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FACTORIZATION

THE ACCURATE COMPUTATION OF PHYSICAL PROCESS AT A HADRON COLLIDER
REQUIRES GOOD KNOWLEDGE OF PARTON DISTRIBUTIONS OF THE NUCLEON

v, W, 27 p'
— =ﬁ

= s — —

IN ORDER TO EXTRACT THE RELEVANT PHYSICS SIGNAL,

WE NEED TO KNOW THE ERROR ON THE PARTON DISTRIBUTION



AN EXAMPLE: THE “NUTEV ANOMALY”

THE “PASCHOS-WOLFENSTEIN RATIO” RELATES TOTAL NEUTRINO-NUCLEON DIS
CROSS-SECTIONS TO THE WEAK MIXING ANGLE:

onc(V) —onc(D) 1 . 1 7. s—3§ (u—u) — (d-
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u, d,...denote the fraction of the nucleon’s momentum carried by the respective quarks

FOR ISOSCALAR TARGET, u = d & LAST TERM VANISHES

CAN ONE NEGLECT THE s — § CONTRIBUTION?
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e BARONE ET AL. (2000) GET s — 5§ = +0.002,
NUTEV (2002) cLAIM s — 5§ = —0.003 o




THE NAME OF THE GAME

DIS DATA — STRUCTURE FUNCTIONS (FORM FACTORS, DEP. ON KIN. VARIABLES z, Q?)

STRUCTURE FUNCTION=HARD COEFF.XQPARTON DISTN.
FRCz,Q*) =a) g, ,ei(a + @) + as [Cilas] ® (¢ + @) + Cglas] @ g]

e TRIVIAL COMPLICATIONS: DISENTANGLE INDIVIDUAL QUARK & GLUON

CONTRIBUTION TO STRUCTURE FUNCTION; EVOLVE TO COMMON SCALE;
DECONVOLUTE see below: truncated moms.

e SERIOUS COMPLICATION: DETERMINE ERROR ON FUNCTIONS f(z), f = ¢i, i, g

A (MARGINALLY) SIMPLER PROBLEM: DETERMINE THE STRUCTURE FUNCTION

F.(x,Q%)

0.7 T

0.5

0.3

GIVEN A BUNCH OF EX-
PERIMENTAL DATA Fs(z, Q?)
AT POINTS (z;,Q%), WITH
STAT. ERRORS (fig.—bars)
AND CORRELATED SYST. ER-
RORS (fig.—bands)
DETERMINE THE STRCTURE
FUNCTION AND ASSOCIATE
ERROR
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WHAT’S THE PROBLEM?
e FOR A SINGLE QUANTITY, WE QUOTE 1 SIGMA ERRORS: VALUE+ ERROR
e FOR A PAIR OF NUMBERS, WE QUOTE A 1 SIGMA ELLIPSE
e FOR A FUNCTION, WE NEED AN “ERROR BAR” IN A SPACE OF FUNCTIONS

MUST DETERMINE THE PROBABILITY DENSITY (MEASURE) P[F3] IN THE SPACE OF
FUNCTIONS F3(z, Q?)

= EXPECTATION VALUE OF AN OBSERVABLE F [F2(x, Q2)] :

(7 [Pa(2,Q")] ) = / DF, F [Fo(x, Q%) PIF)

PROBLEM: MUST DETERMINE AN INFINITE-DIMENSIONAL OBJECT FROM A
FINITE SET OF DATA POINTS



SOLUTIONS. . .

e CHOOSE A FIXED FUNCTIONAL FORM, E.G.

Fo(x, Q%) = 21 f(z, Q%) . Alz) = (1 — 2)*2[as + a4 (1 — 2) + a5 (1 — )2
2\ log @2 /42 | P1® C(z) +ag (1 —z)° + a7 (1 — x)*]
f@,Q7) = A=) [IEQW} 1+ By = bt baoet b

C(x) —ci1x+cox® +ezxd +cyz?
PROBLEM PROJECTED ONTO THE FINITE-DIMENSIONAL SPACE OF PARAMETERS

WHAT IS THE BIAS (THEOR. ERROR) DUE TO THE CHOICE OF FUNCTIONAL FORM?

e EXPAND OVER A FINITE SET OF BASIS FUNCTIONS, E.G. ORTHOGONAL POLYNOMIALS

PROBLEM PROJECTED ONTO THE FINITE-DIMENSIONAL SPACE OF EXPANSION
COEFFICIENTS

WHAT IS THE BIAS (THEOR. ERROR) DUE TO THE CHOICE OF TRUNCATION?
E.g. assume a periodic f. is expanded over a basis of ortho. polynomials, or a

non-periodic f is Fourier-expanded ...

e GENERATE A MONTE-CARLO SAMPLE OF FCTS. W. “REASONABLE” PRIOR DISTN.,
AND UPDATE FROM DATA USING BAYESIAN INFERENCE
PROBLEM IS MADE FINITE-DIMENSIONAL BY THE CHOICE OF PRIOR, BUT RESULT DO
NOT DEPEND ON THE CHOICE IF SUFFICIENTLY GENERAL
HARD TO HANDLE “FLAT DIRECTIONS” (Monte Carlo replicas which lead to same
agreement with data); COMPUTATIONALLY VERY INTENSIVE



THE NEURAL MONTE CARLO APPROACH
BASIC IDEA: USE NEURAL NETWORKS AS UNIVERSAL UNBIASED INTERPOLANTS

e GENERATE A SET OF MONTE CARLO REPLICAS F\™ (z;, Q%) OF THE ORIGINAL
DATASET F.%*"®(z;, Q%) WHICH IS LARGE ENOUGH TO REPRODUCE CENTRAL
VALUES (AS AVERAGES), ERRORS (AS VARIANCES) AND CORRELATIONS (AS
COVARIANCES)
= REPRESENTATION OF P|[F,] AT DISCRETE SET OF POINTS (z;, Q7)

e TRAIN A NEURAL NET ON EACH REPLICA, THUS OBTAINING A NEURAL
REPRESENTATION OF THE FUNCTION F."*Y®) (3 ()

e THE SET OF NEURAL NETS IS A REPRESENTATION OF THE PROBABILITY DENSITY:

rep

(F @] ) = 5 37 [0 @)

EXAMPLE: MELLIN MOMENT

<f do 2N 1F2 Q2)> - ]\7ep 7epf dr N lF (net)(k)( ,QQ)

e CHECK GOODNESS OF FIT THROUGH STATISTICAL INDICATORS
(x*, CORRELATION,. . .)



MONTE CARLO DATA GENERATION

e CHOOSE BCDMS+ NMC PROTON & DEUTERON F5 DATA (FULL CORRELATED SYSTEMATICS
AVAILABLE), TAKEN AT 4 BEAM ENERGIES:
~ 500 P + ~ 500 D DATA POINTS

e ON TOP OF STAT. ERRORS, 4 SYSTEMATICS + 1 NORMALIZATION (NMC) OR 6 SYSTEMATICS +
1 ABSOLUTE & 2 RELATIVE NORMALIZATIONS (BCDMS), WITH VARIOUS FORMS OF

CORRELATION (FULL, OR FOR EACH TARGET, OR FOR EACH BEAM ENERGY)

GENERATE DATA ACCORDING TO A MULTIGAUSSIAN DISTRIBUTION

F’(aﬁr‘t) (k) —
1

(1+7"5 UN)\/l—I—r(k) ON, \/1+'r( )O'Nb Fz(emp) + Li.1 100 Fi(emp) —I—r,g’ks) 0'2

r univariate gaussian random nos., one 7; ; for each data, but single r; ; for all correlated data

Proton
Central values Errors Correlations

SCATTER PLOT ART. VS. EXP. FOR 10
(RED) 100 (GREEN) AND 1000 (BLUE)
REPLICAS

NEED 1000 REPLICAS TO REPRODUCE CORRELATIONS TO PERCENT ACCURACY



NEURAL NETWORKS

STRUCTURE
OQutput
W 4 e Each neuron receives input from neurons
Hidden in preceding layer and feeds output to neu-
[&,}gi}, o2 rons in subsequent layer
& “ &n Tmput e Activation determined by weights and
thresholds

1 =g (ZJ wij€j — 9¢)

e e Sigmoid activation function
1

/D/ 9(2) = o=

-10 -5 5 10

WEIGHTS & THRESHOLDS CAN BE ADJUSTED SO THAT SIGMOIDS ARE IN
CROSSOVER NONLINEAR REGION

THANKS TO NONLINEAR BEHAVIOUR, ANY FUNCTION CAN BE EXPANDED OVER BASIS
OF g(x), g(g(x)), g(g(g(x))) ...

CAN CHOOSE REDUNDANT ARCHITECTURE (NO. OF LAYERS & NODES) TO
MAKE SURE NO SMOOTHING BIAS IS INTRODUCED



NEURAL NETWORKS
TRAINING
TRAINING BY BACK-PROPAGATION

® START WITH RANDOM NETWORK & COMPUTE OUTPUT FOR GIVEN INPUT (F, FOR
2
GIVEN (z,Q%))
e COMPARE COMPUTED OUTPUT TO DESIRED OUTPUT BY MEANS OF ENERGY
FUNCTION (e.g. Xx°)

e VARY WEIGHTS AND THRESHOLDS ALONG DIRECTION OF STEEPEST DESCENT OF
ENERGY FUNCTION = CAN BE DONE BY BACK-PROPAGATION

A S N BYINTY R SRR
“fﬁﬂlﬁm}*lm*lm] L gkiﬂﬁ“”]”lm i mf*ﬁﬂ g
o ] ! ‘ﬁi ] °j§. . nen j

WHEN SHOULD TRAINING STOP?
WHICH IS THE APPROPRIATE ENERGY FUNCTION?



OPTIMAL TRAINING
WITH LONG ENOUGH TRAINING & BIG ENOUGH NETWORK,
PREDICTION GOES THROUGH ALL POINTS

any error function proportional to (data-nets) will do: vanishes at minimum.

Q: DO WE REALLY WANT THIS?
NAIVE A: SURE! Then when averaging over MC sample, at (z, @?) of datapoints averaging

over nets is identical to averaging over data

OBJECTION: WHAT IF WE HAVE TWO MEASUREMENTS AT THE SAME (z, Q?)?

(1) (2)
F +F
PERFORM WEIGHTED AVERAGE —2 fo1tFy /o2
1/014+1/02

BUT WHAT IF WE HAVE TWO MEASUREMENTS AT (z;, Q7 ) WHICH ARE VERY CLOSE?

BEFORE DATA GENERATION.

F5 1S NOT A FRACTAL!

CLEVER A: eERROR FUNCTION — USUAL LOG-LIKELIHOOD
N (F(art)(k)_F(net)(k))2
(k) _ dat i i
E [w70] - Z’iZl o_gemp)2

E®) [w,0]
e ESTABLISH FIXED TRAINING LENGTH SUCH THAT N R 1

WHAT ABOUT SYST. ERRORS? TAKEN CARE OF BY MC DATA GENERATION!

qu(net) provide best fit of Fi(sys)(k) — Fi(e:cp) + Z;V:szis Tg,kp)o'i,P'

Including systematics in likelihood not practical (nonlocal back-propagation).

= TRAIN 1000 PROTON, 1000 DEUTERON & 1000 NONSINGLET NETS



NEURAL INFORMATION HANDLING 1

N (F.(emp) _F.(”n,et)(o))2
STUDY DEPENDENCE OF ERROR FCTN E(® = 1§ Ndat 1 i

dat £ei=1 (cxp)?

TRAINING LENGTH FOR NET TRAINED ON CENTRAL VALUES |

ON

INHOMOGENEOUS ERRORS

NS: AFTER ~ 107 TRAINING CYCLES, E ~ 1 BUT WIDE SPREAD BETWEEN DATASETS
= NMC OVERLEARNT & BCDMS UNDERLEARNT

training on all data training on BCDMS training on NMC
|||||||||||||||||||||_ 2‘5_"'|""|""|""_2"0"'|""|""|""
] - all data E \ all data
14 all data — e 1 o
NMC BCDMS BCDMS

2.0

1.2 BCDMS

15

1.0

1 o8 _|
S P R R RO A B D B
50 100 150 200 50 100 150 200

cyclesx1 0® cyclesx 10°

e EACH DATASET PREDICTS THE OTHER
— FULL COMPATIBILITY

0.4-_— ]

e e e

200 400 600 800 1000
cyclesxlO8

e BCDMS HARDER TO LEARD THAN NMC

(SMALLER ERRORS)



INHOMOGENEOUS ERRORS cont’d
NETS ARE GETTING TRAPPED IN LOCAL MIN. OF THE DATA WHICH ARE LEARNT FASTER

global min. can only be reached at overlearning point

SOLUTION: WEIGHTED TRAINING
BCDMS 10 % NMC

uniform training 90%
C |

1.4

1.4 all data all data
NMC NMC
BCDMS BCDMS

1.2

1.0

0.8

0.6

0.4

200 400 600 800 1000 100 200 300
cyclesx 10° cyclesx 10°

e convergence of two experiments reached fast by weighted training

e at convergence, EO) ~1

e after convergence, E(9) for two experiment slowly improve at same rate,

oscillating about each other = global minimum found



NEURAL INFORMATION HANDLING II
COMBINING DATA

NS data vs. neural nets

0.03<x<0.12 IN NONSINGLET CASE,
200 [7 WMC data” © 0T T 1 AVERAGE VARIANCE OF NETS << STAT.
-0 BCDMS data .
- o Neural N k . —
P S L T o 17— ERROR OF DATA (FACTOR 3-4)
- 1 IS IT DUE TO SMOOTHING BIAS?
502 ¢ * gEFR e ® 2 5 X000 (1150 7
- 1 OR IS IT DUE TO COMBINING DATA?
1.25 '—2 = % * !iﬁg’i gos 3 o012 ] recall error on weighted average
2w ]
o . _ 1 )
1.00 —E s & e !§g #E ey X=0.090 (+1.00) — o= 1/02+1/02 < 0i
- ses ged @ xouwGos) 1 (CAN CONSTRUCT A STATISTICAL
o5 - T % 2ee @ i? * g &  x=0110 (+0.75) ]
" o o 1 INDICATOR TO TELL!
1 5 10 50 100
QZ
N (Fgart)(n)_ (net)(n))2
T‘ep dat 1 (2 . Lo .
Average error Nyey Z Z (emp)2 (n — replica; 1 — datapoint)
exr ne n 2
“Central” error Z ’"ep ZNd“t (Fi( p)_ ( . ))
rep (emp)2

’LS

Bias indicator R = (E)/(E): if opet << Oexp then
R ~ 1= BIAS; R =~ 1/2= ERROR REDUCTION HERE R = 0.58 (0.53 NMC only)



NEURAL INFORMATION HANDLING 111
INCOMPATIBLE DATA

e FOR PROTON FITS, CONVERGENCE ACHIEVED, BUT FE (0) 2 1.4 EVEN W. VERY LONG
TRAINING

o for NMC data E(®) > 1.6 (training with all data)

for NMC data E(0) > 2.2 (training with NMC only)

e ALL OTHER STATISTICAL INDICATORS OK

SOME NMC DATA ARE INCOMPATIBLE WITH OTHER DATA
Blow-up of proton data/nets NMC proton data/nets

0.26<x<0.29 0.26<x<0.29
1.85 lllllll T T l 1-85_ T llllll

T T T T
R oo |- % &
#

niil 1 iﬁflﬁiiii; o ¥y

1.60 —

I % ] 1.50 |— .
n&‘? 1.50 _— % _- n:;:‘\: i ]
- + NMC data 4 i X NMC 90 GeV ]
C ] L + NMC 120 GeV |
s [y o e N 145 Mo NMC 200 GeV m
% | ¢ Neural Networks ] i i

L | [ © Neural Networks

1 P T B 1 I 1 1 1 T T T B | I 1.40 L 1 L 1 L L
1.40 5 10 50 100 3 4 5 6 7 8910 20 30 40 50 60 70
Q® Qf

NEURAL NET DISCARDS INCONSISTENT DATA & PROVIDES GOOD FIT TO THE REST



2.25

2.00

1.76

1.50

1.25

1.00

NEURAL FIT TO PROTON Fy

0.003<x<0.030

RESULTS

0.03<x<0.12

DATA

0.12<x<0.80

F5 PLOTS & NUMERICAL COMPUTATION AVAILABLE @

http://sophia.ecm.ub.es/f2neural
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Q? Q? Q?

FULL NEURAL FIT TO F5 FOR PROTON, DEUTERON & NONSINGLET AVAILABLE

ERRORS AND CORRELATIONS FAITHFULLY REPRODUCED, BUT STAT.

UNCERTAINTIES OPTIMALLY COMBINED

— FIT CAN BE USED IN LIEU OF DATA, BUT BETTER THAN THEM

SOURCE CODE, DRIVER PROGRAM & GRAPHIC WEB INTERFACE FOR



AN APPLICATION: o« FROM SCALING VIOLATIONS

NONSINGLET F5 = NONSINGLET QUARK DISTRIBUTION
IN THE “DIS” FACTORIZATION SCHEME

nf

Vi@, Q%) = FY(2,Q%) - F(2,Q%) = ) _ e [ai(x, Q%) + G(w, Q)]

1=1

p—n

SO F¥° EVOLVES MULTIPLICATIVELY

9 d 2 Oés(ﬂ2) 1dy x 2 NS 2
— = — P —. as F: ,
1.2 (7:“’) 5 Ty yaa(ﬂ) 2(y,u)

P: DIS-scheme Altarelli-Parisi NS splitting function

GIVEN DATA FOR F&V° CAN DETERMINE ;s FROM ITS SCALING VIOLATIONS
PROBLEM: HARD TO DEAL WITH CONVOLUTIONS...

NaveE SOLUTION: INTRODUCE A PARAMETRIZATION OF F5, TAKE MELLIN MOMS.

u? 7 T FNS (12) = 220 gy (o (s 2)) FNS (p?);
(s (p?) = [ 2N~ 1P(:v,as(u2)), FNS(u2) = [ N ENS (2, 42)

= BAD: EXTRAPOLATION /PARAMETRIZATION BIAS



AN UNBIASED ANALYSIS METHOD:
TRUNCATED MOMENTS

2-SPACE DISTN.: MEASURABLE, N-SPACE MOMENTS: EVOLUTION
BUT EVOLUTION GIVEN BY GIVEN BY LINEAR DIFFERENTIAL EQN,
INTEGRO-DIFFERENTIAL EQN BUT NOT MEASURABLE

TRUNCATED MOMENTS:
NS 2y —_ rl —171NS 2
Fy 5 (o, p?) = [, dz a" " Fy'° (z, pu®)
e MEASURABLE

e TO ANY FINITE ACCURACY, SATISFY COUPLED LINEAR EVOLUTION EQUATIONS
WITH UPPER TRIANGULAR ANOMALOUS DIMENSION MATRIX:

NS 2 NS
Fy 7 (zg, %) M (2q, a5 (12)) 712(m0,as(u ) 713(wo,as(u DT Fy 1 (=0,
N N
d F S(wo :u‘ ) _ 0 722($0ﬂas(/‘ )) '723("13030‘8(/"' )) F2,§(m0’

M is order of truncation: only M moments coupled.

As M — oo, accuracy becomes arbitrarily high.

e CAN TRUNCATE TO FINITE TRIANGULAR ANOMALOUS DIMENSION MATRIX
e RAPID CONVERGENCE: FOR xg §J 0.1, M ~ 10 ENSURES PERCENT ACCURACY ON EVOLUTION

OF ALL MOMENTS WITH N > 2. Same accuracy on first moment also possible with

improved solution (non-triangular matrix).



DETERMINATION OF o,

e MOMENTS CAN BE COMPUTED AT ANY SCALE IN TERMS OF MOMS. AT REF. SCALE Q%

through evolution matrix M (zq; QO, Q as) determined by an. dim. and ag:

g} (x0,QF) = ZM_  Map(z0; Q55 QF; @s) gp(z0, Q7)

P=Nmin

e CAN DETERMINE o BY MINIMIZING X2 with covariance matrix V! from neur. nets
—1
=D i oy (00T (@0,Q2) — af(20,Q2) | Vit [ (w0, Q2) — it (z0, Q)]
MOMENTS AND CORRELATIONS
IN PRINCIPLE FIT ars & ALL MOMENTS AT REF. SCALE

IN PRACTICE NEIGHBOURING MOMENTS HIGHLY CORRELATED;
OFF-DIAGONAL ANOMALOUS DIMS. SMALL = FIT ONLY A SUBSET OF MOMENTS

xzo = 0.03 as(Mz) FROM A SINGLE MOMENT
2 2
N2 (20,Q2): ERRORS AND CORRELATIONS three scales 20 < @% < 70 GeV
Q? = 20 GeV? purple: corrln > 90% n as

2 0.085 + 0.070
N 2 3 4 5 6 o (%) 3 0.106 + 0.030
2 1.0 0.966 0.895 0.808 0.718 8.8 4 0.115 + 0.019
3 0.966 1.0 0.977 0.923 0.854 7.5 5 0.123 + 0.015
4 0.895 0.977 1.0 0.983 0.941 7.4 6 0.127 + 0.014
5 0.808 0.923 0.983 1.0 0.987 8.0 7 0.129 + 0.014
6 0.718 0.854 0.941 0.987 1.0 8.9 8 0.129 + 0.016
9 0.129 + 0.018

purple: minimal error



AS THE NUMBER OF FITTED MOMENTS IS INCREASED
ERROR DECREASES,

STABILITY OF CENTRAL VALUES IMPROVES

BUT IF CORRELATIONS LARGE, FIT UNSTABLE:

BEST FIT OF THIRD MOMENT
FIT OF MOM.S 2+3+4+5+6 (OVERCORR)

0.018 — -

0.016 — -

0.014 — — —
i | v—1l_- _1
1—p

2

0012 Il Il Il Il Il Il
20 30 40 50 60 70

e 20 < Q° < 70 GEV?, THREE SCALES correlns. larger if Q2 values closer

e ro = 0.03 correlns. larger if z¢ larger

zg = 0.03
FITTED MOMENTS ag
2+3+4 0.126 £+ 0.010
2+4+6 0.140 £ 0.008
3+5+7 0.138 £ 0.009
2+4+6+8 0.142 + 0.009
3+5+7+9 0.124 + 0.007
2+4+5+7 0.141 4 0.009
3+4+5+6+7 0.1256 £+ 0.0049
3+4+5+6+8 0.1247 + 0.0050
2+4+5+6+8 0.1242 + 0.0042
2+4+5+7+8 0.1254 + 0.0044

If correlation p ~ 1, X2

e 2+4+5+6+8 higher moments less reliable and more correlated

= Ag; Vig_.lqu dominated by off—

diagonal terms (unreliable: error on p large):




UNCERTAINTIES

STAT. ERROR REN. SCALE HEAVY QUARK THR.

22\\\\ ‘ ‘ ‘\\\\ 0.135 ‘
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k
Xs ren Kin

e ASYMMETRIC x2: o(sSTAT.) = 0007

e HIGHER ORDER CORRNS FROM p2,,, = kren@2, 0.3 < kren < 4: o(REN.) = 7007

e POSITION OF HQ THRESH. Q2, = ki, M2, 0.3 < k¢, < 4 o(THRESH.) = (000

e POWER CORRNS. VARY @2 . FROM 20 To 30 GEV? ¢(HT) < 0.001

min

as(Mz) =0.124 T9-002 (exp.) T9-002 (TH.) = 0.124 T9-00% (TOTAL)

ERROR: DOMINATED BY EXP. ERROR, TH. BIAS & UNCERTAINTY MINIMIZED
CENTRAL VALUE: CONSISTENT WITH WORLD AVERAGE BUT HIGH
EVIDENCE FOR SUDAKOV? High moments dominate the fit, Q%; = Q*/N;

as from a single moment increases with N



OUTLOOK

o SUCCESFUL IMPLEMENTATION OF NEURAL FITTING
— NEURAL PARTON DISTRIBUTIONS!

e WORKING EVOLUTION CODE FOR TRUNCATED
MOMENTS
— (GLUON SPIN FRACTION (AND MORE...)

...A WHOLE NEW SET OF TOOLS IN THE BOX!



