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THE NEURAL MONTE CARLO

• GENERATE A SET OF MONTE CARLO

REPLICAS σ(k)(pi) OF THE ORIGINAL

DATASET σ(data)(pi)

⇒ REPRESENTATION OF P[σ(pi)] AT

DISCRETE SET OF POINTS pi

• TRAIN A NEURAL NET FOR EACH PDF

ON EACH REPLICA, THUS OBTAINING

A NEURAL REPRESENTATION OF THE

PDFS f
(net),(k)
i

• THE SET OF NEURAL NETS IS A REP­

RESENTATION OF THE PROBABILITY

DENSITY:

〈

σ [fi]
〉

=
1

Nrep

Nrep
∑

k=1

σ
[

fi
(net)(k)

]



FEATURES OF THE FIT

THE DATASET

x
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410

NMC-pd
NMC
SLAC
BCDMS
ZEUS97
H1lx97
H197
H199
H100
ZEUS02
ZEUS03
CHORUS

Q2 > 2 GEV2;W 2 > 12.5 GEV2

NAME DATA POINTS TARGET

NMC PD 153 F d
2

/F
p
2

NMC 245 F
p
2

SLAC 47 (47) F
p(d)
2

BCDMS 333 (248) F
p(d)
2

ZEUS97 240 (29) σ̃NC(CC),+

ZEUS02 92 (26) σ̃NC(CC),−

ZEUS03 90 (30) σ̃NC(CC),+

H1LX97 135 σ̃NC,+

H197 130 (25) σ̃NC(CC),+

H199 139 (28) σ̃NC(CC),−

H100 147 (28) σ̃NC(CC),+

H108 8 FL

CHORUS 471 (471) σ̃ν(ν̄)

TOTAL 3161



FEATURES OF THE FIT

THEORY

• NLO EVOLUTION (N – SPACE, EXPANDED)

• ZM­VFN SCHEME FOR THRESHOLDS

• αs(Mz) = 0.119, PDFS GIVEN AT Q2
0 = 2 GEV2

• TARGET­MASS CORRECTIONS INCLUDED UP TO TWIST FOUR

BASIS FUNCTIONS AND PARAMETRIZATION

• FIVE INDEPENDENT PDFS: SINGLET, GLUON, TOTAL VALENCE, TRIPLET, d̄ − ū.

• SYMMETRIC STRANGE SEA s(x) = s̄(x),

PROPORTIONAL TO NON­STRANGE SEA, s̄(x) = C
2
(ū(x) + d̄(x)), (C = 0.5)

• ALL PDFS PARAMETRIZED BY A 2­5­3­1 NEURAL NETWORK:

37 × 5 = 185 PARAMETERS

• MOMENTUM AND VALENCE SUM RULES ENFORCED STRICTLY

• POSITIVITY OF FL ENFORCED for x ≥ 10−7, Q2
≥ 2 GeV2



RESULTS

PARTON DISTRIBUTIONS
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RESULTS

PHYSICAL OBSERVABLES

STRUCTURE FUNCTIONS
PROTON F2
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NEUTRINO XSECT.
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TOTAL CROSS­SECTIONS AT LHC, NLO FROM MCFM

σ
W+B

l+ν
∆σ/σ σ

W−B
l−ν

∆σ/σ

- [nb] W+ [nb] W−

NNPDF08 11.96 ± 0.30 2.5% 8.49 ± 0.19 2.3%

CTEQ6.5 12.66 ± 0.29 2.3% 9.29 ± 0.23 2.5%

CTEQ6.1 11.85 ± 0.28 2.4% 8.73 ± 0.23 2.6%

MRST01 11.84 ± 0.14 1.2% 8.80 ± 0.10 1.1%

σZB
l+l−

∆σ/σ σtt̄ ∆σ/σ σH ∆σ/σ

[nb] Z [pb] tt̄ [pb] H

NNPDF08 2.22 ± 0.04 2.0% 1014 ± 24 2.3% 35.79 ± 1.04 3.0%

CTEQ6.5 2.27 ± 0.05 2.2% 942 ± 19 2.0% 37.51 ± 0.80 2.2%

CTEQ6.1 2.12 ± 0.05 2.3% 970 ± 18 1.9% 38.50 ± 0.85 2.2%

MRST01 1.98 ± 0.02 1.0% 1013 ± 13 1.3% 37.52 ± 0.40 1.1%
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RESULTS

GENERAL STATISTICAL FEATURES

χ2 AT STOPPING

tr
(k)E
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TRAINING LENGTHS

Training lenght [GA generations]
0 1000 2000 3000 4000 50000

0.1

0.2

0.3

0.4

0.5

Distribution of training lenghtsDistribution of training lenghts

χ2
tot 1.34

〈E〉 2.71

〈Etr〉 2.68

〈Eval〉 2.72

〈TL〉 824.23

Nrep 1000

• POISSONIAN DISTRIBUTION OF TRAINING LENGTHS

• BEST FIT χ2 = 1.34: MINOR DATA INCOMPATIBILITIES (?)



PARAMETRIZATION INDEPENDENCE:
METHODOLOGY

• EFFECTIVELY INFINITE NUMBER OF PARAMETERS

⇒ CAN REPRESENT ANY FUNCTION

• COMPLEX SHAPES (LARGE NO.OF PARAMETERS) REQUIRE LONGER FITTING

• FIT STOPS WHEN QUALITY OF FIT TO RANDOMLY SELECTED “VALIDATION”

DATA (NOT FITTED) STOPS IMPROVING

• CAN OBTAIN A FIT WITH χ2
LOWER THAN BEST FIT (“OVERLEARNING”)



PARAMETRIZATION INDEPENDENCE:

REDUNDANCY AND OVERLEARNING

• OPTIMAL FIT OBTAINED WHEN QUALITY OF FIT TO VALIDATION (CONTROL) DATA

STOPS IMPROVING

• POSSIBILITY OF OVERFITTING GUARANTESS THAT MINIMUM NOT DRIVEN BY

PARAMETRIZATION

OPTIMAL FITTING

χ2 FIT TO DATA



PARAMETRIZATION INDEPENDENCE:

REDUNDANCY AND OVERLEARNING

• OPTIMAL FIT OBTAINED WHEN QUALITY OF FIT TO VALIDATION (CONTROL) DATA

STOPS IMPROVING

• POSSIBILITY OF OVERFITTING GUARANTESS THAT MINIMUM NOT DRIVEN BY

PARAMETRIZATION

OVERFITTING

χ2 FIT TO DATA



PARAMETRIZATION INDEPENDENCE:

LACK OF BIAS

• IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE

• STATISTICS SHOW WHETHER THE EFFECT IS REAL
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PARAMETRIZATION INDEPENDENCE:

LACK OF BIAS

• IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE

• STATISTICS SHOW WHETHER THE EFFECT IS REAL
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PARAMETRIZATION INDEPENDENCE:

LACK OF BIAS

• IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE

• STATISTICS SHOW WHETHER THE EFFECT IS REAL
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PARAMETRIZATION INDEPENDENCE:

LACK OF BIAS

• IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE

• STATISTICS SHOW WHETHER THE EFFECT IS REAL
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PARAMETRIZATION INDEPENDENCE:

LACK OF BIAS

• IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE

• STATISTICS SHOW WHETHER THE EFFECT IS REAL

1000 REPLICAS
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PARAMETRIZATION INDEPENDENCE:

STATISTICAL STABILITY

COMPARE DISTANCE IN UNITS OF SIGMA OF RESULTS OBTAINED WITH

DIFFERENT ASSUMPTIONS

• DISTANCE IN UNITS OF SIGMA

〈d[q]〉 =

√

√

√

√

〈

(

〈qi〉(1)−〈qi〉(2)

)2

σ2[q
(1)
i

]+σ2[q
(2)
i

]

〉

dat

• NOTE σ ⇒ ERROR ON AVERAGE

= (ERROR ON qi)/
√

N

with 100 replicas,d = 1

→ fits differ by 1/10 of nominal error

• TEST PREDICTIONS

FOR CENTRAL VALUES & ERRORS

DISTANCE BETWEEN STANDARD & FIT

WITH SMALLER NEURAL NETS

2­4­3­1 VS 2­5­3­1 ARCHITECTURE

(31 vs. 37 parms per net)
DATA EXTRAPOLATION

SINGLET 0.005 ≤ x ≤ 0.1 10−4 ≤ x ≤ 10−3

〈d[q]〉 0.96 1.32

〈d[σ]〉 1.23 1.32

GLUON 0.005 ≤ x ≤ 0.1 10−4 ≤ x ≤ 10−3

〈d[q]〉 1.40 1.13

〈d[σ]〉 1.17 1.06

VALENCE 0.1 ≤ x ≤ 0.6 0.03 ≤ x ≤ 0.3

〈d[q]〉 1.40 0.93

〈d[σ]〉 1.09 0.96

TRIPLET 0.05 ≤ x ≤ 0.75 0.01 ≤ x ≤ 0.1

〈d[q]〉 1.05 1.09

〈d[σ]〉 1.68 2.5



PARAMETRIZATION INDEPENDENCE:

THE “HERALHC BENCHMARK”

REDUCED DATASET ⇒ WIDER ERROR BAND

from 3161 to 773 datapoints

reduced info on small x sea (no low Q2 data)

& large x valence (no neutrino data)

Q2 > 9 GEV2;W 2 > 15 GEV2

NAME DATA POINTS TARGET

NMC PD 73 F d
2

/F
p
2

NMC 95 F
p
2

BCDMS 322 F
p
2

ZEUS97 206 F
p
2

H1LX97 77 F
p
2

TOTAL 773
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PARAMETRIZATION INDEPENDENCE:
THE “HERALHC BENCHMARK”:INCOMPATIBLE DATA

THE SMALL x CC REDUCED CROSS SECTION

results presented at the HERALHC workshop (NNPDF preliminary fit)
FULL DATASET REDUCED “BENCHMARK” DATASET

NO ERROR REDUCTION WHEN DATA IN WIDER DATA SET ARE INCOMPATIBLE



DELIVERY:
RESTRICTED SAMPLE OF REPLICAS

• WIDE SAMPLE OF PSEUDODATA ENDURES NO BIAS

• IMPRACTICAL TO AVERAGE OVER THOUSAND(S) OF REPLICAS

• SELECT SUBSET OF REPLICAS WITH APPROXIMATELY SAME STATISTICAL

DISTRIBUTION AS FULL SET

• construct histogram for #

of replicas n sigma away

from mean

• compare result for subset &

full

• minimize relative entropy

of two histograms

S =

=
∑

i bins

(

p
(1)
i

− p
(2)
i

)

ln
p
(1)
i

p
(2)
i

• select with genetic algo-

rithm subset which mini-

mizes S

FULL (1000) VS. REDUCED (50) PROBABILITY HISTOGRAMS
SINGLET AT x = 0.1 VALENCE AT x = 0.01



OUTLOOK

• FIT TO FULL DIS DATASET

WITH UNBIASED ERROR ESTIMATE

• ALREADY INTERFACED TO LHAPDF

• FULL STATISTICAL FEATURES BASED ON SET OF

1000 REPLICA PDFS,

RESTRICTED SET OF 40 PDFS AVAILABLE SOON



EXTRAS



OPTIMAL FITTING VS. OVERLEARNING: AN EXAMPLE

THE TRUE FUNCTION



OPTIMAL FITTING VS. OVERLEARNING: AN EXAMPLE

UNDERLEARNING



OPTIMAL FITTING VS. OVERLEARNING: AN EXAMPLE

OPTIMAL FIT



OPTIMAL FITTING VS. OVERLEARNING: AN EXAMPLE

OVERLEARNING



WHAT ARE NEURAL NETWORKS?
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MULTILAYER FEED­FORWARD NETWORKS

• Each neuron receives input from neurons

in preceding layer and feeds output to neu-

rons in subsequent layer

• Activation determined by weights and

thresholds

ξi = g

(

∑

j
ωijξj − θi

)

• Sigmoid activation function

g(x) = 1
1+e−βx

JUST ANOTHER SET OF BASIS FUNCTIONS!

A 1­2­1 NN: f(x) = 1

1+e

θ
(3)
1

−
ω
(2)
11

1+e
θ
(2)
1

−xω
(1)
11

−
ω
(2)
12

1+e
θ
(2)
2

−xω
(1)
21

ANY FUNCTION CAN BE REPRESENTED BY A SUFFICIENTLY BIG NEURAL

NETWORK

LESS PARAMETERS → SMOOTHER FUNCTIONS



WHY NEURAL NETWORKS?

IN A STANDARD FIT, ONE LOOKS FOR MINIMUM χ2
WITH GIVEN FINITE PARM.

• IF THE BASIS IS TOO LARGE, THE FIT NEVER CONVERGES

• IF THE BASIS IS TOO SMALL, THE FIT IS BIASED

Q: HOW CAN ONE BE SURE THAT THE COMPROMISE IS UNBIASED?
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WHY NEURAL NETWORKS?

IN A STANDARD FIT, ONE LOOKS FOR MINIMUM χ2
WITH GIVEN FINITE PARM.

• IF THE BASIS IS TOO LARGE, THE FIT NEVER CONVERGES

• IF THE BASIS IS TOO SMALL, THE FIT IS BIASED

Q: HOW CAN ONE BE SURE THAT THE COMPROMISE IS UNBIASED?
IN A NEURAL FIT, SMOOTHNESS DECREASES AS FIT QUALITY IMPROVES:

OVERLEARNING

A: STOP THE FIT BEFORE OVERLEARNING SETS IN!
COULD BE DONE WITH STANDARD PARAMETRIZATIONS, BUT VERY INEFFICIENTLY



THE STOPPING CRITERION

MINIMIZE BY GENETIC ALGORITHM:
AT EACH GENERATION, THE χ2

EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2
OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2
FOR THE DATA IN THE VALIDATION SET (NOT

USED FOR FITTING)

• WHEN THE VALIDATION χ2
STOPS DECREASING, STOP THE FIT
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GO!
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THE STOPPING CRITERION

MINIMIZE BY GENETIC ALGORITHM:
AT EACH GENERATION, THE χ2

EITHER UNCHANGED OR DECREASING

• DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION

• MINIMIZE THE χ2
OF THE DATA IN THE TRAINING SET

• AT EACH ITERATION, COMPUTE THE χ2
FOR THE DATA IN THE VALIDATION SET (NOT

USED FOR FITTING)

• WHEN THE VALIDATION χ2
STOPS DECREASING, STOP THE FIT

TOO LATE!



MONTE CARLO DATA GENERATION
• BCDMS+ NMC PROTON & DEUTERON F2 DATA (FULL CORRELATED SYSTEMATICS
AVAILABLE), TAKEN AT 4 BEAM ENERGIES

• ON TOP OF STAT. ERRORS, 4 SYSTEMATICS + 1 NORMALIZATION (NMC) OR 6 SYSTEMATICS +

1 ABSOLUTE & 2 RELATIVE NORMALIZATIONS (BCDMS), WITH VARIOUS FORMS OF

CORRELATION (FULL, OR FOR EACH TARGET, OR FOR EACH BEAM ENERGY)

GENERATE DATA ACCORDING TO A MULTIGAUSSIAN DISTRIBUTION

F
(art) (k)
i
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(1 + r
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5 σN )

√

1 + r
(k)
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√
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F
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i

+
r
(k)
i,1

fb+r
(k)
i,2

fi,s+r
(k)
i,3

fi,r

100 F
(exp)
i

+ r
(k)
i,s

σi
s

]

r univariate gaussian random nos., one ri,s for each data, but single ri,j for all correlated data

SCATTER PLOT ART. VS. EXP. FOR 10
(RED) 100 (GREEN) AND 1000 (BLUE)
REPLICAS

NEED 1000 REPLICAS TO REPRODUCE CORRELATIONS TO PERCENT ACCURACY



STOPPING I

• EACH NEURAL NET IS FITTED TO A PSEUDODATA REPLICA BY MINIMIZING THE χ2
TO

SUBSET OF DATA (TRAINING SET)

• FIT STOPS WHEN THE χ2
OF THE REMAINING DATA STARTS TO GROW (VALIDATION

SET)

STOPPING FOR THE χ2
OF ONE REPLICA (FULL FIT)
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PERTURBATIVE EVOLUTION

• PARAMETRIZE INITIAL PDFS AS A FUNCTION OF x

• DETERMINE GREEN’S FUNCTION FOR ALTARELLI­PARISI EVOLUTION
Γ(x, αs

(

Q2
)

, αs

(

Q2
0

)

) (note it is a distribution)

• DETERMINE EVOLVED PDF AS

q(x, Q2) = Gq(x, Q2
0) +

∫ 1

x

dy
y

Γ(+)(y, αs

(

Q2
)

, αs

(

Q2
0

)

)q
(

x
y
, Q2

0

)

• GREEN FUNCTION CAN BE INTERPOLATED OR COMPUTED ON A GRID AND
STORED

• EVOLUTION AND INTERPOLATION FULLY BENCHMARKED



TRAINING...

• EACH NEURAL NET IS FITTED TO A PSEUDODATA REPLICA BY MINIMIZING ITS χ2

• MINIMIZATION THROUGH GENETIC ALGORITHM + REWEIGHTING OF EXPERIMENTS

• QUALITY OF FIT MEASURED BY χ2
OF AVERAGE OF NN COMPARED TO DATA

χ2 OF BEST FIT
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• IF NO STOPPING IMPLEMENTED, χ2
OF THE AVERAGE DECREASES

AS A FUNCTION OF AVERAGE χ2
OF REPLICAS

• AT BEST FIT, AVERAGE χ2
OF REPLICAS ∼ 2; χ2

OF AVERAGE TO DATA ∼ 1


