NNPDF: RESULTS AND DEPENDENCE ON PARAMETRIZATION

Stefano Forte Università di Milano

FOR THE NNPDF COLLABORATION: R. D. BALL, L. DEL DEBBIO,

S.F., A. Guffanti, J. I. Latorre, A. Piccione, J. Rojo, M. Ubiali

CERN, JULY 14, 2008

THE NEURAL MONTE CARLO

- GENERATE A SET OF MONTE CARLO REPLICAS $\sigma^{(k)}(p_i)$ OF THE ORIGINAL DATASET $\sigma^{(\text{data})}(p_i)$ \Rightarrow REPRESENTATION OF $\mathcal{P}[\sigma(p_i)]$ AT DISCRETE SET OF POINTS p_i
- TRAIN A NEURAL NET FOR EACH PDF ON EACH REPLICA, THUS OBTAINING A NEURAL REPRESENTATION OF THE PDFS $f_i^{(net),(k)}$
- THE SET OF NEURAL NETS IS A REP-RESENTATION OF THE PROBABILITY DENSITY:

$$\left\langle \sigma\left[f_{i}\right]
ight
angle =rac{1}{N_{rep}}\sum_{k=1}^{N_{rep}}\sigma\left[f_{i}^{(net)(k)}
ight]$$

FEATURES OF THE FIT

THE DATASET

 $Q^2 > 2 \text{ GeV}^2$; $W^2 > 12.5 \text{ GeV}^2$

NAME	DATA POINTS	TARGET
NMC_PD	153	F_2^d/F_2^p
NMC	245	$F_2^{\overline{p}}$
SLAC	47 (47)	$F_2^{\overline{p}(d)}$
BCDMS	333 (248)	$F_2^{\overline{p}(d)}$
ZEUS97	240 (29)	$_{\tilde{\sigma}} \tilde{N}C(CC), +$
ZEUS02	92 (26)	$_{\tilde{\sigma}}NC(CC),-$
ZEUS03	90 (30)	$_{\tilde{\sigma}}NC(CC),+$
H1LX97	135	$_{\tilde{\sigma}}NC,+$
H197	130 (25)	$_{\tilde{\sigma}}NC(CC),+$
H199	139 (28)	$\tilde{\sigma}^{NC(CC)},-$
H100	147 (28)	$\tilde{\sigma}^{NC(CC)},+$
H108	8	F_L
CHORUS	471 (471)	$\tilde{\sigma}^{\nu(\bar{\nu})}$
TOTAL	3161	

FEATURES OF THE FIT THEORY

- **NLO EVOLUTION (**N SPACE, EXPANDED**)**
- **ZM-VFN** SCHEME FOR THRESHOLDS
- $\alpha_s(M_z) = 0.119$, PDFS GIVEN AT $Q_0^2 = 2 \text{ GeV}^2$
- TARGET-MASS CORRECTIONS INCLUDED UP TO TWIST FOUR

BASIS FUNCTIONS AND PARAMETRIZATION

- FIVE INDEPENDENT PDFS: SINGLET, GLUON, TOTAL VALENCE, TRIPLET, $\bar{d} \bar{u}$.
- Symmetric strange sea $s(x) = \bar{s}(x)$, proportional to non-strange sea, $\bar{s}(x) = \frac{C}{2}(\bar{u}(x) + \bar{d}(x))$, (C = 0.5)
- All PDFS parametrized by a 2-5-3-1 neural network: $37 \times 5 = 185$ parameters
- MOMENTUM AND VALENCE SUM RULES ENFORCED STRICTLY
- POSITIVITY OF F_L ENFORCED for $x \ge 10^{-7}, Q^2 \ge 2 \text{ GeV}^2$

RESULTS

RESULTS

PHYSICAL OBSERVABLES

TOTAL CROSS-SECTIONS AT LHC, NLO FROM MCFM

	$\sigma_{W} + \mathcal{B}_{I+U}$	$\Delta \sigma / \sigma$	$\sigma_W - \mathcal{B}_{I-1}$	$\Delta \sigma /$	σ W ⁺ Cross Section at th	e LHC [MCFM]	W [°] Cross Section at the LHC [MCFM]
		W^+	[nb]	W	. 13	Ţ	9.5
NNPDF08	11.96 ± 0.30	2.5%	8.49 ± 0.19	9 2.3%		•	9
CTEQ6.5	12.66 ± 0.29	2.3%	9.29 \pm 0.2	3 2.5%		4	8.5 b
CTEQ6.1	11.85 ± 0.28	2.4%	8.73 ± 0.23	3 2.6%	O 11.5 NNPDF08 (prel) CTEQ61	IRST2001E CTEQ65	8 NNPDF08 (prel) CTEQ61 MRST2001E CTEQ65
MRST01	11.84 ± 0.14	1.2%	8.80 ± 0.1	0 1.1%	0 11		7.5
	$\sigma_Z \mathcal{B}_{l+l-}$	$\Delta\sigma/\sigma$	$\sigma_t \bar{t}$	$\Delta\sigma/\sigma$	σ_H	$\Delta \sigma / \sigma$	Z ⁰ Cross Section at the LHC [MCFM]
	[nb]	Z	[pb]	t ar t	[pb]	H	2.3
NNPDF08	2.22 ± 0.04	2.0%	1014 ± 24	2.3%	35.79 ± 1.04	3.0%	ि <u>व</u> 2.2
CTEQ6.5	2.27 ± 0.05	2.2%	942 ± 19	2.0%	37.51 ± 0.80	2.2%	
CTEQ6.1	2.12 ± 0.05	2.3%	970 ± 18	1.9%	38.50 ± 0.85	2.2%	
MRST01	1.98 ± 0.02	1.0%	1013 ± 13	1.3%	37.52 ± 0.40	1.1%	1.8

RESULTS

GENERAL STATISTICAL FEATURES

• POISSONIAN DISTRIBUTION OF TRAINING LENGTHS

• BEST FIT $\chi^2 = 1.34$: MINOR DATA INCOMPATIBILITIES (?)

PARAMETRIZATION INDEPENDENCE: METHODOLOGY

- EFFECTIVELY INFINITE NUMBER OF PARAMETERS \Rightarrow CAN REPRESENT ANY FUNCTION
- COMPLEX SHAPES (LARGE NO.OF PARAMETERS) REQUIRE LONGER FITTING
- FIT STOPS WHEN QUALITY OF FIT TO RANDOMLY SELECTED "VALIDATION" DATA (NOT FITTED) STOPS IMPROVING
- CAN OBTAIN A FIT WITH χ^2 LOWER THAN BEST FIT ("OVERLEARNING")

PARAMETRIZATION INDEPENDENCE: REDUNDANCY AND OVERLEARNING

- OPTIMAL FIT OBTAINED WHEN QUALITY OF FIT TO VALIDATION (CONTROL) DATA STOPS IMPROVING
- POSSIBILITY OF OVERFITTING GUARANTESS THAT MINIMUM NOT DRIVEN BY PARAMETRIZATION

OPTIMAL FITTING

PARAMETRIZATION INDEPENDENCE: REDUNDANCY AND OVERLEARNING

- OPTIMAL FIT OBTAINED WHEN QUALITY OF FIT TO VALIDATION (CONTROL) DATA STOPS IMPROVING
- POSSIBILITY OF OVERFITTING GUARANTESS THAT MINIMUM NOT DRIVEN BY PARAMETRIZATION

OVERFITTING

- IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE
- STATISTICS SHOW WHETHER THE EFFECT IS REAL

- IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE
- STATISTICS SHOW WHETHER THE EFFECT IS REAL

- IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE
- STATISTICS SHOW WHETHER THE EFFECT IS REAL

- IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE
- STATISTICS SHOW WHETHER THE EFFECT IS REAL

- IRREGULAR OR KNOTTY SHAPES ALLOWED IF DATA FLUCTUATE
- STATISTICS SHOW WHETHER THE EFFECT IS REAL

PARAMETRIZATION INDEPENDENCE: STATISTICAL STABILITY

COMPARE DISTANCE IN UNITS OF SIGMA OF RESULTS OBTAINED WITH DIFFERENT ASSUMPTIONS

• DISTANCE IN UNITS OF SIGMA

$$\langle d[q] \rangle = \sqrt{\left\langle \frac{\left(\langle q_i \rangle_{(1)} - \langle q_i \rangle_{(2)} \right)^2}{\sigma^2 [q_i^{(1)}] + \sigma^2 [q_i^{(2)}]} \right\rangle_{\text{dat}}}$$

- NOTE $\sigma \Rightarrow$ ERROR ON AVERAGE = (ERROR ON q_i)/ \sqrt{N}
 - with 100 replicas, d = 1
 - \rightarrow fits differ by 1/10 of nominal error
- TEST PREDICTIONS

FOR CENTRAL VALUES & ERRORS

DISTANCE BETWEEN STANDARD & FIT

WITH SMALLER NEURAL NETS

2-4-3-1 vs 2-5-3-1 architecture

(31 vs. 37 parms per net)

	DATA	EXTRAPOLATION	
SINGLET	$0.005 \le x \le 0.1$	$10^{-4} \le x \le 10^{-3}$	
$\langle d[q] \rangle$	0.96	1.32	
$\langle d[\sigma] \rangle$	1.23	1.32	
GLUON	$0.005 \le x \le 0.1$	$10^{-4} \le x \le 10^{-3}$	
$\langle d[q] \rangle$	1.40	1.13	
$\langle d[\sigma] angle$	1.17	1.06	
VALENCE	$0.1 \le x \le 0.6$	$0.03 \le x \le 0.3$	
$\langle d[q] \rangle$	1.40	0.93	
$\langle d[\sigma] angle$	1.09	0.96	
TRIPLET	$0.05 \le x \le 0.75$	$0.01 \le x \le 0.1$	
$\langle d[q] \rangle$	1.05	1.09	
$\langle d[\sigma] \rangle$	1.68	2.5	

PARAMETRIZATION INDEPENDENCE:

THE "HERALHC BENCHMARK"

 $Q^2 > 9 \; {\rm GeV}^2; \, W^2 > 15 \; {\rm GeV}^2$

REDUCED DATASET \Rightarrow WIDER ERROR BAND from 3161 to 773 datapoints reduced info on small x sea (no low Q^2 data) & large x valence (no neutrino data)

NAME	DATA POINTS	TARGET
NMC_PD	73	F_{2}^{d}/F_{2}^{p}
NMC	95	F_2^p
BCDMS	322	$F_2^{\overline{p}}$
ZEUS97	206	$F_2^{\overline{p}}$
H1LX97	77	$F_2^{\overline{p}}$
TOTAL	773	

UP ANTIQUARK

UP QUARK

RESULTS COMPATIBLE TO WITHIN LESS THAN TWO SIGMA

PARAMETRIZATION INDEPENDENCE: THE "HERALHC BENCHMARK":INCOMPATIBLE DATA

THE SMALL x CC REDUCED CROSS SECTION

results presented at the HERALHC workshop (NNPDF preliminary fit) FULL DATASET REDUCED "BENCHMARK" DATASET

NO ERROR REDUCTION WHEN DATA IN WIDER DATA SET ARE INCOMPATIBLE

DELIVERY:

RESTRICTED SAMPLE OF REPLICAS

- WIDE SAMPLE OF PSEUDODATA ENDURES NO BIAS
- IMPRACTICAL TO AVERAGE OVER THOUSAND(S) OF REPLICAS
- SELECT SUBSET OF REPLICAS WITH APPROXIMATELY SAME STATISTICAL DISTRIBUTION AS FULL SET
- construct histogram for # of replicas n sigma away from mean FULL (1000) VS. REDUCED (50) PROBABILITY HISTOGRAMS SINGLET AT x = 0.1VALENCE AT x = 0.01• compare result for subset & Singlet at x=0.1 Valence at x=0.01 full 0.3 0.6 • minimize relative entropy 0.25 0.5 of two histograms 0.2 0.4 S =

$$= \sum_{i \text{ bins}} \left(p_i^{(1)} - p_i^{(2)} \right) \ln \frac{p_i^{(1)}}{p_i^{(2)}}$$

• select with genetic algorithm subset which minimizes S

OUTLOOK

- FIT TO FULL DIS DATASET WITH UNBIASED ERROR ESTIMATE
- ALREADY INTERFACED TO LHAPDF
- FULL STATISTICAL FEATURES BASED ON SET OF 1000 REPLICA PDFS, RESTRICTED SET OF 40 PDFS AVAILABLE SOON

THE TRUE FUNCTION

UNDERLEARNING

OPTIMAL FIT

OVERLEARNING

WHAT ARE NEURAL NETWORKS?

-10

MULTILAYER FEED-FORWARD NETWORKS

- Each neuron receives input from neurons in preceding layer and feeds output to neurons in subsequent layer
- Activation determined by weights and thresholds

$$\xi_i = g\left(\sum_j \omega_{ij}\xi_j - \theta_i\right)$$

• Sigmoid activation function $g(x) = \frac{1}{1 + e^{-\beta x}}$

JUST ANOTHER SET OF BASIS FUNCTIONS!

A 1-2-1 NN:
$$f(x) = \frac{1}{\substack{\theta_1^{(3)} - \frac{\omega_{11}^{(2)}}{1+e^{\theta_1^{(2)} - x\omega_{11}^{(1)}} - \frac{\omega_{12}^{(2)}}{1+e^{\theta_2^{(2)} - x\omega_{21}^{(1)}}}}$$

ANY FUNCTION CAN BE REPRESENTED BY A SUFFICIENTLY BIG NEURAL NETWORK

LESS PARAMETERS \rightarrow SMOOTHER FUNCTIONS

10

IN A STANDARD FIT, ONE LOOKS FOR MINIMUM χ^2 WITH GIVEN FINITE PARM.

- IF THE BASIS IS TOO LARGE, THE FIT NEVER CONVERGES
- IF THE BASIS IS TOO SMALL, THE FIT IS BIASED

Q: HOW CAN ONE BE SURE THAT THE COMPROMISE IS UNBIASED?

IN A STANDARD FIT, ONE LOOKS FOR MINIMUM χ^2 WITH GIVEN FINITE PARM.

- IF THE BASIS IS TOO LARGE, THE FIT NEVER CONVERGES
- IF THE BASIS IS TOO SMALL, THE FIT IS BIASED

Q: HOW CAN ONE BE SURE THAT THE COMPROMISE IS UNBIASED? IN A NEURAL FIT, SMOOTHNESS DECREASES AS FIT QUALITY IMPROVES:

IN A STANDARD FIT, ONE LOOKS FOR MINIMUM χ^2 WITH GIVEN FINITE PARM.

- IF THE BASIS IS TOO LARGE, THE FIT NEVER CONVERGES
- IF THE BASIS IS TOO SMALL, THE FIT IS BIASED

Q: HOW CAN ONE BE SURE THAT THE COMPROMISE IS UNBIASED? IN A NEURAL FIT, SMOOTHNESS DECREASES AS FIT QUALITY IMPROVES:

IN A STANDARD FIT, ONE LOOKS FOR MINIMUM χ^2 WITH GIVEN FINITE PARM.

- IF THE BASIS IS TOO LARGE, THE FIT NEVER CONVERGES
- IF THE BASIS IS TOO SMALL, THE FIT IS BIASED

Q: HOW CAN ONE BE SURE THAT THE COMPROMISE IS UNBIASED? IN A NEURAL FIT, SMOOTHNESS DECREASES AS FIT QUALITY IMPROVES:

PROPER LEARNING

IN A STANDARD FIT, ONE LOOKS FOR MINIMUM χ^2 WITH GIVEN FINITE PARM.

- IF THE BASIS IS TOO LARGE, THE FIT NEVER CONVERGES
- IF THE BASIS IS TOO SMALL, THE FIT IS BIASED

Q: HOW CAN ONE BE SURE THAT THE COMPROMISE IS UNBIASED? IN A NEURAL FIT, SMOOTHNESS DECREASES AS FIT QUALITY IMPROVES:

IN A STANDARD FIT, ONE LOOKS FOR MINIMUM χ^2 WITH GIVEN FINITE PARM.

- IF THE BASIS IS TOO LARGE, THE FIT NEVER CONVERGES
- IF THE BASIS IS TOO SMALL, THE FIT IS BIASED

Q: HOW CAN ONE BE SURE THAT THE COMPROMISE IS UNBIASED? IN A NEURAL FIT, SMOOTHNESS DECREASES AS FIT QUALITY IMPROVES:

A: STOP THE FIT BEFORE OVERLEARNING SETS IN!

IN A STANDARD FIT, ONE LOOKS FOR MINIMUM χ^2 WITH GIVEN FINITE PARM.

- IF THE BASIS IS TOO LARGE, THE FIT NEVER CONVERGES
- IF THE BASIS IS TOO SMALL, THE FIT IS BIASED

Q: HOW CAN ONE BE SURE THAT THE COMPROMISE IS UNBIASED? IN A NEURAL FIT, SMOOTHNESS DECREASES AS FIT QUALITY IMPROVES:

OVERLEARNING

A: STOP THE FIT BEFORE OVERLEARNING SETS IN! COULD BE DONE WITH STANDARD PARAMETRIZATIONS, BUT VERY INEFFICIENTLY

MINIMIZE BY GENETIC ALGORITHM: AT EACH GENERATION, THE χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

MINIMIZE BY GENETIC ALGORITHM: AT EACH GENERATION, THE χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

GO!

MINIMIZE BY GENETIC ALGORITHM: AT EACH GENERATION, THE χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

STOP!

MINIMIZE BY GENETIC ALGORITHM: AT EACH GENERATION, THE χ^2 EITHER UNCHANGED OR DECREASING

- DIVIDE THE DATA IN TWO SETS: TRAINING AND VALIDATION
- MINIMIZE THE χ^2 OF THE DATA IN THE TRAINING SET
- AT EACH ITERATION, COMPUTE THE χ^2 FOR THE DATA IN THE VALIDATION SET (NOT USED FOR FITTING)
- WHEN THE VALIDATION χ^2 STOPS DECREASING, STOP THE FIT

TOO LATE!

MONTE CARLO DATA GENERATION

- BCDMS+ NMC PROTON & DEUTERON F_2 DATA (FULL CORRELATED SYSTEMATICS AVAILABLE), TAKEN AT 4 BEAM ENERGIES
- ON TOP OF STAT. ERRORS, 4 SYSTEMATICS + 1 NORMALIZATION (NMC) OR 6 SYSTEMATICS + 1 ABSOLUTE & 2 RELATIVE NORMALIZATIONS (BCDMS), WITH VARIOUS FORMS OF CORRELATION (FULL, OR FOR EACH TARGET, OR FOR EACH BEAM ENERGY)

GENERATE DATA ACCORDING TO A MULTIGAUSSIAN DISTRIBUTION

$$F_{i}^{(art)(k)} = (1 + r_{5}^{(k)} \sigma_{N}) \sqrt{1 + r_{i,6}^{(k)} \sigma_{N_{t}}} \sqrt{1 + r_{i,7}^{(k)} \sigma_{N_{b}}} \left[F_{i}^{(exp)} + \frac{r_{i,1}^{(k)} f_{b} + r_{i,2}^{(k)} f_{i,s} + r_{i,3}^{(k)} f_{i,r}}{100} F_{i}^{(exp)} + r_{i,s}^{(k)} \sigma_{s}^{i} \right]$$

r univariate gaussian random nos., one $r_{i,s}$ for each data, but single $r_{i,j}$ for all correlated data

SCATTER PLOT ART. VS. EXP. FOR 10 (RED) 100 (GREEN) AND 1000 (BLUE) REPLICAS

NEED 1000 REPLICAS TO REPRODUCE CORRELATIONS TO PERCENT ACCURACY

STOPPING I

- EACH NEURAL NET IS FITTED TO A PSEUDODATA REPLICA BY MINIMIZING THE χ^2 TO SUBSET OF DATA (TRAINING SET)
- FIT STOPS WHEN THE χ^2 OF THE REMAINING DATA STARTS TO GROW (VALIDATION SET)

STOPPING FOR THE χ^2 OF ONE REPLICA (FULL FIT)

PERTURBATIVE EVOLUTION

- PARAMETRIZE INITIAL PDFS AS A FUNCTION OF \boldsymbol{x}
- DETERMINE GREEN'S FUNCTION FOR ALTARELLI-PARISI EVOLUTION $\Gamma(x, \alpha_s(Q^2), \alpha_s(Q^2))$ (note it is a distribution)
- DETERMINE EVOLVED PDF AS $q(x,Q^2) = Gq(x,Q_0^2) + \int_x^1 \frac{dy}{y} \Gamma^{(+)}(y,\alpha_s(Q^2),\alpha_s(Q_0^2)) q\left(\frac{x}{y},Q_0^2\right)$
- GREEN FUNCTION CAN BE INTERPOLATED OR COMPUTED ON A GRID AND STORED
- EVOLUTION AND INTERPOLATION FULLY BENCHMARKED

TRAINING...

- EACH NEURAL NET IS FITTED TO A PSEUDODATA REPLICA BY MINIMIZING ITS χ^2
- MINIMIZATION THROUGH GENETIC ALGORITHM + REWEIGHTING OF EXPERIMENTS
- QUALITY OF FIT MEASURED BY χ^2 OF AVERAGE OF NN COMPARED TO DATA

 χ^2 OF BEST FIT

 χ^2 OF BEST FIT VS. AVERAGE χ^2

TRAINING...

- EACH NEURAL NET IS FITTED TO A PSEUDODATA REPLICA BY MINIMIZING ITS χ^2
- MINIMIZATION THROUGH GENETIC ALGORITHM + REWEIGHTING OF EXPERIMENTS
- QUALITY OF FIT MEASURED BY χ^2 OF AVERAGE OF NN COMPARED TO DATA

 χ^2 OF BEST FIT

 χ^2 of best fit vs. average χ^2

- IF NO STOPPING IMPLEMENTED, χ^2 OF THE AVERAGE DECREASES AS A FUNCTION OF AVERAGE χ^2 OF REPLICAS
- At best fit, average χ^2 of replicas ~ 2 ; χ^2 of average to data ~ 1