

Proton Structure and PDFs

Juan Rojo

VU Amsterdam & Theory group, Nikhef

XXVII International Workshop on Deep Inelastic

Scattering and Related Subjects (DIS2019)

The inner life of protons

The proton in the spotlight

THE SCIENCES

Proton Spin Mystery Gains a New Clue

Non-zero gluon polarisation

Scientific American (2014)

Nucleon pressure

The inside of a proton endures more pressure than anything else we've seen

NEWS PARTICLE PHYSICS

For the first time, scientists used experimental data to estimate the pressure inside a proton

Science News (2018)

After 40 years of studying the strong nuclear force, a revelation

This was the year that analysis of data finally backed up a prediction, made in the mid 1970s, of a surprising emergent behaviour in the strong nuclear force

BFKL dynamics The Guardian (2017)

The proton keeps surprising us as an endless source of **fundamental discoveries**

From colliders to the cosmos

New elementary particles beyond the Standard Model?

Origins and properties of **cosmic neutrinos**?

Nature of Quark-Gluon Plasma in heavy-ion collisions?

From colliders to the cosmos

New elementary particles beyond the Standard Model?

Origins and properties of **cosmic neutrinos**?

Nature of Quark-Gluon Plasma in heavy-ion collisions?

Proton energy divided among constituents: quarks and gluons

Proton energy divided among constituents: **quarks** and **gluons**

Lattice QCD starting to also make an impact

Proton energy divided among constituents: **quarks** and **gluons**

Mass? Spin? Heavy quark content? Novel QCD dynamics?

Proton energy divided among constituents: quarks and gluons

The Global QCD analysis paradigm

QCD factorisation theorems: PDF universality

$$\sigma_{lp \to \mu X} = \widetilde{\sigma}_{u\gamma \to u} \otimes u(x) \implies \sigma_{pp \to W} = \widetilde{\sigma}_{u\bar{d} \to W} \otimes u(x) \otimes \bar{d}(x)$$

Determine PDFs from deepinelastic scattering...

... and use them to compute predictions for **proton-proton collisions**

Juan Rojo

PDF uncertainties in the production of New Physics heavy resonances up to 100%

Due to limited coverage of the large Bjorken-x region

Juan Rojo

Proton Structure and PDFs, DIS2019

PDF uncertainties one of dominant theory errors in Higgs production cross-sections

any small deviations of Higgs couplings from SM predictions: smoking gun for BSM

Inclusive Higgs production rates

Snowmass 13

BSM model	Deviations in Higgs coupling to		
	W, Z weak bosons	bottom quarks	photons
New heavy Higgs boson	6%	6%	6%
Two-Higgs Doublet model	1%	10%	1%
Composite Higgs	-3%	-9%	-9%
New heavy top-like quark	-2%	-2%	+2%

Heavy bSM physics beyond the direct reach of the LHC can be parametrised in a model-independent in terms of a complete basis of higher-dimensional operators: this is the Standard Model Effective Field Theory

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots ,$$

Some operators induce **growth with the partonic centre-of-mass energy**: increased sensitivity in LHC cross-sections in the TeV region

$$\sigma(\boldsymbol{E}) = \sigma_{\rm SM}(\boldsymbol{E}) \left(1 + \sum_{i}^{N_{d6}} \omega_{i} \frac{c_{i} m_{\rm SM}^{2}}{\Lambda^{2}} + \sum_{i}^{N_{d6}} \widetilde{\omega}_{i} \frac{c_{i} \boldsymbol{E}^{2}}{\Lambda^{2}} + \mathcal{O}\left(\Lambda^{-4}\right) \right)$$

enhanced sensitivity from **TeV-scale processes:** unique feature of LHC

SMEFT interpretation: from a massive particle at high energies ...

Iranipour WG3

... or reflecting our limited understating of proton structure?

25

Hot and Cold Nuclear Matter

26

- Cold nuclear matter effects modify the PDFs of bound nucleons as compared to the free-proton case
- Rich QCD phenomenology: EMC effect, shadowing, non-linear evolution,
- Onset of new gluon-dominated state of matter: the Color Glass Condensate

Juan Rojo

Neutrino telescopes as QCD microscopes

Ultra-high energy (cosmic) neutrino - nucleus scattering: unique probe of small-x PDFs and QCD

JR WG1+WG7

Sensitive to **small-***x* **quarks** (and gluons via evolution) down to $\mathbf{x} \approx \mathbf{10}^{-8}$ at $\mathbf{Q} \approx \mathbf{M}_{\mathbf{W}}$

Recent progress in the proton structure

PDF information from p+p collisions

One glue to bind them all NNPDF3.1 NNLO, Q = 100 GeV

Constraints from LHC data

QCD uncertainties in PDF fits

Standard global PDF fits are based on fixed-order QCD calculations

$$\sigma = \alpha_s^p \sigma_0 + \alpha_s^{p+1} \sigma_1 + \alpha_s^{p+2} \sigma_2 + \mathcal{O}(\alpha_s^{p+3})$$

The truncation of the perturbative series has associated a theoretical uncertainty: **Missing Higher Order (MHO)** uncertainty

How severe is **ignoring MHOUs** in modern global PDFs fits?

QCD uncertainties in PDF fits

QCD uncertainties in PDF fits

NNPDF, in preparation

-1.00

between different experiments e.g. DIS and LHC

Free proton contains not only quark and gluons as constituents: also **photons!**

Free photon PDF can be evaluated from deep-inelastic structure functions F2 and FL

LuxQED: Manohar et al 16,17

Required for consistent implementation of electroweak corrections at the LHC

Free proton contains not only quark and gluons as constituents: also **photons!**

Sigma The photon PDF can be evaluated from deep-inelastic structure functions F_2 and F_L

LuxQED: Manohar et al 16,17

Required for consistent implementation of **electroweak corrections** at the LHC

Up to 0.5% of proton's momentum carried by photons

Free proton contains not only quark and gluons as constituents: also **photons!**

Sigma The photon PDF can be evaluated from deep-inelastic structure functions F_2 and F_L

Required for consistent implementation of electroweak corrections at the LHC

LuxQED: Manohar et al 16,17

Free proton contains not only quark and gluons as constituents: also **photons!**

The photon PDF can be evaluated from deep-inelastic structure functions F₂ and F_L

Required for consistent implementation of **electroweak corrections** at the LHC

Updating the global PDF analyses

- GT18/CT18Z is the follow-up of CT14
 (without/with ATLAS W,Z 2011)
- Added new LHC measurements boosted by the ePump and PDFsense tools
- Systematic studies of dataset compatibility

 d_v (NNLO) percentage change from MMHT14 at Q² = 100GeV²

- Many new LHC data, extended parametrisation, NNLO calculations, ...
- QED sets ready for release

Juan Rojo

Proton Structure and PDFs, DIS2019

Updating the global PDF analyses

- Similar Systems in States and States and
- PDF sets with MHOUs near completion
- Towards NNPDF4.0: new LHC data, improved methodology (TensorFlow for minimisation), MHOUs at NNLO, …

- ABM updates focusing on adding LHC Drell-Yan and top quark production data
- Studies of the impact of higher twists
- Potential tensions between ATLAS and CMS?

Juan Rojo

40

Proton Structure and PDFs, DIS2019

A charming proton?

Charm quark mass ~ *proton mass: does the proton contain charm?*

NNPDF3.1 NNLO, Q = 1.7 GeV

Momentum Fraction of Charm Quarks

LHC electroweak measurements provides information on the charm content of protons

$$C(Q^2) \equiv \int_0^1 dx \, x \, \left(c(c, Q^2) + \bar{c}(x, Q^2)\right)$$

 \Im Can be tested in *Z*+*D*, high p_T *D*, *photon*+*D*

Indications of a small but non-zero charm content of protons

Evidence for BFKL dynamics

NNPDF3.1 fits based on fixed order (NNLO) and small-x resumed (NNLO+NLLx) theory

Altarelli, Ball, Forte 08, Bonvini et al 15,16

Evidence for BFKL dynamics

NNPDF3.1 fits based on fixed order (NNLO) and small-x resumed (NNLO+NLLx) theory

Altarelli, Ball, Forte 08, Bonvini et al 15,16

Monitor the **fit quality** as one includes more data from the **small-***x* **region**

Proton Structure and PDFs, DIS2019

Evidence for BFKL dynamics

NNPDF3.1 fits based on fixed order (NNLO) and small-x resumed (NNLO+NLLx) theory

Monitor the **fit quality** as one includes more data from the **small-***x* **region**

Best description of **small-***x***HERA data** only possible with **BFKL effects!**

Progress in nuclear PDFs

Seconstraints from LHC proton+lead collisions: W, Z, jets, charm, quarkonia, Drell-Yan, direct photons, ...

Theoretical and **methodological** improvements: nPDF uncertainty estimate, NNLO QCD effects, ...

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.0

EPPS16

 $\mathrm{d}\sigma(y_{\ell^-})/\mathrm{d}\sigma(-y_{\ell^-})$

Abdul-Khalek et al 19

Nuclear PDF analyses catching up with global proton PDF fits!

2.0

 $p + Pb \rightarrow W^- + X$

No nuclear effects

CMS data

EPPS16

 $p_T(\ell^-) > 25 \text{ GeV}$

1.0

lepton rapidity (lab frame)

2 3

Kusina et al 17

EPPS16

 $p + Pb \rightarrow D + X$

 $y_{cms}(D^0)$

-3 -2 -1 0

LHCb data 🛏 ALICE data 🖽

 $\mu_{\rm F}=2.0\mu_0$

The lattice QCD frontier

PDFs are defined as nucleon matrix elements of quark fields separated in the light-cone

$$q(x) = \int_{-\infty}^{+\infty} d\xi^{-} e^{-ixP^{+}\xi^{-}} \langle N | \overline{\psi}(\xi^{-}) \Gamma W(\xi^{-}, 0) \psi(0) | N \rangle$$

Quasi-PDFs instead involve euclidean separations and can be computed on the lattice

$$\tilde{q}(x, P_3) = \int_{-z_{\text{max}}}^{+z_{\text{max}}} \frac{dz}{4\pi} e^{-ixP_3 z} \langle N | \overline{\psi}(0, z) \Gamma W(z, 0) \psi(0, 0) | N
angle$$

The two objects can be matched using the Large Momentum EFT:

$$q(x,\mu) = \int_{-\infty}^{\infty} \frac{d\xi}{|\xi|} C\left(\xi,\frac{\mu}{P_3}\right) \tilde{q}\left(\frac{x}{\xi},\mu,P_3\right) + O\left(\frac{m_N^2}{P_3^2},\frac{\Lambda_{QCD}^2}{P_3^2}\right)$$

Direct computation of *x*-space PDFs now feasible

PDFLattice White Paper Lin et al 17

The lattice QCD frontier

What next?

See also Rik's talk

Towards ultimate PDFs at the HL-LHC and LHeC

Fully complementary in terms of PDF constraints, possible synchronous operation

Juan Rojo

Towards ultimate PDFs at the HL-LHC and LHeC

Exploit novel facilities for precision studies of the proton structure

A reduction of PDF uncertainties by up to a factor 10 could be within reach

Juan Rojo

Nuclear structure at the Electron-Ion Collider

Unique facility to study QCD matter and nucleon/nuclear structure

Pinning down nuclear PDFs at small-x: onset of gluon-dominated matter?

Abdul-Khalek et al 19

Universal QCD fits

Pushing the **precision frontier** of **QCD fits** requires accounting for **cross-talk** between different **non-perturbative QCD** quantities

Towards universal/integrated global analyses of non-perturbative QCD

Universal QCD fits

Pushing the **precision frontier** of **QCD fits** requires accounting for **cross-talk** between different **non-perturbative QCD** quantities

Polarised PDFs + FFs $x\Delta u^+$ 0.4 0.3 0.2JAM17 0.1JAM15 0 0.6 0.20.4 0.8 0 0.04 $x(\Delta \bar{u} + \Delta \bar{d})$ Accardi et 17 0.02 0 -0.02-0.04DSSV09 10^{-2} 10^{-3} 10^{-1} 0.40.8

Juan Rojo

53

Sato WG1

The accurate determination of the **quark and gluon structure of the proton** is an essential ingredient for **LHC phenomenology** and **beyond**

LHC measurements start to dominate the global PDF fit results

The accurate determination of the **quark and gluon structure of the proton** is an essential ingredient for **LHC phenomenology** and **beyond**

- LHC measurements start to dominate the global PDF fit results
- Recent progress in **longstanding issues**: QCD uncertainties on PDFs, Lattice QCD constraints, strange and charm content of the proton ...

The accurate determination of the **quark and gluon structure of the proton** is an essential ingredient for **LHC phenomenology** and **beyond**

- LHC measurements start to dominate the global PDF fit results
- Recent progress in **longstanding issues**: QCD uncertainties on PDFs, Lattice QCD constraints, strange and charm content of the proton ...
- ... but also wrapping up: QED effects on PDFs, BFKL dynamics in HERA data,

The accurate determination of the **quark and gluon structure of the proton** is an essential ingredient for **LHC phenomenology** and **beyond**

- LHC measurements start to dominate the global PDF fit results
- Recent progress in **longstanding issues**: QCD uncertainties on PDFs, Lattice QCD constraints, strange and charm content of the proton ...
- ... but also wrapping up: QED effects on PDFs, BFKL dynamics in HERA data,
- Long-term of QCD global analyses: both exploiting future facilities (HL-LHC, LHeC, EIC) and integrating consistently its multiple dimensions: (p)PDFs + FFs + nPDFs + TMDs

The fascinating study of the proton structure never stops surprising us, stay tuned!

Juan Rojo

The accurate determination of the **quark and gluon structure of the proton** is an essential ingredient for **LHC phenomenology** and **beyond**

Long-term or QCD global analyses: both exploiting future facilities (HL-LHC, LHeC, EIC) and integrating consistently its multiple dimensions: (p)PDFs + FFs + nPDFs + TMDs

The fascinating study of the proton structure never stops surprising us, stay tuned!

Extra Material

 $N_{\text{LHC}}(H) \sim g \otimes g \otimes \widetilde{\sigma}_{ggH}$

Parton Distributions

All-order structure: QCD factorisation theorems

g(x,Q)

Energy of hard-scattering reaction: inverse of resolution length

Probability of finding a gluon inside a

proton, carrying a fraction *x* of the proton momentum, when probed with energy *Q*

x: fraction of proton momentum carried by gluon

Dependence on *x* fixed by **non-perturbative QCD dynamics**: extract from experimental data

Energy conservation: momentum sum rule

$$\int_0^1 dx \, x \left(\sum_{i=1}^{n_f} \left[q_i((x, Q^2) + \bar{q}_i(x, Q^2)] + g(x, Q^2) \right) = 1$$

Quark number conservation: valence sum rules

$$\int_0^1 dx \, \left(u(x, Q^2) + \bar{u}(x, Q^2) \right) = 2$$

Juan Rojo

g(x,Q)

Energy of hard-scattering reaction: inverse of resolution length

Probability of **finding a gluon inside a proton**, carrying a fraction *x* of the proton

momentum, when probed with energy **Q**

x: fraction of proton momentum carried by gluon

Dependence on **Q** fixed by perturbative QCD dynamics: computed up to $\mathcal{O}(\alpha_s^4)$

$$\frac{\partial}{\partial \ln Q^2} q_i(x, Q^2) = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z}, \alpha_s(Q^2)\right) q_j(z, Q^2)$$

DGLAP parton evolution equations

Forward charm production

gluon PDF uncertainties reduced by factor 10 at $x \approx 10^{-6}$

Juan Rojo

Neutrino telescopes

Ultra-high energy (UHE) neutrinos: novel window to the extreme Universe!

Neutrino telescopes as QCD microscopes

signal: cosmic neutrino - nucleus scattering

background: prompt charm production

Neutrino telescopes as QCD microscopes

signal: cosmic neutrino - nucleus scattering

background: prompt charm production

UHE neutrino-nucleus cross-section

State-of-the-art predictions for **ultra-high energy** neutrino interactions

BFKL small-x resummation effects in PDFs and structure functions

- Constraints on small-x PDFs from LHCb charm production
- IceCube and other neutrino telescopes are the ultimate QCD microscopes!

nNNPDF1.0

68

- First determination of nuclear PDFs based on the NNPDF framework
- Neutral-current DIS data for a range of A values
- Impose well-known free-nucleon
 PDFs as boundary condition for A=1

- NN training with Google's *TensorFlow*: Stochastic Gradient Descent
- Factor 10 (or more) speed up as compared to evolutionary optimisers used in NNPDF

nNNPDF1.0

Parametrize nPDFs with ANNs with *x*, *ln(x)*, *A* as input: *fully model-independent*

$$q_i(x, Q_0, A) = B_i x^{-\alpha_i} (1 - x)^{\beta_i} NN(x, A), \quad i = g, \Sigma, T_8$$

Gluon normalisation (A-dependent) fixed by the **momentum sum rule**

$$B_{g}(A) = \left(1 - \int_{0}^{1} dx \, x \Sigma(x, Q_{0}, A)\right) / \int_{0}^{1} dx \, xg(x, Q_{0}, A)$$

Proton boundary condition implemented as a penalty in the figure of merit

$$\chi^{2} = \sum_{j=1}^{n_{\text{dat}}} \frac{\left(F_{j}^{(\text{exp})} - F_{j}^{(\text{th})}\right)^{2}}{\sigma_{j}^{(\text{exp})2}} + \lambda \sum_{i=g,\Sigma,T_{8}} \sum_{k=1}^{n_{x}} \frac{\left(q_{i}(x_{k}, Q_{0}, A) - q_{i}^{(\text{ref})}(x_{k}, Q_{0}, A = 1)\right)^{2}}{\left(\delta q_{i}^{(\text{ref})}(x_{k}, Q_{0}, A = 1)\right)^{2}}$$

 $q_i^{(\text{ref})}(x_k, Q_0, A = 1)$ Isoscalar **NNPDF3.1** NNLO global fit