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THE NAME OF THE GAME

DIS DATA — STRUCTURE FUNCTIONS (FORM FACTORS, DEP. ON KIN. VARIABLES z, Q?)

STRUCTURE FUNCTION=HARD COEFF.XQPARTON DISTN.
FRC(z,Q*) =a) g, ,e(a + @) + as [Cilas] ® (¢ + @) + Cglas] @ g]

e TRIVIAL COMPLICATIONS: DISENTANGLE INDIVIDUAL QUARK & GLUON

CONTRIBUTION TO STRUCTURE FUNCTION; EVOLVE TO COMMON SCALE;
DECONVOLUTE see below: truncated moms.

e SERIOUS COMPLICATION: DETERMINE ERROR ON FUNCTIONS f(z), f = ¢i, i, g

A (MARGINALLY) SIMPLER PROBLEM: DETERMINE THE STRUCTURE FUNCTION

F.(x,Q%)
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WHAT’S THE PROBLEM?
e FOR A SINGLE QUANTITY, WE QUOTE 1 SIGMA ERRORS: VALUE+ ERROR
e FOR A PAIR OF NUMBERS, WE QUOTE A 1 SIGMA ELLIPSE
e FOR A FUNCTION, WE NEED AN “ERROR BAR” IN A SPACE OF FUNCTIONS

MUST DETERMINE THE PROBABILITY DENSITY (MEASURE) P[F3] IN THE SPACE OF
FUNCTIONS F3(z, Q?)

= EXPECTATION VALUE OF AN OBSERVABLE F [F2(x, Q2)] :

(7 [Pa(2,Q")] ) = / DF, F [Fo(x, Q%) PIF)

PROBLEM: MUST DETERMINE AN INFINITE-DIMENSIONAL OBJECT FROM A
FINITE SET OF DATA POINTS



SOLUTIONS. . .

e CHOOSE A FIXED FUNCTIONAL FORM, E.G.

Fo(x, Q%) = 21 f(z, Q%) . Alz) = (1 — 2)*2[as + a4 (1 — 2) + a5 (1 — )2
2\ log @2 /42 | P1® C(z) +ag (1 —z)° + a7 (1 — x)*]
f@,Q7) = A=) [IEQW} 1+ By = bt baoet b

C(x) —ci1x+cox® +ezxd +cyz?
PROBLEM PROJECTED ONTO THE FINITE-DIMENSIONAL SPACE OF PARAMETERS

WHAT IS THE BIAS (THEOR. ERROR) DUE TO THE CHOICE OF FUNCTIONAL FORM?

e EXPAND OVER A FINITE SET OF BASIS FUNCTIONS, E.G. ORTHOGONAL POLYNOMIALS

PROBLEM PROJECTED ONTO THE FINITE-DIMENSIONAL SPACE OF EXPANSION
COEFFICIENTS

WHAT IS THE BIAS (THEOR. ERROR) DUE TO THE CHOICE OF TRUNCATION?
E.g. assume a periodic f. is expanded over a basis of ortho. polynomials, or a

non-periodic f is Fourier-expanded ...

e GENERATE A MONTE-CARLO SAMPLE OF FCTS. W. “REASONABLE” PRIOR DISTN.,
AND UPDATE FROM DATA USING BAYESIAN INFERENCE
PROBLEM IS MADE FINITE-DIMENSIONAL BY THE CHOICE OF PRIOR, BUT RESULT DO
NOT DEPEND ON THE CHOICE IF SUFFICIENTLY GENERAL
HARD TO HANDLE “FLAT DIRECTIONS” (Monte Carlo replicas which lead to same
agreement with data); COMPUTATIONALLY VERY INTENSIVE



THE NEURAL MONTE CARLO APPROACH
BASIC IDEA: USE NEURAL NETWORKS AS UNIVERSAL UNBIASED INTERPOLANTS

e GENERATE A SET OF MONTE CARLO REPLICAS F\™ (z;, Q%) OF THE ORIGINAL
DATASET F.%*"®(z;, Q%) WHICH IS LARGE ENOUGH TO REPRODUCE CENTRAL
VALUES (AS AVERAGES), ERRORS (AS VARIANCES) AND CORRELATIONS (AS
COVARIANCES)
= REPRESENTATION OF P|[F,] AT DISCRETE SET OF POINTS (z;, Q7)

e TRAIN A NEURAL NET ON EACH REPLICA, THUS OBTAINING A NEURAL
REPRESENTATION OF THE FUNCTION F."*Y®) (3 ()

e THE SET OF NEURAL NETS IS A REPRESENTATION OF THE PROBABILITY DENSITY:

rep

(F @] ) = 5 37 [0 @)

EXAMPLE: MELLIN MOMENT

<f do 2N 1F2 Q2)> - ]\7ep 7epf dr N lF (net)(k)( ,QQ)

e CHECK GOODNESS OF FIT THROUGH STATISTICAL INDICATORS
(x*, CORRELATION,. . .)



NEURAL NETWORKS

STRUCTURE
OQutput
W 4 e Each neuron receives input from neurons
Hidden in preceding layer and feeds output to neu-
[&,}gi}, o2 rons in subsequent layer
& “ &n Tmput e Activation determined by weights and
thresholds

1 =g (ZJ wij€j — 9¢)

e e Sigmoid activation function
1

/D/ 9(2) = =7

-10 -5 5 10

WEIGHTS & THRESHOLDS CAN BE ADJUSTED SO THAT SIGMOIDS ARE IN
CROSSOVER NONLINEAR REGION

THANKS TO NONLINEAR BEHAVIOUR, ANY FUNCTION CAN BE EXPANDED OVER BASIS
OF g(x), g(g(x)), g(g(g(x))) ...

CAN CHOOSE REDUNDANT ARCHITECTURE (NO. OF LAYERS & NODES) TO
MAKE SURE NO SMOOTHING BIAS IS INTRODUCED



NEURAL NETWORKS
TRAINING
TRAINING BY BACK-PROPAGATION

® START WITH RANDOM NETWORK & COMPUTE OUTPUT FOR GIVEN INPUT (F, FOR
2
GIVEN (z,Q%))
e COMPARE COMPUTED OUTPUT TO DESIRED OUTPUT BY MEANS OF ENERGY
FUNCTION (e.g. Xx°)

e VARY WEIGHTS AND THRESHOLDS ALONG DIRECTION OF STEEPEST DESCENT OF
ENERGY FUNCTION = CAN BE DONE BY BACK-PROPAGATION

A S N BYINTY R SRR
“fﬁﬂlﬁm}*lm*lm] L gkiﬂﬁ“”]”lm i mf*ﬁﬂ g
o ] ! ‘ﬁi ] °j§. . nen j

WHEN SHOULD TRAINING STOP?
WHICH IS THE APPROPRIATE ENERGY FUNCTION?



OPTIMAL TRAINING
WITH LONG ENOUGH TRAINING & BIG ENOUGH NETWORK,
PREDICTION GOES THROUGH ALL POINTS

any error function proportional to (data-nets) will do: vanishes at minimum.

Q: DO WE REALLY WANT THIS?
NAIVE A: SURE! Then when averaging over MC sample, at (z, @?) of datapoints averaging

over nets is identical to averaging over data

OBJECTION: WHAT IF WE HAVE TWO MEASUREMENTS AT THE SAME (z, Q?)?

(1) (2)
F +F
PERFORM WEIGHTED AVERAGE —2 fo1tFy /o2
1/014+1/02

BUT WHAT IF WE HAVE TWO MEASUREMENTS AT (z;, Q7 ) WHICH ARE VERY CLOSE?

BEFORE DATA GENERATION.

F5 1S NOT A FRACTAL!

CLEVER A: eERROR FUNCTION — USUAL LOG-LIKELIHOOD
N (F(art)(k)_F(net)(k))2
(k) _ dat i i
E [w70] - Z’iZl o_gemp)2

E®) [w,0]
eESTABLISH FIXED TRAINING LENGTH SUCH THAT N R 1

WHAT ABOUT SYST. ERRORS? TAKEN CARE OF BY MC DATA GENERATION!

qu(net) provide best fit of Fi(sys)(k) — Fi(e:cp) + Z;V:szis Tg,kp)o'i,P'

Including systematics in likelihood not practical (nonlocal back-propagation).

= TRAIN 1000 PROTON, 1000 DEUTERON & 1000 NONSINGLET NETS



COMBINING DATA

NS data vs. neural nets

0.03<x<0.12 IN NONSINGLET CASE,
200 [ NMC data” " 11 AVERAGE VARIANCE OF NETS << STAT.
[0 BCDMS data ]
A S S oo 17 ERROR OF DATA (FACTOR 3-4)
i 1 IS IT DUE TO SMOOTHING BIAS?
150 e 2 @ g i?’ e ® s & x=0.060 (+1.50) ]
- 1 OR IS IT DUE TO COMBINING DATA?
_ 1.25 :—3 © w e ppEst gos F coon i —  recall error on weighted average
FAL m
[ - 1
100 _¥ s & e ’%g % § & p e x=0.000 (+1.00) - o = 1/0%4—1/0% < 0;
[ ees 2ol em xow@es) 3 (CAN CONSTRUCT A STATISTICAL
o5 - T % 2 es * i? ® g £ x=0110 (+0.75) ]
[ o o 1 INDICATOR TO TELL!
1 5 10 50 100
Qz
N (F_(art)(n)_F(net)(n))2
Average error Nyey Z Tep Z dat 3 * REEE (n — replica; 1 — datapoint)

’L S

F(ewp)_F<net)<n))2

Naar (B
Tep Z repz dat 2 (emp)2

’LS

“Central” error

Bias indicator R = (E)/(E) if onet << Tezp then

R ~1= BIAS; R =~ 1/2= ERROR REDUCTION HERE R = 0.58 (0.53 NMC only)
e INHOMOGENEOUS ERRORS = WEIGHTED TRAINING

e INCOMPATIBLE DATA = DISCARDED BY NETS
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NEURAL FIT TO PROTON Fy

0.003<x<0.030

RESULTS

0.03<x<0.12

DATA

0.12<x<0.80

F5 PLOTS & NUMERICAL COMPUTATION AVAILABLE @

http://sophia.ecm.ub.es/f2neural
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Q? Q? Q?

FULL NEURAL FIT TO F5 FOR PROTON, DEUTERON & NONSINGLET AVAILABLE

ERRORS AND CORRELATIONS FAITHFULLY REPRODUCED, BUT STAT.

UNCERTAINTIES OPTIMALLY COMBINED

— FIT CAN BE USED IN LIEU OF DATA, BUT BETTER THAN THEM

SOURCE CODE, DRIVER PROGRAM & GRAPHIC WEB INTERFACE FOR



AN UNBIASED ANALYSIS METHOD:
TRUNCATED MOMENTS

2-SPACE DISTN.: MEASURABLE, N-SPACE MOMENTS: EVOLUTION
BUT EVOLUTION GIVEN BY GIVEN BY LINEAR DIFFERENTIAL EQN,
INTEGRO-DIFFERENTIAL EQN BUT NOT MEASURABLE

TRUNCATED MOMENTS:
NS 2y —_ rl —1 NS 2
Fy x(zo, p?) = [, dz a" " Fy'° (z, pu°)
e MEASURABLE

e TO ANY FINITE ACCURACY, SATISFY COUPLED LINEAR EVOLUTION EQUATIONS
WITH UPPER TRIANGULAR ANOMALOUS DIMENSION MATRIX:

NS 2 NS
Fy 7 (zg, %) M (2q, a5 (12)) 712(m0,as(u ) 713(wo,as(u DT Fy 1 (=0,
N N
d F S(wo :u‘ ) _ 0 722($0ﬂas(“ )) '723("13030‘8(/"' )) F2,§(m0’

M is order of truncation: only M moments coupled.

As M — oo, accuracy becomes arbitrarily high.

e CAN TRUNCATE TO FINITE TRIANGULAR ANOMALOUS DIMENSION MATRIX
e RAPID CONVERGENCE: FOR xg §J 0.1, M ~ 10 ENSURES PERCENT ACCURACY ON EVOLUTION

OF ALL MOMENTS WITH N > 2. Same accuracy on first moment also possible with

improved solution (non-triangular matrix).



DETERMINATION OF o,

e MOMENTS CAN BE COMPUTED AT ANY SCALE IN TERMS OF MOMS. AT REF. SCALE Qg

through evolution matrix M (zg; QO, Q as) determined by an. dim. and as:

n (xo,Qi) = Z]M_ ' an(mO;anQ?;aS) Qp(xoan)

P=NMmin

e CAN DETERMINE «s BY MINIMIZING X2 with covariance matrix V~! from neur. nets
Zn g Zm y [fo"p xo,QQ) - q (iBO,QQ)] i mj [qfrfp(wo,QQ) — q (mo,QQ)]

MOMENTS AND CORRELATIONS
IN PRINCIPLE FIT ats & ALL MOMENTS AT REF. SCALE

IN PRACTICE NEIGHBOURING MOMENTS HIGHLY CORRELATED;

OFF-DIAGONAL ANOMALOUS DIMS. SMALL = FIT ONLY A SUBSET OF MOMENTS
(NMC + BCDMS)

SINGLE MOMENT MORE MOMENTS OPTIMAL FIT

n s FITTED MOMENTS Xs AS THE NUMBER OF FITTED MOMENTS IS IN-

2 0.085 + 0.070

+ 2+3+4 0.126 £ 0.010 CREASED

3 0.106 £+ 0.030 2+4+6 0.140 + 0.008 ERROR DECREASES

4 0.115 4 0.019 3+5+7 0.138 + 0.009 ’

5 0.123 + 0.015 0141018 0.142 + 0.009 STABILITY OF CENTRAL VALUES IMPROVES

6 0.127 4+ 0.014 3+5+7+9 0.124 + 0.007 BUT IF CORRELATIONS LARGE, FIT UNSTABLE

7 | 0.129 + 0.014 2+4+5+7 0.141 + 0.009 | €20 < Q? < 70 GEV?, THREE SCALES cor-

8 | 0.129+0.016 3+4+5+6+7 0.1256 + 0.0049 | relns. larger if Q2 values closer

.12 .01 )

9 | 0129+ 0018 3+4+5+6+8 0.1247 £ 0.0050 | ¢4, = .03 correlns. larger if zo larger

purple: minimal error | Z*4+5+6%8 0-1242 £ 0.0042 1 g9 1 4 4+ 5+6+8 higher moments less reli-
2+4+5+7+8 0.1254 4 0.0044

red: optimal fit able and more correlated



UNCERTAINTIES

STAT. ERROR REN. SCALE HEAVY QUARK THR.
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e ASYMMETRIC x2: o(sSTAT.) = 5007

e HIGHER ORDER CORRNS FROM p2,,, = kren@2, 0.3 < kren < 4: o(REN.) = 7007

e POSITION OF HQ THRESH. Q2, = ki, M2, 0.3 < k¢, < 4 o(THRESH.) = (000

e POWER CORRNS. VARY @2 . FROM 20 To 30 GEV? ¢(HT) < 0.001

min

as(Mz) =0.124 T9-002 (exp.) T9-002 (TH.) = 0.124 T9-00% (TOTAL)

ERROR: DOMINATED BY EXP. ERROR, TH. BIAS & UNCERTAINTY MINIMIZED
CENTRAL VALUE: CONSISTENT WITH WORLD AVERAGE BUT HIGH
EVIDENCE FOR SUDAKOV? High moments dominate the fit, Q%; = Q*/N;

as from a single moment increases with N



OUTLOOK

o SUCCESFUL IMPLEMENTATION OF NEURAL FITTING
— NEURAL PARTON DISTRIBUTIONS!

e WORKING EVOLUTION CODE FOR TRUNCATED
MOMENTS
— (GLUON SPIN FRACTION (AND MORE...)

...A WHOLE NEW SET OF TOOLS IN THE BOX!



