of sin2 θW computing the spread of the preferred values following the prescriptions of each
collaboration.

4.5.2 Numerical Results

In this section we present the results we have obtained with the template fitting method described
above in both kinematical regions considered in this study.

Table 4.1 shows the results obtained when performing the fitting procedure on the Born
level invariant mass distribution in the ATLAS/CMS kinematics. We denote with δPDF the
PDF uncertainties obtained with each set, and with ∆PDF the shift between the central value
obtained and the central value used when generating pseudo-data.
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NNPDF2.1 CT10 MSTW08
sin2 θW ± δPDF ∆PDF sin2 θW ± δPDF ∆PDF sin2 θW ± δPDF ∆PDF

0.22265 ± 0.00087 0 0.22294 ± 0.00071 +0.00029 0.22332 ± 0.00031 +0.00067

Table 4.1: Results for the determination of PDF uncertainties from the invariant mass distribu-
tions in the ATLAS/CMS kinematics. We show the central value obtained from the fit in the
Born approximation, the PDF uncertainties δPDF and the shift ∆PDF from the central value to
the value used in pseudo-data.

We summarize the results obtained when performing the fitting procedure described in Sect.
4.5.1 on the Born level invariant mass distribution in the LHCb kinematics in Table 4.2.

NNPDF2.1 CT10 MSTW08
sin2 θW ± δPDF ∆PDF sin2 θW ± δPDF ∆PDF sin2 θW ± δPDF ∆PDF

0.22267 ± 0.00016 +0.00002 0.22274 ± 0.00023 +0.00009 0.22265± 0.00011 0

Table 4.2: Results for the determination of PDF uncertainties from the invariant mass distri-
butions in the LHCb kinematics. We show the central value obtained from the fit in the Born
approximation, the PDF uncertainties δPDF and the shift ∆PDF from the central value to the
value used in pseudo-data.

4.6 Statistical uncertainties

After quantifying the impact of the PDF uncertainties, which are one of the main source of
systematic uncertainties on the determination of sin2 θW , we focus on studying the impact of
the statistical uncertainties on the measurement of the weak mixing angle. In this section we
present the results we have obtained studying the statistical uncertainties in the measurement
of sin2 θW .

4.6.1 General strategy

We have quantified the impact of the statistical uncertainties by using the template fitting
method described in Section 4.5.1. In order to estimate the statistical uncertainty we have
performed a rebinning, namely we have changed the bin size of the forward and the backward
distribution histograms from which AFB is calculated. In this way the statistical uncertainties
do not differ significantly from one bin to another. The rebinning we have performed is not
smooth because the statistics is greater next to the Z peak around 91 GeV. The rebinning has
been performed with a particular care to the zone where the asymmetry changes sign, in order
to avoid averaging between positive and negative regions, which would reduce the sensitivity to
the weak mixing angle in the region where it is higher.

Starting from template zero of NNPDF2.1, 100 pseudo-data sets have been generated with
gaussian fluctuations around the central value of each bin, with σstat given by Eq. (4.4) at a
fixed luminosity L.
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Pseudo-data have been compared with templates and a χ2 function has been constructed as
in Eq. (4.6). For each pseudo-data there exists a preferred value for sin2 θW which corresponds
to the value that minimizes the χ2. It is then possible to calculate the preferred value of sin2 θbestW

as

sin2 θbestW =
1

Nstat

Nstat
∑

k

sin2 θkW , (4.7)

and to compute the statistical uncertainty as

σ2
sin2 θbest

W

=
1

Nstat − 1

Nstat
∑

k

(sin2 θkW − sin2 θbestW )2. (4.8)

4.6.2 Results

In this section we show the plot we have obtained studying the statistical uncertainty and we
show the numerical results obtained with the template fitting method.

Fig. 4.16 shows the Forward-Backward Asymmetry as a function of the invariant mass of
the lepton pair after the rebinning, in both kinematical regions considered. We observe that the
binning is finer in the central region of the plot where the statistics is greater whereas it is less
fine in the outer region of the plot.

In Fig. 4.17 we show the statistical uncertainties for different integrated luminosities once the
rebinning has been performed. We observe that after the rebinning the statistical uncertainties
are similar from one bin to another. The statistical uncertainties are significantly smaller after
the rebinning, as Fig. 4.18 shows. We have taken care not to reduce the sensitivity to the weak
mixing angle with the rebinning. We show in Fig. 4.19 a comparison between the sensitivity
with the asymmetric bins with the sensitivity obtained with the smooth, finer binning used to
compute the PDF uncertainties, both in the ATLAS/CMS region and in the LHCb region.

We finally sum up the results obtained when performing the fitting procedure on the Born
level invariant mass distribution in Table 4.3, with an integrated luminosity of 100 fb−1.
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Figure 4.16: The Forward-Backward Asymmetry in the two kinematical regions after the rebin-
ning.
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Figure 4.17: Absolute (left) and relative (right) statistical uncertainties for different integrated
luminosities after the rebinning in both kinematical regions. Top: ATLAS/CMS kinematics;
bottom: LHCb kinematics.
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Figure 4.18: Comparison of the statistical uncertainties with L = 100 fb−1 obtained with PDF
from the NNPDF collaboration before and after the rebinning in both kinematical regions.
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Figure 4.19: Comparison between the absolute (left) and relative (right) sensitivity to the weak
mixing angle before and after the rebinning with δmW = 5 MeV. Top: ATLAS/CMS kinematics;
bottom: LHCb kinematics.
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ATLAS/CMS LHCb
sin2 θW ± δstat ∆stat sin2 θW ± δstat ∆stat

0.22266 ± 0.00015 +0.00001 0.22264 ± 0.00011 -0.00001

Table 4.3: Results for the determination of the statistical uncertainties with L = 100 fb−1 from
the invariant mass distributions in the LHCb kinematics. We show the central value obtained
from the fit in the Born approximation, the statistical uncertainties δstat and the shift ∆stat from
the central value to the value used in pseudo-data.

4.7 Summary

In this section we summarize the results discussed in the previous sections and we compare PDF
uncertainties and statistical uncertainties on the measurement of sin2 θW . Fig. 4.20 shows the
comparison between the uncertainties computed with the PDF sets considered and the statistical
uncertainty in both kinematical regions.
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Figure 4.20: Comparison between the PDF uncertainties and the statistical uncertainty. Left:
results obtained in the ATLAS/CMS kinematics; right: results obtained in the LHCb kinematics.

We found that the central values obtained with the three PDF sets differ at most by 0.0007
in the ATLAS/CMS kinematics whereas they differ by less than 0.0001 in the LHCb kinematics.

We observe that both the uncertainty due to PDF and the statistical uncertainty are greater
in the ATLAS/CMS kinematics. In the ATLAS/CMS kinematics we found that the values
of δPDF range from 0.0003 (MSTW) to almost 0.0009 (NNPDF). However, those values are
greater than the statistical uncertainty, which is less than 0.0002. In the LHCb kinematics δPDF

ranges from 0.0001 (MSTW) to less than 0.0003 (CT10), and is comparable with the statistical
uncertainty, which is around 0.0001.
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Conclusions

We have studied the impact of the PDF uncertainties on the measurement of sin2 θW studying the
Forward-Backward Asymmetry at the LHC. We have studied the asymmetry at the Born level
as a function of the invariant mass of the lepton pair in Drell-Yan neutral current events. The
PDF and the statistical uncertainties on the Forward-Backward Asymmetry have been studied
in two different kinematical settings. We have finally estimated the impact of the uncertainties
on the measurement of the weak mixing angle by means of a template fitting method.

Our main conclusions are:

• At the Born level, the predictions for the central values obtained with different PDF
sets partially agree in the ATLAS/CMS settings and they agree in the LHCb kinemat-
ics. The PDF uncertainties estimated with the different PDF sets partially agree in the
ATLAS/CMS kinematics whereas they agree in the LHCb settings.

• In the ATLAS/CMS kinematics the PDF uncertainties, which are one of the main source
of systematic uncertainties, dominate the statistical uncertainty. We conclude that a pre-
cise measurement of the Weinberg angle from the Forward-Backward Asymmetry in this
region with the actual PDF sets is not competitive with the value of LEP Electroweak
Working Group. This is mostly due to the PDF uncertainty estimated with PDFs from
the NNPDF2.1 collaboration, which is the set with the most reliable uncertainties.

• At the state of art, a precise measurement of the Weinberg angle from the Forward-
Backward Asymmetry is more likely to be performed at the LHCb. With the LHCb
kinematical settings the uncertainties are smaller, and if one consider the envelope of the
PDF uncertainties it results at the level of 2.3 × 10−4 which is comparable with the LEP
Electroweak Working Group uncertainty.

• The statistical uncertainty with L = 100 fb−1 is at the level of 1.5×10−4 in the ATLAS/CMS
kinematical settings and at the level of 1.1× 10−4 in the LHCb kinematical settings, and
with this integrated luminosity it is smaller than the PDF uncertainties.

Our study shows that the PDF uncertainties at LHCb are at the level of the LEP Electroweak
Working Group uncertainty. However, theoretical errors might lead to an underestimate of the
impact of the PDF uncertainties. In fact, at small and large x we know only partially the
theoretical behaviour. In this perspective an analytical insight might be necessary.
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A detailed study of the impact of the PDF uncertainties will require a study of the QED
corrections which modify the shape of the asymmetry and the sensitivity. It will be neces-
sary to repeat this study at the NLO-QCD as the gluon initiated subprocesses may induce the
uncertainties to increase. Moreover, it will be interesting to inspect the correlation between
the parton distribution functions and the Forward-Backward Asymmetry since this study may
provide information about the sensitivity of AFB to different PDFs.
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