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Missing higher order uncertainties & PDFs
• Standard PDF fits use fixed-order hard cross sections, e.g. LO, NLO, …

• Uncertainty due to truncation of these perturbative expansions: MHOUs

What is the potential impact of MHOUs in PDF fits?

[NNPDF, 2017] [Khalek et al, 2018]

• PDFs now high precision      NNLO-NLO PDF shift now of same order or larger 
than PDF uncertainties


• Should we worry about MHOUs on NNLO PDFs? Looking forward: yes

→
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Estimating MHOUs

Standard technique: scale variations 
• Convention (for hadronic processes): vary      in hard cross section and      

in PDF, where 


• Compute observable for different scale combinations and take envelope

HXSWG recommendation

μR μF

μR, μF ∈ [1
2

, 2]
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Estimating MHOUs on PDFs

How to extend this to global PDF fits?

• O(4000) data points from different processes

• How to correlate? Common DGLAP evolution, different      dependence 

in coefficient functions
αs
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PDF fits with varied scales
Starting point for estimating MHOUs: 

• Produce PDF fits for range of scale combinations

• Define MHOUs band as envelope of central values
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PDF fits with varied scales
Starting point for estimating MHOUs: 

• Produce PDF fits for range of scale combinations

• Define MHOUs band as envelope of central values

• Neglects correlations in scale variations

• MHOUs only estimated, not included in PDF uncertainties

Can we include MHOUs and their correlations in PDF uncertainties by accounting 

for them in fitting methodology?
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Experimental uncertainties propagated to PDFs via minimisation of figure of merit:


Modify this to account for theory errors: [R. D. Ball & A. Deshpande, 2018]

    


Assumptions:

1. Theoretical uncertainties independent from experimental uncertainties

            we are adding exp. and th. uncertainties in quadrature

2. Theoretical uncertainties are Gaussianly distributed


Applicable to other types of theoretical uncertainty, e.g. Monte Carlo, nuclear 
uncertainties, …

9/4/19 �7

The theoretical covariance matrix

χ2
tot = (data − theory)T(covexp + covth)−1(data − theory)

χ2 = (data − theory)T(covexp)−1(data − theory)

→
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The theoretical covariance matrix

See talk later by R. L. Pearson
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A theoretical covariance matrix for MHOUs

covth,ij =
1
N ∑

k

Δ(k)
i Δ(k)

j Δ(k)
i = ti(μR, μF) − ti(μR,0, μF,0)

i,j: data points

k: scale combinations

Choices:

 0. Definition of covariance matrix

1. Range of scale variation

2. Number of scale combinations (3, 7, …)

3. Correlation between scales (same process, 

different processes)

4. Process categorisation

Construct covth from scale variations to estimate:

1. MHOU on each point

2. Correlations between points
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A theoretical covariance matrix for MHOUs

covth,ij =
1
N ∑

k

Δ(k)
i Δ(k)

j Δ(k)
i = ti(μR, μF) − ti(μR,0, μF,0)

1
2

≤
μF

μF,0
,

μR

μR,0
≤ 2

i,j: data points

k: scale combinations

Construct covth from scale variations to estimate:

1. MHOU on each point

2. Correlations between points


Choices:

 0. Definition of covariance matrix

1. Range of scale variation

2. Number of scale combinations (3, 7, …)

3. Correlation between scales (same process, 

different processes)

4. Process categorisation
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A theoretical covariance matrix for MHOUs

covth,ij =
1
N ∑

k

Δ(k)
i Δ(k)

j Δ(k)
i = ti(μR, μF) − ti(μR,0, μF,0)

i,j: data points

k: scale combinations

Construct covth from scale variations to estimate:

1. MHOU on each point

2. Correlations between points


Choices:

 0. Definition of covariance matrix

1. Range of scale variation

2. Number of scale combinations (3, 7, …)

3. Correlation between scales (same process, 

different processes)

4. Process categorisation

} How do we correlate 
scales in this multi-scale 
problem? 

See next slides
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Construct covth from scale variations to estimate:

1. MHOU on each point

2. Correlations between points


9/4/19 �12

A theoretical covariance matrix for MHOUs

covth,ij =
1
N ∑

k

Δ(k)
i Δ(k)

j Δ(k)
i = ti(μR, μF) − ti(μR,0, μF,0)

DIS neutral current

DIS charged current

Drell-Yan

Jets

Top

Choices:

 0. Definition of covariance matrix

1. Range of scale variation

2. Number of scale combinations (3, 7, …)

3. Correlation between scales (same process, 

different processes)

4. Process categorisation

i,j: data points

k: scale combinations
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Example: 3-pt theoretical covariance matrix

i, j from same process

covth,ij =
1
2 {Δi( + , + )Δj( + , + ) + Δi( − , − )Δj( − , − )}

covth,ij =
1
4 {(Δi( + , + ) + Δi( − , − ))(Δj( + , + ) + Δj( − , − ))}

where
Δi( + , + ) = ti(μR = 2Q, μF = 2Q) − ti(μR = Q, μF = Q)

Δi( − , − ) = ti(μR =
Q
2

, μF =
Q
2 ) − ti(μR = Q, μF = Q)

i, j from different processes
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Example: 3-pt theoretical covariance matrix

i, j from same process

covth,ij =
1
2 {Δi( + , + )Δj( + , + ) + Δi( − , − )Δj( − , − )}

covth,ij =
1
4 {(Δi( + , + ) + Δi( − , − ))(Δj( + , + ) + Δj( − , − ))}

where
Δi( + , + ) = ti(μR = 2Q, μF = 2Q) − ti(μR = Q, μF = Q)

Δi( − , − ) = ti(μR =
Q
2

, μF =
Q
2 ) − ti(μR = Q, μF = Q)

i, j from different processes

,      fully correlated

→

μR μF

,      fully uncorrelated

   missing      correlation 

μR μF

μF
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More complex scale combinations: 9-pt

i, j from same process i, j from different processes

The more complex scale combination allows us to define more complex correlation 
structure:

• same process:     ,      fully correlated

• different processes:      fully correlated,      fully uncorrelated


We expect this to produce a more accurate correlation structure, since we account 
for common DGLAP evolution, and different      dependence in coefficient functions

μR μF

μF μR

αs



DIS 2019, Cameron Voisey9/4/19 �16

How can we validate and compare our 
theory covariance matrices?

A theoretical covariance matrix for MHOUs
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Validation

We can compare MHOU per point, but this only tests diagonal elements 
of theoretical covariance matrix

     We want to test full covariance matrix: MHOU per point + correlations

3-pt 9-pt

BCDMS proton data

→
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Validation: uncertainties + correlations

• We validate covth against exact result: NNLO-NLO shift 

• covth is positive semi-definite (eigenvalues > 0 or 0)

• Eigenvalue of covariance matrix is variance in direction of eigenvector

• Eigenvalue = 0        no variance/shift predicted by covth in direction of 

eigenvector 

• Define efficiency,    , of matrix as proportion of shift that is contained 

within non-zero eigenvectors (normalised to shift projected into full 
eigenvector basis)


ε

ε = 1 : covth predicts 
variation in same 
directions as shift

0 ≤ ε ≤ 1

⇒
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Validation: uncertainties + correlations

3-pt 
Per data set:  

Per process:


Global:

0.12 ≤ ε ≤ 0.99

ε = 0.19
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Validation: uncertainties + correlations

3-pt                                                                         9-pt 
Per data set:  

Per process:


Global:

0.12 ≤ ε ≤ 0.99 0.70 ≤ ε ≤ 0.99

ε = 0.19 ε = 0.54
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Validation: uncertainties + correlations

3-pt                                                                         9-pt 
Per data set:  

Per process:


Global:

0.12 ≤ ε ≤ 0.99 0.70 ≤ ε ≤ 0.99

ε = 0.19 ε = 0.54

9-pt does best       use this for our PDF fits→
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Results: PDF fits with covth

Shape of central value with covth resembles shift in data regions: closer to 
true NNLO PDF 

Overall small increase in uncertainties (if at all): tensions relieved 
• Increase in PDF uncertainties counteracted by change of data set 

weighting in fit: addition of MHOUs leads to better fit 


PRELIMINARY

PRELIMINARY
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Results: PDF fits with covth

PRELIMINARY

If NNLO-NLO shift is large while standard NLO PDF uncertainty is small: 

• PDF uncertainty increases with addition of covth


• More reliable PDF uncertainties

PRELIMINARY
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• Systematically including MHOUs in PDFs is now important, and will 
become crucial


• A new framework for including MHOUs in PDFs has been developed, 
based on fitting with a theory covariance matrix 

• This is validated against NNLO-NLO shift

• Using this we have produced the first PDF fits including MHOUs, which 

are more consistent with NNLO PDFs than standard NLO fits

• Framework is applicable to other sources of theoretical uncertainty

9/4/19 �24

Conclusion and outlook
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Thank you for listening!

9/4/19 �25
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Extra slides

9/4/19 �26
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PDF uncertainties

[NNPDF, 2017]
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Data set and cuts

Data removed:

• Fixed target Drell-Yan

• Bottom structure function

• Jets without exact NNLO theory

• W+charm

Changes to cuts:


Intersection of NLO, NNLO cuts

Q2

min = 3.49 → 13.96 GeV2
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[credit: S. Forte, 2018]
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Correlating scale variations between PDFs 
and predictions

Consider a situation when all data is at one scale. Let us only have 
evolution uncertainties, i.e. turn off uncertainties in hard cross sections

We have two evolutions:

Q0 → Qdata
Q0 → Qpred.

How to use these PDFs consistently in theoretical predictions?

We have three scales:

•      : fitting scale of PDFs

•         : scale of data

•          : scale of prediction

Q0

Qdata

Qpred.

1.        is kept fixed. There is no dependence on       because for a 
sufficiently flexible parameterisation changes in       are absorbed by fit


2. We vary          in fits (in a correlated way among data points)

3. One varies           when making a prediction for an observable

Q0 Q0
Q0

Qdata
Qpred.
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Correlating scale variations between PDFs 
and predictions

• In our procedure           and           variations will necessarily be uncorrelated - 
necessary consequence of delivering universal PDFs


• For points where                               , the variations are fully correlated and we 
overestimate uncertainty by factor of 


• In global fit overestimate due to missing correlation will be between 1 and     , 
but likely to be closer to 1


• Importantly: if one neglects either variation, one will in general underestimate 
MHOUs


• Better to have a conservative estimate of uncertainties than to underestimate 
them


• Same for coefficient function: if estimating      uncertainty for process included 
in fit, we will miss correlations      larger uncertainty than in ideal scenario


• Not a double counting. Instead, a problem of missing correlation 

How are          and           correlated?Qdata Qpred.

Qdata Qpred.

Qdata = Qpred. ≠ Q0
2

2

μR
⇒
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• Theory is perturbative expansion to some order :


• Standard case:


• Bayes’ theorem:


• Assume Gaussian theory prior:


• Assume MHOUs due to O(        ) terms only → marginalise these terms:


• Include higher order terms by induction 

9/4/19 �32

Theoretical covariance matrix

αp+1

χ2
exp

χ2
th

χ2
tot
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Validation: uncertainties + correlations

• We validate covth against exact result: NNLO-NLO shift 
• We use fact that covth is positive semi-definite (eigenvalues > 0 or 0)


Procedure:

1. Find      non-zero eigenvectors,     , and eigenvalues,                    , of covth


2. Compute shift vector:                                 (fixed NLO PDFs)

3. Project shift vector onto eigenvectors:


4. Define efficiency: 

eα
iNs λα = (sα)2

δi = tNNLO
i − tNLO

i

δα =
Ndat

∑
i=1

δieα
i

ε =
|∑Ns

α=1 δαeα |

|δ |

ε = 1 : covth predicts 
variation in same 
directions as shift

0 ≤ ε ≤ 1
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DIS-only fits with covth
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Impact of theory correlations on fits
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