MARTIGNANO, MAY 22 2004

STEFANO FORTE UNIVERSITÀ DI MILANO

PARTON DISTRIBUTIONS FOR THE LHC

SUMMARY

- WHAT ARE PARTON DISTRIBUTIONS GOOD FOR? FACTORIZATION
- HOW DO WE DETERMINE THEM?
- DEEP-INELASTIC SCATTERING AND MORE
- ARE PARTON DISTRIBUTIONS AN ISSUE?

LHC

HOW DO WE ADDRESS THIS ISSUE?

THE STATE OF THE ART AND BEYOND

MOTIVATION:

THE ACCURATE COMPUTATION OF PHYSICAL PROCESS AT A HADRON COLLIDER REGUIRES GOOD KNOWLEDGE OF PARTON DISTRIBUTIONS OF THE NUCLEON

IN ORDER TO EXTRACT THE RELEVANT PHYSICS SIGNAL,

WE NEED TO KNOW THE PARTON DISTRIBUTIONS AND THEIR UNCERTAINTY

... FOR LHC PROCESSES

- $\sigma_X \Rightarrow$ HADRONIC XSECT TO W, Z, H,JETS, ...
- $\hat{\sigma} \Rightarrow$ PERTURBATIVELY COMPUTABLE PARTON XSECT (NLO, RESUMMED, ...)
- $f_{a/h_1} \Rightarrow$ distribution of parton a in Hadron h_1

Lepton fractional energy loss: $y = \frac{p \cdot q}{p \cdot k}$; Bjorken x: $x = \frac{Q^2}{2p \cdot q}$ lepton-nucleon CM energy: $s = \frac{Q^2}{xy}$; virtual boson-nucleon CM energy $W^2 = Q^2 \frac{1-x}{x}$;

$$\frac{d^2 \sigma^{\lambda_P \lambda_\ell}(x, y, Q^2)}{dx dy} = \frac{G_F^2}{2\pi (1 + Q^2/m_W^2)^2} \frac{Q^2}{xy} \left\{ \left[-\lambda_\ell y \left(1 - \frac{y}{2} \right) x F_3(x, Q^2) + (1 - y) F_2(x, Q^2) \right] \right\}$$

1

$$+y^2 x F_1(x,Q^2) \Big] - 2\lambda_p \left[-\lambda_\ell \ y(2-y) x g_1(x,Q^2) - (1-y) g_4(x,Q^2) - y^2 x g_5(x,Q^2)
ight] \Bigg\}$$

$$\lambda_l \rightarrow \text{lepton helicity}$$

 $\lambda_n \rightarrow \text{proton helicity}$

	PARITY CONS.	PARITY VIOL.
UNPOL.	F_1, F_2	F_3
.104	g_1	b_4, b_5

...AND PARTON DISTRIBUTIONS

STRUCTURE FUNCTION=HARD COEFF. SPARTON DISTN.

$$F_2^{\rm NC}(x,Q^2) = x \sum_{\rm flav. \, i} e_i^2(q_i + \bar{q}_i) + \alpha_s \left[C_i[\alpha_s] \otimes (q_i + \bar{q}_i) + C_g[\alpha_s] \otimes g\right]$$

 q_i quark, \bar{q}_i antiquark, g gluon

LEADING PARTON CONTENT (up to $O[\alpha_s]$ corrections)

$$\begin{aligned} q_i &\equiv q_i^{\uparrow\uparrow} + q_i^{\uparrow\downarrow} & \Delta q_i \equiv q_i^{\uparrow\uparrow} - q_i^{\uparrow\downarrow} \\ \text{NC} \quad F_1^{\gamma, \, Z} &= \sum_i e_i^2 \left(q_i + \bar{q}_i \right) & g_1^{\gamma, \, Z} = \sum_i e_i^2 \left(\Delta q_i + \Delta \bar{q}_i \right) \\ \text{CC} \quad F_1^{W^+} &= \bar{u} + d + s + \bar{c} & g_1^{W^+} = \Delta \bar{u} + \Delta d + \Delta s + \Delta \bar{c} \\ \text{CC} \quad -F_3^{W^+} / 2 &= \bar{u} - d - s + \bar{c} & g_5^{W^+} = \Delta \bar{u} - \Delta d - \Delta s + \Delta \bar{c} \\ F_2 &= 2xF_1 & g_4 = 2xg_5 \end{aligned}$$

 $W^- \Rightarrow u \leftrightarrow d, c \leftrightarrow s$; more combinations using Isospin: $p \to n \Rightarrow u \leftrightarrow d$ $W^+
ightarrow$

LHC KINEMATICS

AT A HADRON COLLIDER

- SCALE *Q* DETERMINED BY MASS OF FINAL STATE
- MOMENTUM FRACTIONS $x_1 x_2$ DE-TERMINED BY MASS & RAPIDITY OF FINAL STATE

LHC KINEMATICS \Rightarrow EVOLUTION

AT A HADRON COLLIDER

- SCALE *Q* DETERMINED BY MASS OF FINAL STATE
- MOMENTUM FRACTIONS $x_1 x_2$ DE-TERMINED BY MASS & RAPIDITY OF FINAL STATE

USE ALTARELLI-PARISI EGNS:

$$\frac{d}{dt} \Delta q_{NS} = \frac{\alpha_s(t)}{2\pi} P_{qq}^{NS} \otimes \Delta q_{NS},$$

$$\frac{d}{dt} \begin{pmatrix} \Delta \Sigma \\ \Delta g \end{pmatrix} = \frac{\alpha_s(t)}{2\pi} \begin{pmatrix} P_{qq}^S & 2n_f P_{qg}^S \\ P_{gq}^S & P_{gg}^S \end{pmatrix} \otimes \begin{pmatrix} \Delta \Sigma \\ \Delta g \end{pmatrix}$$

TO EVOLVE PARTONS FROM DIS TO LHC KINEMATICS

DIS DATA \rightarrow PARTON DISTRIBUTIONS

PROBLEMS:

• STRUCTURE FUNCTION (OR XSECT) IS A CON-VOLUTION OVER x OF PARTON DISTNS. AND PERTURBATIVE CROSS SECTION \rightarrow MUST DECONVOLUTE

DIS DATA \rightarrow PARTON DISTRIBUTIONS

PROBLEMS:

DIS DATA \rightarrow PARTON DISTRIBUTIONS

PROBLEMS:

- EACH STRUCTURE FUNCTION (OR XSECT) IS A LINEAR COMBINATION OF MANY PARTON DISTNS $(2N_f$ gUARKS + 1 GLUON) \rightarrow MUST COMBINE DIFFERENT PROCESSES
- DATA GIVEN AT VARIOUS SCALES, WANT PARTON DISTNS. AS FCTN OF x AT COMMON SCALE Q^2
 - → MUST EVOLVE

DIS DATA \rightarrow PARTON DISTRIBUTIONS

PROBLEMS:

- EACH STRUCTURE FUNCTION (OR XSECT) IS A LINEAR COMBINATION OF MANY PARTON DISTNS $(2N_f$ gUARKS + 1 GLUON) \rightarrow MUST COMBINE DIFFERENT PROCESSES
- DATA GIVEN AT VARIOUS SCALES, WANT PAR-TON DISTNS. AS FCTN OF x AT COMMON SCALE Q^2

→ MUST EVOLVE

• TH UNCERTAINTIES: RESUMMATION, NU-CLEAR CORRECTIONS, HIGHER TWIST, HEAVY GUARK THRESHOLDS...

DETERMINING THE GLUON

EVOLUTION:

SINGLET SCALING VIOLATIONS

$$\frac{d}{dt}F_2^s(N,Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \left[\gamma_{qq}(N)F_2^s + 2n_f \gamma_{qg}(N)g(N,Q^2) \right] + O(\alpha_s^2)$$
$$F_2(N,Q^2) \equiv \int_0^1 dx \, x^{N-1}F_2(x,Q^2); \qquad \gamma_{ij}(N) \equiv \int_0^1 dx \, x^{N-1}P_{ij}(x,Q^2)$$

DETERMINING THE GLUON

EVOLUTION:

SINGLET SCALING VIOLATIONS

$$\frac{d}{dt}F_2^s(N,Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \left[\gamma_{qq}(N)F_2^s + 2n_f \gamma_{qg}(N)g(N,Q^2) \right] + O(\alpha_s^2)$$

$$F_2(N,Q^2) \equiv \int_0^1 dx \, x^{N-1}F_2(x,Q^2); \qquad \gamma_{ij}(N) \equiv \int_0^1 dx \, x^{N-1}P_{ij}(x,Q^2)$$

$$\text{LARGE/SMAL} \qquad \Leftrightarrow \text{ LARGE/SMAL} \qquad \text{MALL} \qquad$$

NG THE GLUON	ILUTION:	LING VIOLATIONS	$F_{2}^{s} + 2 n_{f} \gamma_{qg}(N) g(N,Q^{2}) \Big] + O(lpha_{s}^{2})$); $\gamma_{ij}(N) \equiv \int_0^1 dx x^{N-1} P_{ij}(x, Q^2)$	⇔ LARGE/SMALL N	AT SMALL N $\gamma_{qg} >> \gamma_{qq}$ AT LARGE N $\gamma_{qg} << \gamma_{qq}$	AT SMALL $x \Rightarrow F_2 \sim q$	AT LARGE <i>x</i>	⇒ GLUON HARD TO DETERMINE	
DETERMININ	EVOI	SINGLET SCA	$\frac{d}{dt}F_2^s(N,Q^2) = \frac{\alpha_s(Q^2)}{2\pi} \left[\gamma_{qq}(N) H \right]$	$F_2(N,Q^2) \equiv \int_0^1 dx x^{N-1} F_2(x,Q^2)$	LARGE/SMALL X			λ _{qg}		-10 ⁻

DISENTANGLING QUARKS: UP VS. DOWN SYMMETRIES:

DISENTANGLING QUARKS: UP VS. DOWN SYMMETRIES:

NIdSOSI

$$u^{p}(x,Q^{2}) = d^{n}(x,Q^{2}); \quad d^{p}(x,Q^{2}) = u^{n}(x,Q^{2})$$
$$F_{2}^{p}(x,Q^{2}) - F_{2}^{d}(x,Q^{2}) = \frac{1}{3} \left[(u^{p} + \bar{u}^{p}) - (d^{p} + \bar{d}^{p}) \right] \left[1 + O(\alpha_{s}) \right]$$

DISENTIANGLING GUARKS: UP VS. DOWN
SYMMETRIES:
ISOSPIN

$$u^p(x, Q^2) = d^n(x, Q^2); d^p(x, Q^2) = u^n(x, Q^2)$$

 $u^p(x, Q^2) - F_2^d(x, Q^2) = \frac{1}{3} [(u^p + \bar{u}^p) - (d^p + \bar{d}^p)] [1 + O(\alpha_s)]$
 $u^{00} = 0$
 $u^{00} =$

Н₂п

DISENTANGLING QUARKS: STRANGENESS γ^* scattering vs. W^{\pm} scattering:

IN NC, CHARGED LEPTON DIS, ONLY MEASURE COMBINATION $\sum_i e_i^2 (q_i + \overline{q}_i)$

- CANNOT DETERMINE STRANGENESS
- CAN ONLY DETERMINE C-EVEN COMBINATION $q_i + \overline{q}_i$

DISENTANGLING QUARKS: STRANGENESS γ^* scattering vs. W^{\pm} scattering: IN NC, CHARGED LEPTON DIS, ONLY MEASURE COMBINATION $\sum_i e_i^2 (q_i + \overline{q}_i)$

- CANNOT DETERMINE STRANGENESS
- CAN ONLY DETERMINE C-EVEN COMBINATION $q_i + \overline{q}_i$

In ν DIS, can disentangle individual pdfs by linear combination: at LO

$$\frac{1}{2} \left(F_1^{W^-} + \frac{1}{2} F_3^{W^-} \right) = u + c; \qquad \frac{1}{2} \left(F_1^{W^+} - \frac{1}{2} F_3^{W^+} \right) = \bar{u} + \bar{c}$$

$$\frac{1}{2} \left(F_1^{W^+} + \frac{1}{2} F_3^{W^+} \right) = d + s; \qquad \frac{1}{2} \left(F_1^{W^-} - \frac{1}{2} F_3^{W^-} \right) = \bar{d} + \bar{s}$$

 $c, \ \overline{c}, \ s, \ \overline{s}$ only present above charm threshold

DISENTANGLING GUARKS FROM ANTIGUARKS

DRELL-YAN p/d ASYMMETRY

DISENTANGLING QUARKS FROM ANTIGUARKS

THEORETICAL ISSUES: NNLO CORRECTIONS

HOW BIG IS THE IMPACT OF HIGHER ORDER PERTURBATIVE CORRECTIONS?

Anomalous dimensions in Mellin space

- One-loop : Gross, Wilczek '73

$$\gamma_{
m ns}^{(0)}(N) = C_F (2(N_- + N_+)S_1 - 3)$$

- Two-loop : Floratos, Ross, Sachrajda '79 ; Gonzalez-Arroyo, Lopez, Ynduráin '79

$$\begin{split} \gamma_{\rm ns}^{(1)+}(N) &= 4 C_{\rm A} C_{\rm F} \left(2 N_{+} S_{3} - \frac{17}{24} - 2S_{-3} - \frac{28}{3} S_{1} + (N_{-} + N_{+}) \left[\frac{151}{18} S_{1} + 2S_{1,-2} - \frac{1}{6} \right] \\ &+ 4 C_{\rm F} n_{\rm F} \left(\frac{1}{12} + \frac{4}{3} S_{1} - (N_{-} + N_{+}) \left[\frac{11}{9} S_{1} - \frac{1}{3} S_{2} \right] \right) + 4 C_{\rm F}^{2} \left(4S_{-3} + 2S_{1} + 2S_{2} - \frac{3}{8} \right] \\ &+ N_{\rm L} \left[S_{2} + 2S_{3} \right] - (N_{-} + N_{+}) \left[S_{1} + 4S_{1,-2} + 2S_{1,2} + 2S_{2,1} + S_{3} \right] \right) \\ \gamma_{\rm ns}^{(1)}(N) &= \gamma_{\rm ns}^{(1)+}(N) + 16 C_{\rm F} \left(C_{\rm F} - \frac{C_{\rm A}}{2} \right) \left((N_{-} - N_{+}) \left[S_{2} - S_{3} \right] - 2(N_{-} + N_{+} - 2) \\ - \text{ Compact notation : } N_{\pm} f(N) = f(N \pm 1) , \qquad N_{\pm 1} f(N) = f(N \pm 1) , \qquad N_{\pm 1} f(N) = f(N \pm 1) , \end{aligned}$$

S.M., Vermaseren, Vogt '04

$$\begin{split} & \gamma_{125}^{(2)}(w) = 16C_4C_F n_f \left(\frac{3}{2}\zeta_5 - \frac{5}{4} + \frac{10}{9}S_{-3} - \frac{10}{9}S_3 + \frac{3}{3}S_{1-2} - \frac{2}{3}S_{-4} + 2S_{11} - \frac{25}{9}S_2 + \frac{277}{2}S_{1-2} - \frac{2}{3}S_{-3-1} - N_{-} \left[S_{2,1} - \frac{2}{3}S_{3,1} - (N_{-} - 1)\left[\frac{123}{18}S_{3} - s_{2}\right] - (N_{-} - N_{+})\left[S_{1,1} + \frac{123}{216}S_{1} + \frac{113}{18}S_{2} - \frac{317}{108}S_{2} + \frac{16}{9}S_{1,-2} - \frac{2}{3}S_{1,-2,1} - \frac{1}{3}S_{1,-3} - \frac{1}{2}S_{1,3} - \frac{1}{2}S_{2,1} - \frac{1}{3}S_{3,1} - \frac{2}{3}S_{3,1} - \frac{2}{3}S_{3,1} - \frac{2}{3}S_{3,1} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,1} - \frac{2}{3}S_{3,1} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{2,2} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{3,1} - \frac{1}{3}S_{3,2} - \frac{1}{3}S_{$$

$$+ 165_{1,-2,-2} + \frac{103}{3}S_{1,-2,1} - 25_{1,-2,2} - 365_{1,1,-3} + 565_{1,1,-2,1} + 85_{1,1,3} - \frac{109}{9}S_{1,2} - 45_{1,2,-2,1} - 25_{2,3} - 85_{1,3,1} - 115_{2,1,1} + 165_{2,-2,-3} + 45_{2,-2,1} - 125_{2,1,1} + 115_{2,-3} + 215_{2,-3} + 45_{2,-2,1} - 125_{2,1,1} + 115_{2,-3} + 115_{$$

THEORETICAL ISSUES: RESUMMATION

AT $O(\alpha_s^n)$, $O\left[ln(\frac{1}{x})^n\right]$ and $O\left[(ln(1-x))^{2n-1}\right]$ contributions arise: IS A FIXED-ORDER PERTURBATIVE CALCULATION SUFFICIENT?

$x_{ ext{cut}}:$	0	0.0002	0.001	0.0025	0.005	0.01
# DATA POINTS	2097	2050	1961	1898	1826	1762
$\chi^2(x > 0)$	2267					
$\chi^2(x > 0.0002)$	2212	2203				
$\chi^2(x > 0.001)$	2134	2128	2119			
$\chi^2(x > 0.0025)$	2069	2064	2055	2040		
$\chi^{2}(x > 0.005)$	2024	2019	2012	1993	1973	
$\chi^2(x > 0.01)$	1965	1961	1953	1934	1917	1916
Δ_i^{i+1}	0.	19 0.10	0.24	0.28	0.02	

DATA-THEORY AGREEMENT FOR EVOLUTION OF F_2 IMPROVES IF SMALL x DATA REMOVED (MRST 2003) χ^2 improves with fixed # of pts (same row)

THEORETICAL ISSUES: RESUMMATION

AT $O(\alpha_s^n)$, $O\left[ln(\frac{1}{x})^n\right]$ and $O\left[(ln(1-x))^{2n-1}\right]$ contributions arise: IS A FIXED-ORDER PERTURBATIVE CALCULATION SUFFICIENT?

$x_{\mathrm{cut}}:$	0	0.0002	0.001	0.0025	0.005	0.01
# DATA POINTS	2097	2050	1961	1898	1826	1762
$\chi^2(x > 0)$	2267					
$\chi^2(x > 0.0002)$	2212	2203				
$\chi^2(x > 0.001)$	2134	2128	2119			
$\chi^2(x > 0.0025)$	2069	2064	2055	2040		
$\chi^2(x > 0.005)$	2024	2019	2012	1993	1973	
$\chi^2(x > 0.01)$	1965	1961	1953	1934	1917	1916
Δ_i^{i+1}	.0	19 0.10	0.24	0.28	0.02	

DATA-THEORY AGREEMENT FOR EVOLUTION OF F_2 IMPROVES IF SMALL x DATA REMOVED (MRST 2003) χ^2 improves with fixed # of pts (same row)

DOES IT ALL MATTER?

W PRODUCTION CROSS-SECTION

PDF UNCERTAINTY	土 0.05 (TOT)	± 0.03 (EXPT)	土 0.10 (EXPT)	干 9 (LOL)	\pm 4 (EXPT)	土 8 (EXPT)
XSEC [NB]	2.73	2.59	2.54	215	204	205
COMMENT	TEVATRON	TEVATRON	TEVATRON	LHC	LHC	LHC
PDF SET	ALEKHIN	MRST2002	CTEG6	ALEKHIN	MRST2002	CTEG6

Thorne 2003

ITER?		PARTON LUMINOSITY	UNCERTAINTIES	FOR TEVATRON & LHC		\ALACTER (%)	GG		1 10 ² 10 ³ 1 10 ² M (Gev)	10^{-10} $1^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{-1$
T ALL MA	ECTION	PDF UNCERTAINTY	± 0.05 (TOT)	± 0.03 (EXPT)	± 0.10 (EXPT)	± 6 (TOT)	土 4 (EXPT)	士 8 (EXPT)	Thorne 2003	NY AXIS!!! →
OES I	N CROSS-SI	XSEC [NB]	2.73	2.59	2.54	215	204	205		G SCALE (
	PRODUCTIO	COMMENT	TEVATRON	TEVATRON	TEVATRON	LHC	LHC	LHC		NOTE LO
	M	PDF SET	ALEKHIN	MRST2002	CTEG6	ALEKHIN	MRST2002	CTEG6		

Alekhin 2003

NuTeV 2001 $\sin^2 \theta_W(OS) = 0.2272 \pm 0.0013(stat) \pm 0.0009(syst) \pm 0.0002(M_t, M_H)$ Global Fit 2003 $\sin^2 \theta_W(\text{OS}) = 0.2229 \pm 0.0004$

...VS. THEORY

$$R^{-} = \frac{\sigma_{NC}(\nu_{\mu}) - \sigma_{NC}(\bar{\nu}_{\mu})}{\sigma_{CC}(\nu_{\mu}) - \sigma_{CC}(\bar{\nu}_{\mu})}$$
$$= \left(\frac{1}{2} - \sin^{2}\theta_{W}\right)$$

NuTeV 2001 $\sin^2 \theta_W(OS) = 0.2272 \pm 0.0013(stat) \pm 0.0009(syst) \pm 0.0002(M_t, M_H)$ Global Fit 2003 $\sin^2 \theta_W(OS) = 0.2229 \pm 0.0004$

...VS. THEORY

$$\begin{aligned} R^{-} &= \frac{\sigma_{NC}(\nu_{\mu}) - \sigma_{NC}(\bar{\nu}_{\mu})}{\sigma_{CC}(\nu_{\mu}) - \sigma_{CC}(\bar{\nu}_{\mu})} \\ &= \left(\frac{1}{2} - \sin^{2}\theta_{W}\right) + 2\left[\frac{(u - \bar{u}) - (d - \bar{d})}{u - \bar{u} + d - \bar{d}}\right] \times \left(\frac{1}{2} - \frac{7}{6}\sin^{2}\theta_{W}\right) \end{aligned}$$

$$+ O(\delta(u-d)^2)$$

U,D...DENOTE MOMENTUM FRACTIONS CARRIED BY CORRESP. GUARK FLAVORS

• ISOSPIN VIOLATION \rightarrow corrn. for non-isoscalar target included, but not $u^p \neq d^n$

NuTeV 2001 $\sin^2 \theta_W(OS) = 0.2272 \pm 0.0013(stat) \pm 0.0009(syst) \pm 0.0002(M_t, M_H)$ Global Fit 2003 $\sin^2 \theta_W(OS) = 0.2229 \pm 0.0004$

...VS. THEORY

$$R^{-} = \frac{\sigma_{NC}(\nu_{\mu}) - \sigma_{NC}(\bar{\nu}_{\mu})}{\sigma_{CC}(\nu_{\mu}) - \sigma_{CC}(\bar{\nu}_{\mu})}$$
$$= \left(\frac{1}{2} - \sin^{2}\theta_{W}\right) + 2\left[\frac{(u - \bar{u}) - (d - \bar{d})}{u - \bar{u} + d - \bar{d}} - \frac{s - \bar{s}}{u - \bar{u} + d - \bar{d}}\right] \times \left(\frac{1}{2} - \frac{7}{6}\sin^{2}\theta_{W}\right)$$

$$+ O(\delta(u-d)^2, \delta s^2)$$

U,D...DENOTE MOMENTUM FRACTIONS CARRIED BY CORRESP. GUARK FLAVORS

- ISOSPIN VIOLATION \rightarrow corrn. for non-isoscalar target included, but not $u^p \neq d^n$
- STRANGE ASYM. \rightarrow strangeness must vanish, but not valence mom. fract.!

 $\sin^2 \theta_W(OS) = 0.2272 \pm 0.0013(stat) \pm 0.0009(syst) \pm 0.0002(M_t, M_H)$ $\sin^2 \theta_W(\text{OS}) = 0.2229 \pm 0.0004$ Global Fit 2003 NuTeV 2001

...VS. THEORY

$$\begin{aligned} R^{-} &= \frac{\sigma_{NC}(\nu_{\mu}) - \sigma_{NC}(\bar{\nu}_{\mu})}{\sigma_{CC}(\nu_{\mu}) - \sigma_{CC}(\bar{\nu}_{\mu})} \\ &= \left(\frac{1}{2} - \sin^{2}\theta_{W}\right) + 2\left[\frac{(u - \bar{u}) - (d - \bar{d})}{u - \bar{u} + d - \bar{d}} - \frac{s - \bar{s}}{u - \bar{u} + d - \bar{d}}\right] \times \left[\left(\frac{1}{2} - \frac{7}{6}\sin^{2}\theta_{W}\right) \\ &+ \frac{4}{9}\frac{\alpha_{s}}{2\pi}\left(\frac{1}{2} - \sin^{2}\theta_{W}\right) + O(\alpha_{s}^{2})\right] + O(\delta(u - d)^{2}, \,\delta s^{2}) \end{aligned}$$

U,D...DENOTE MOMENTUM FRACTIONS CARRIED BY CORRESP. GUARK FLAVORS

- ISOSPIN VIOLATION \rightarrow corrn. for non-isoscalar target included, but not $u^p \neq d^n$
- STRANGE ASYM. \rightarrow strangeness must vanish, but not valence mom. fract.!
- QCD CORRECTIONS \rightarrow tiny (only enter through sym. violating terms)

 $\sin^2 \theta_W(OS) = 0.2272 \pm 0.0013(stat) \pm 0.0009(syst) \pm 0.0002(M_t, M_H)$ $\sin^2 \theta_W(OS) = 0.2229 \pm 0.0004$ Global Fit 2003 NuTeV 2001

...VS. THEORY

$$\begin{split} R^{-} &= \frac{\sigma_{NC}(\nu_{\mu}) - \sigma_{CC}(\bar{\nu}_{\mu})}{\sigma_{CC}(\nu_{\mu}) - \sigma_{CC}(\bar{\nu}_{\mu})} \\ &= \left(\frac{1}{2} - \sin^{2}\theta_{W}\right) + 2\left[\frac{(u - \bar{u}) - (d - \bar{d})}{u - \bar{u} + d - \bar{d}}\right] \times \left[\left(\frac{1}{2} - \frac{7}{6}\sin^{2}\theta_{W}\right) \\ &+ \frac{4}{9}\frac{\alpha_{s}}{2\pi}\left(\frac{1}{2} - \sin^{2}\theta_{W}\right) + O(\alpha_{s}^{2})\right] + O(\delta(u - d)^{2}, \, \delta s^{2}) \\ &\text{U.D.DENOTE MOMENTUM FRACTIONS CARRIED BY CORRESP. GUARK FLAVORS } \end{split}$$

• ISOSPIN VIOLATION \rightarrow corrn. for non-isoscalar target included, but not $u^p \neq d^n$

- STRANGE ASYM. \rightarrow strangeness must vanish, but not valence mom. fract.!
- **QCD** CORRECTIONS \rightarrow tiny (only enter through sym. violating terms)
- $s \overline{s} \approx 0.004$ (or 2% isospin vln.) enough to remove anomaly: can we test it?

DISENTANGLING STRANGENESS

CHARM IS COPIOUSLY PRODUCED IN $W^+ + s \rightarrow c$

easily tagged through dimuon signal, 2nd muon from subsequent c decay

- BRANCHING RATIOS AND DECAY CONST. OF CHARMED MESONS (E.G. D_s)
- GCD CORRECTIONS TO CHARM PRODUCTION NEAR THRESHOLD

UCED IN $W^+ + s \rightarrow c$ on signal, 2nd muon from subsequent c decay	ECAY CONST. OF CHARMED MESONS (E.G. D_s)	IARM PRODUCTION NEAR THRESHOLD	RK DISTN. ACCURATELY	$CCFR/NUTEV s - \overline{s}$ DETERMINATION		5000 ν & 1500 $\bar{\nu}$ DIMUON EVENT SAMPLE:	ASSUMED PARM.: $s(x) = \kappa \frac{\overline{u}(x) + d(x)}{2} (1 - x)^{\alpha}$	NEGATIVE $s-\overline{s}$ AT SMALL x	\Rightarrow MOM. FRACT. $s - \overline{s} = -0.003 \pm 0.001$	NUTEV ANOMALY WORSE!
OUSLY PROD 1rough dimue	RATIOS AND D	CCTIONS TO CH	STRANGE QUA =20GeV2	ss 45 45 6 CCFR fit2BPZ	3.5 $S(X)/\overline{S(X)}$	2.5-			0.3	
HARM IS COPI sily tagged th	 BRANCHING 	• GCD CORRE	DETERMINE Q=		X(S-S)					002 0 0.2 0.4 0.8 0.8 x NuTeV

DISENTANGLING STRANGENESS

COMBINING INCLUSIVE AND EXCLUSIVE INFORMATION

CTEQ DEDICATED DIMUON ANALYSIS (April 2004)

- $\int_0^1 (s(x) \overline{s}(x)) dx = 0$ in Proton \Rightarrow Either $s(x) \overline{s}(x)$ has a node or it vanishes everywhere
- $[s(x) \overline{s}(x)] < 0$ for small $x \lesssim 0.05$ constrained by dimuon

COMBINING INCLUSIVE AND EXCLUSIVE INFORMATION

CTEQ DEDICATED DIMUON ANALYSIS (April 2004)

- \Rightarrow EITHER $s(x) \overline{s}(x)$ HAS A NODE OR IT VANISHES EVERYWHERE • $\int_0^1 (s(x) - \overline{s}(x)) dx = 0$ in proton
- $[s(x) \overline{s}(x)] < 0$ for small $x \lesssim 0.05$ constrained by dimuon
- LARGE x REGION WEIGHS MORE IN MOMENTUM FRACTION
- POSITIVE MOM. FRACTION $s \overline{s} \approx 0.02$: THE END OF THE NUTEV ANOMALY

IN THE SPACE OF PARTON DISTRIBUTION FUNCTIONS $f_i(x)$ (*i*=quark, antiquark, FOR A FUNCTION, WE NEED AN "ERROR BAR" IN A SPACE OF FUNCTIONS • FOR A SINGLE QUANTITY, WE QUOTE 1 SIGMA ERRORS: VALUE± ERROR MUST DETERMINE THE PROBABILITY DENSITY (MEASURE) $\mathcal{P}[f_i(x)]$ WHAT'S THE PROBLEM? D. Kosower, 1999 FOR A PAIR OF NUMBERS, WE GUOTE A 1 SIGMA ELLIPSE gluon)

WHAT'S THE PROBLEM? D. Kosower, 1999	 FOR A SINGLE QUANTITY, WE QUOTE 1 SIGMA ERRORS: VALUE± ERROR FOR A PAIR OF NUMBERS, WE QUOTE A 1 SIGMA ELLIPSE 	IUST DETERMINE THE PROBABILITY DENSITY (MEASURE) $\mathcal{P}[f_i(x)]$ N THE SPACE OF PARTON DISTRIBUTION FUNCTIONS $f_i(x)$ (i =quark, antiquarhuon)	XPECTATION VALUE OF $\sigma [f_i(x)] \Rightarrow \text{FUNCTIONAL INTEGRAL}$ $\left\langle \sigma [f_i(x)] \right\rangle = \int \mathcal{D} f_i \sigma [f_i(x)] \mathcal{P}[f_i],$
--------------------------------------	---	---	--

• CHOOSE A FIXED FUNCTIONAL FORM: - MRST: 24 PARMS., SOME FIXED $\rightarrow 15$ PARMS. $xq(x, Q_0^2) = A(1-x)^{\eta}(1+\epsilon x^{0.5}+\gamma x)x^{\delta}, x[\overline{u}-\overline{d}](x, Q_0^2) = A(1-x)^{\eta}(1+\gamma x+\delta x^2)x^{\delta}.$ $xg(x, Q_0^2) = A_g(1-x)^{\eta g}(1+\epsilon_g x^{0.5}+\gamma_g x)x^{\delta g} - A(1-x)^{\eta-x}^{-\delta-},$ - CTEQ: 20 PARMS.	$x f(x, Q_0) = A_0 x^{A_1} (1 - x)^{A_2} e^{A_3 x} (1 + e^{A_4} x)^{A_5}$	with independent params for combinations $u_v \equiv u - \bar{u}$, $d_v \equiv d - \bar{d}$, g , and $\bar{u} + \bar{d}$, $s = \bar{s} = 0.2 (\bar{u} + \bar{d})$ at Q_0 ; NORM. FIXED BY SUM RULES - ALEKHIN: 17 PARMS.	$xu_{\rm V}(x,Q_0) = \frac{2}{N_{\rm u}^{\rm V}} x^{a_{\rm u}} (1-x)^{b_{\rm u}} (1+\gamma_2^{\rm u} x); xu_{\rm S}(x,Q_0) = \frac{A_{\rm S}}{N_{\rm S}} \eta_{\rm u} x^{a_{\rm S}} (1-x)^{b_{\rm S} {\rm u}}$	$xd_{V}(x,Q_{0}) = rac{1}{N_{ ext{d}}^{V}}x^{a ext{d}}(1-x)^{b ext{d}}; \ \ xd_{ ext{S}}(x,Q_{0}) = rac{A_{ ext{S}}}{N^{ ext{S}}}x^{a_{ ext{S}}}(1-x)^{b_{ ext{S}} ext{d}},$	$x_{\rm SS}(x,Q_0) = \frac{A_{\rm S}}{N^{\rm S}} \eta_{\rm s} x^{a_{\rm S}} (1-x)^{(b_{\rm SU}+b_{\rm Sd})/2}; xG(x,Q_0) = A_{\rm G} x^{a_{\rm G}} (1-x)^{b_{\rm G}} (1+\gamma_1^{\rm G}\sqrt{x}+\gamma_2^{\rm G} x),$	 EVOLVE TO DESIRED SCALE & COMPUTE PHYSICAL OBSERVABLES DETERMINE BEST-FIT VALUES OF PARAMETERS 	• DETERMINE ERROR BY PROPAGATION OF ERROR ON PARMS ('HESSIAN METHOD') OR BY PARM. SCANS ('LAGRANGE MULTIPLIER METHOD')	PROBLEM PROJECTED ONTO THE FINITE-DIMENSIONAL SPACE OF PARAMETERS
--	---	---	---	--	---	---	---	---

THE STANDARD SOLUTION:

THE STANDARD SOLUTION: FUNCTIONAL PARTON FITTING• CHOOSE A FIXED FUNCTIONAL FORM: - MRST: 24 PARMS., SOME FIXED $\rightarrow 15$ PARMS. $xq(x, Q_0^2) = A(1-x)^{\eta}(1+\epsilon x^{0.5}+\gamma x)x^{\delta}, x[\overline{u}-\overline{d}](x, Q_0^2) = A(1-x)^{\eta}(1+\gamma x+\delta x^2)x^{\delta}.$	$xg(x, Q_0^2) = A_g(1-x)^{\eta_g}(1+\epsilon_g x^{0.5} + \gamma_g x) x^{\delta_g} - A(1-x)^{\eta-} x^{-\delta},$ - CTEQ: 20 PARMS. $xf(x, \Omega_0) - A_0 x^{A_1} (1-x)^{A_2} e^{A_3 x} (1\pm e^{A_4} x)^{A_5}$	with independent params for combinations $u_v \equiv u - \bar{u}$, $d_v \equiv d - \bar{d}$, g , and $\bar{u} + \bar{d}$, $s = \bar{s} = 0.2 (\bar{u} + \bar{d})$ at Q_0 ; NORM. FIXED BY SUM RULES - ALEKHIN: 17 PARMS.	$xu_{\rm V}(x,Q_0) = \frac{2}{N_{\rm u}^{\rm V}} x^{a_{\rm u}} (1-x)^{b_{\rm u}} (1+\gamma_2^{\rm u} x); xu_{\rm S}(x,Q_0) = \frac{A_{\rm S}}{N_{\rm S}} \eta_{\rm u} x^{a_{\rm S}} (1-x)^{b_{\rm S} {\rm u}}$	$xd_{V}(x,Q_{0}) = rac{1}{N_{\mathrm{d}}^{\mathrm{V}}} x^{a_{\mathrm{d}}}(1-x)^{b_{\mathrm{d}}}; \ \ xd_{\mathrm{S}}(x,Q_{0}) = rac{A_{\mathrm{S}}}{N^{\mathrm{S}}} x^{a_{\mathrm{S}}}(1-x)^{b_{\mathrm{S}}},$	$xs_{\rm S}(x,Q_0) = \frac{A_{\rm S}}{N^{\rm S}} \eta_{\rm s} x^{a_{\rm S}} (1-x)^{(b_{\rm S}u+b_{\rm S}d)/2}; xG(x,Q_0) = A_{\rm G} x^{a_{\rm G}} (1-x)^{b_{\rm G}} (1+\gamma_1^{\rm G}\sqrt{x}+\gamma_2^{\rm G}x),$	 EVOLVE TO DESIRED SCALE & COMPUTE PHYSICAL OBSERVABLES DETERMINE BEST-FIT VALUES OF PARAMETERS 	• DETERMINE ERROR BY PROPAGATION OF ERROR ON PARMS ('HESSIAN METHOD') OR BY PARM. SCANS ('LAGRANGE MULTIPLIER METHOD')	PROBLEM PROJECTED ONTO THE FINITE-DIMENSIONAL SPACE OF PARAMETERS WHAT IS THE BIAS (THEOR. ERROR) DUE TO THE CHOICE OF FUNCTIONAL FORM?
--	--	---	---	--	--	---	---	--

HOW WELL DOES IT WORK? ALEKHIN 2003 PARTONS

Q²=9 GeV²

TOTAL ERROR BANDS FOR LO (DOTS), NLO (DASHES), NNLO (SOLID) PARTON DISTRIBUTIONS

valence
$$u^{v} \equiv u - \bar{u}, \ d^{v} \equiv d - \bar{d},$$

sea $u^{s} = \bar{u}^{s} = d^{s} = \bar{d}^{s}$

PARAMETRIZATION BIAS?

g)3	d also
MRST & CTE → SIMILAR PAF	adi and Ferrag 200	PDF UNCERTAINTY \pm 0.05 (TOT) \pm 0.03 (EXPT) \pm 0.10 (EXPT) \pm 6 (TOT) \pm 4 (EXPT) \pm 8 (EXPT) ding the best fit an
	¹ Djou	SECT. AGAIN XSEC [NB] 2.73 2.59 2.54 2.54 2.15 204 205 for both fin
Q ²) CGeV) ² TEQ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	THE W X COMMENT TEVATRON TEVATRON TEVATRON TEVATRON LHC LHC LHC LHC LHC LHC LHC
$\begin{array}{c c} 1.4 & -f_{PDF}(x, , \\ 0.2 & -f_{IOF}(x, , \\ 0.8 & -f_{IOF$	$\begin{bmatrix} 0.6 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	PDF SET ALEKHIN MRST2002 CTEQ6 ALEKHIN MRST2002 CTEQ6 CTEQ6
$1.4 - f_{PDF}(x, Q^2)$ $1.4 - g^2 = (100 \text{ GeV})^2$ $1.2 - MRST/CTEQ$ $0.8 - \frac{g}{d} - \frac{1}{d}$	$0.6 \begin{bmatrix} - & & \\ - & & \\ - & & & \\ - & & & \\ 1e-05 & 0.0001 & 0.001 & 0.01 & 0.1 & 1 \\ & & & & x \end{bmatrix}$	SIMILAR PAR- FONS \rightarrow SIMI- LAR RESULTS We do not seem to have the e

PARAMETRIZATION BIAS?

investigating fluctuations about this best fit (...) This might then influence our error analysis...(MRST 2004) \geq

CAN WE TRUST THE ERRORS? THORNE, APR. 2004:

In full global fit art in choosing "correct" $\Delta \chi^2$ given complication of errors. Ideally $\Delta \chi^2 = 1$, but unrealistic.

Many approaches use $\Delta \chi^2 \sim 1.$ CTEQ choose $\Delta \chi^2 \sim 100$ (conservative?). MRST choose $\Delta \chi^2 \sim 20$ for $1-\sigma$ error.

CERN 2004

CONSERVATIVE SOLUTIONS

IMPOSE RESTRICTIVE KINEMATIC CUTS

cut in Q^2 raised from 2 to 10 GeV²; cut off x < 0.005; cut in W^2 raised from 12.5 to 15 GeV²

MRST 2003 CONSERVATIVE PARTONS

- ABOUT 800 DATAPOINTS REMOVED OUT OF ABOUT 2000
- $\Delta \chi^2 = 5$ SUFFICIENT FOR REASONABLE 1- σ

CONSERVATIVE/PLAIN

CONSERVATIVE SOLUTIONS

SELECT COHERENT SET OF DATA

ALEKHIN PARTONS

- ONLY DIS DATA INCLUDED
- $\Delta \chi^2 = 1$ provides good 1- σ curves

PERCENTAGE ERRORS

- ALEKHIN 2003 PARTON UNCERTAINTIES (SOLID, DASHED) COMPARABLE TO CTEQ6 (DOTTED)
- CANNOT SEPARATE ACCU-RATELY ANTIGUARK DISTNS.
- ERROR ON σ_W COMPARABLE TO CTEQ, MRST

TROUBLE...

PREDICTIONS FROM DIFFERENT SETS IN REASONABLE AGREEMENT,

HIGGS PRODUCTION AT LHC

Alekhin gluon agrees with $MRST/CTEQ \rightarrow good$ agreement for Higgs production in gluon fusion

DJOUADI AND FERRAG, 2004

TROUBLE...

PREDICTIONS FROM DIFFERENT SETS IN REASONABLE AGREEMENT, BUT DO NOT ALWAYS AGREE WITHIN STATED ERRORS

HIGGS PRODUCTION AT LHC

Alekhin quark differs from MRST/CTEQ \rightarrow difference visible in associate Higgs W production

NEW SOLUTIONS

THE BAYESIAN MONTE CARLO APPROACH (GIELE, KOSOWER, KELLER 2001)

- (e.g. an available parton set) \rightarrow representation of probability functional $\mathcal{P}[f_i]$ generate a Monte-Carlo sample of fcts. with "reasonable" prior distn.
- calculate observables with functional integral
- update probability using Bayesian inference on MC sample: better agreement with data \rightarrow more functions in sample
- iterate until convergence achieved

NEW SOLUTIONS

THE BAYESIAN MONTE CARLO APPROACH (GIELE, KOSOWER, KELLER 2001)

- (e.g. an available parton set) \rightarrow representation of probability functional $\mathcal{P}[f_i]$ generate a Monte-Carlo sample of fcts. with "reasonable" prior distn.
- calculate observables with functional integral
- update probability using Bayesian inference on MC sample: better agreement with data \rightarrow more functions in sample
- iterate until convergence achieved

PROBLEM IS MADE FINITE-DIMENSIONAL BY THE CHOICE OF PRIOR, BUT RESULT DO NOT DEPEND ON THE CHOICE IF SUFFICIENTLY GENERAL (Monte Carlo replicas which lead to same agreement with data); HARD TO HANDLE "FLAT DIRECTIONS"

COMPUTATIONALLY VERY INTENSIVE;

DIFFICULT TO ACHIEVE INDEP. FROM PRIOR

RESULT: FERMI PARTONS

 $F_2^{singlet}$ and gluon ratios fermi/MRST

ONLY SUBSET OF DATA FITTED (H1, E665, BCDMS DIS DATA)

GOOD AGREEMENT WITH TEVATRON W XSECT TROUBLE WITH VALUE OF α_s

NEW SOLUTIONS

THE NEURAL MONTE CARLO APPROACH (S.F., GARRIDO, LATORRE, PICCIONE 2002)

BASIC IDEA: USE NEURAL NETWORKS AS UNIVERSAL UNBIASED INTERPOLANTS

NEW SOLUTIONS

THE NEURAL MONTE CARLO APPROACH (S.F., GARRIDO, LATORRE, PICCIONE 2002)

BASIC IDEA: USE NEURAL NETWORKS AS UNIVERSAL UNBIASED INTERPOLANTS

- GENERATE A SET OF MONTE CARLO REPLICAS $\sigma^{(k)}(p_i)$ of the original dataset $\sigma^{(\text{data})}(p_i)$ $(p_i \text{ values of the kin. variables where } \sigma$ is measured) \Rightarrow REPRESENTATION OF $\mathcal{P}[\sigma(p_i)]$ AT DISCRETE SET OF POINTS p_i
- TRAIN A NEURAL NET FOR EACH PDF ON EACH REPLICA, THUS OBTAINING A NEURAL REPRESENTATION OF THE PDFS $f_i^{(net),(k)}$
- THE SET OF NEURAL NETS IS A REPRESENTATION OF THE PROBABILITY DENSITY:

$$\left\langle \sigma \left[f_i \right] \right\rangle = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \sigma \left[f_i^{(net)(k)} \right]$$

CHECK GOODNESS OF FIT THROUGH STATISTICAL INDICATORS $(\chi^2, \text{ CORRELATION}, \ldots)$

PRELIMINARY RESULT: NEURAL STRUCTURE FUNCTIONS

- FULL NEURAL FIT TO F_2 FOR PROTON, DEUTERON & NONSINGLET AVAILABLE
- \Rightarrow FIT CAN BE USED IN LIEU OF DATA, BUT BETTER THAN THEM (SEE F_2^{NS}) ERRORS AND CORRELATIONS FAITHFULLY REPRODUCED, BUT STAT. UNCERTAINTIES OPTIMALLY COMBINED
- FULL INTRICACIES OF THE PARTON FIT NOT IMPLEMENTED

OUTLOOK

WE NEED GOOD PDFS

OUTLOOK

WE NEED GOOD PDFS TO SEE IT CLEARLY!

Higgs decay in e^+e^- + 2 jets at CMS