Nuclear Uncertainties in the Determination of Proton PDFs

Rosalyn Pearson

r.l.pearson@ed.ac.uk

DIS 2019

The NNPDF Collaboration University of Edinburgh Based on work with R. D. Ball & E. R. Nocera Eur. Phys. J. C79 (2019) 282; arXiv:1812.09074

The Current Status

- Global PDFs include data from nuclear targets
- Nuclear environment affects experimental observables
- Current techniques use nuclear models and fits to data
- Effects "small", but increasingly relevant
- These nuclear effects unaccounted for in NNPDF3.1
- We show how to determine associated errors and include them in future fits

- The nuclear dataset
- Techniques for theoretical uncertainties
- Theoretical covariance matrix
- Fits with nuclear uncertainties
- Outlook

The Nuclear Dataset

The Nuclear Dataset

- $\bullet\,$ DIS and DY
- CHORUS (Pb), NuTeV (Fe), DYE605 (Cu)

The Nuclear Dataset

CHORUS

- CC inclusive DIS cross-sections
- for neutrino and antineutrino beams
- sensitive to $u_V = u \bar{u}, \ d_V = d \bar{d}$

NuTeV

- DIS dimuon cross-sections
- for neutrino and antineutrino beams
- sensitive to s, \overline{s}

E605

- DY dimuon cross-sections
- sensitive to \bar{u} , \bar{d}

Correlations of observables with PDFs

Theoretical uncertainties in PDFs

- In a PDF fit we use data D_i and experimental covariance matrix C_{ij}
- Want to include theory covariance matrix S_{ij}
- $C_{ij}
 ightarrow C_{ij} + S_{ij}$ [R. D. Ball & A. Desphande, arXiv:1801.04842]
- Nuisance parameters: $\Delta_i^{(n)} = T_i^{(n)} T_i$, $n = 1, ..., N_{nuis}$
- $S_{ij} = rac{1}{N_{nuis}} \sum_{n=1}^{N_{nuis}} \Delta_i^{(n)} \Delta_j^{(n)}$
- Treat theory errors like experimental systematics

Generating the matrix

Compare theoretical predictions computed using nuclear PDFs f_N to those using proton PDFs f_p .

1. Nuclear uncertainties

$$\Delta_i^{(n)} = T_i^N[f_N^{(n)}] - T_i^N[f_p]$$

2. Nuclear uncertainties + correction

$$\Delta_{i}^{(n)} = T_{i}^{N}[f_{N}^{(n)}] - T_{i}^{N}[f_{N}]$$

and apply shift

$$\delta T_i^N = T_i^N[f_N] - T_i^N[f_p]$$

Treat the three data sets separately: they are for different nuclei and the correlations are unknown. This is the conservative choice.

Generating the matrix

- *n* labels a replica in a MC nPDF ensemble
- combined recent nPDFs $\rightarrow {\tilde{t}_{p/N}^{(n)}}$: DSSZ12 [D. de Florian et al., arXiv:1112.6324], nCTEQ15 [K. Kovarik et al., arXiv:1509.00792] and EPPS16 [H. Paukunnen et al., arXiv:1704.04036]
- determined nuclear correction factors

$$R_f^{N,(n)} = \frac{\tilde{f}_{p/N}^{(n)}}{\tilde{f}_p}$$

use these to calculate bound proton PDF for NNPDF3.1

$$f_{p/N}^{(n)} = R_f^{N,(n)} f_p$$

compute observables

$$T_i^N[f_N] = \frac{1}{A} \{ ZT_i[f_{p/N}] + (A - Z)T_i[f_{n/N}] \}$$

Nuclear correction factors

$$R_f^{N,(n)} = \frac{\tilde{f}_{p/N}^{(n)}}{\tilde{f}_p}$$

Figure 1: Points are binned in (anti-)neutrino beam energy *E*: 25, 35, 45, 55, 70, 90, 110, 120, 170 GeV. In each bin *x* increases from left to right, 0.045 < x < 0.65.

Diagonal elements of covariance matrix

Correlation matrices

CHORUS experimental correlation matrix

CHORUS total correlation matrix

Correlation matrices

NuTeV experimental correlation matrix

E605 experimental correlation matrix

NuTeV total correlation matrix

E605 total correlation matrix

Impact on Global PDFs

We compared four different fits:

- 1. Baseline NNPDF3.1 with small changes
- 2. NoNuc Baseline with nuclear data removed
- 3. NucUnc Baseline with nuclear uncertainties
- 4. NucCor Baseline with nuclear uncertainties and correction

Experiment	N _{dat}	Baseline	NoNuc	NucUnc	NucCor
CHORUS ν	416	1.29	_	0.97	1.04
CHORUS $\bar{\nu}$	416	1.20	_	0.78	0.83
NuTeV ν	39	0.41	_	0.31	0.40
NuTeV $\bar{\nu}$	37	0.90	_	0.62	0.83
E605 σ^p	85	1.18	_	0.85	0.89
ATLAS	360	1.08	1.04	1.04	1.05
CMS	409	1.07	1.07	1.07	1.07
LHCb	85	1.46	1.27	1.32	1.37
Total	4285	1.18	1.14	1.07	1.09

Table 1: χ^2 per data point

PDFs for NucUnc

PDFs for NucCor

PDF errors

Phenomenology

Sea quark asymmetry

- Perturbatively, we expect $f_{ar{u}} \sim f_{ar{d}}$
- Observe an asymmetry (NA51 [A. Baldit et al., Phys. Lett. B332 (1994) 244-250] , NuSea/E866 [E. A. Hawker et al., hep-ex/9803011])
- Nuclear data has a significant effect
- Inclusion of nuclear uncertainty makes little difference

Strangeness fraction

$$R_{s}(x,Q^{2}) = \frac{s(x,Q^{2}) + \bar{s}(x,Q^{2})}{\bar{d}(x,Q^{2}) + \bar{u}(x,Q^{2})}$$
(1)

$$\mathcal{K}_{s}(x,Q^{2}) = \frac{\int_{0}^{1} dx [s(x,Q^{2}) + \bar{s}(x,Q^{2})]}{\int_{0}^{1} dx [\bar{d}(x,Q^{2}) + \bar{u}(x,Q^{2})]}$$

 $R_s(x = 0.023, Q = 1.38 \text{ GeV}); K_s(Q = 1.38 \text{ GeV}):$

- Baseline: $R_s = +0.69 \pm 0.15$, $K_s = +0.63 \pm 0.09$
- NoNuc: $R_s = +0.68 \pm 0.14$, $K_s = +0.97 \pm 0.18$
- NucUnc: $R_s = +0.65 \pm 0.14$, $K_s = +0.63 \pm 0.09$
- NucCor: $R_s = +0.64 \pm 0.15$, $K_s = +0.61 \pm 0.10$
- ATLAS W/Z + HERA DIS: R_s =+1.13 ± 0.11 [ATLAS Collaboration, arXiv:1612.03016]

(2)

Strangeness fraction

- Tension with ATLAS W/Z + HERA DIS not reconciled
- NuTeV probes different kinematic region (cf χ^2 s)

Strange valence distribution

 $xs^{-}(x,Q) = x[s(x,Q) - \overline{s}(x,Q)]$ (3)

- Again, nuclear data important
- Little difference between Baseline, NucUnc and NucCor
- Choose NucUnc as this is more conservative

Summary

- Studied nuclear data in proton PDF fits
- Determined nuclear uncertainties based on comparison to nPDF sets DSSZ12, nCTEQ15 & EPPS16
- Used theoretical covariance matrix to include uncertainties in fits
- Fit quality improved, and largest impact on sea quark PDFs
- Future inclusion of new nPDF sets
- We will carry out a similar analysis of deuterium data
- Scope for application to other theoretical uncertainties

Thanks for listening!

Additional slides

$$\rho[A, B] = \frac{\langle AB \rangle_{rep} - \langle A \rangle_{rep} \langle B \rangle_{rep}}{\sigma_A \sigma_B}$$

[A. Guffanti & J. Rojo, arXiv:1008.4671]

Observables: NuTeV

NNPDF fitting methodology

$$< D_i^{(k)} >= D_i, \ < (D_i^{(k)} - D_i)(D_j^{(k)} - D_j) >= C_{ij}$$

Theory covariance matrix

- $C_{ij}
 ightarrow C_{ij} + S_{ij}$ [R. D. Ball & A. Desphande, arXiv:1801.04842]
- Nuisance parameters: $\Delta_i^{(n)} = T_i^{(n)} T_i$, $n = 1, ..., N_{nuis}$
- Theory covariance matrix: $S_{ij} = N \sum_{n=1}^{N_{nuis}} \Delta_i^{(n)} \Delta_j^{(n)}$
- Treat theory errors like experimental systematics

PDFs without nuclear data

PDF errors

Optimal fluctuations $\sum_{n} a_n \delta_i^{(n)}$, obtained by minimising

$$\chi^2 = \sum_{i} \left[\frac{D_i - T_i - \sum_n a_n \delta_i^{(n)}}{error_i} \right]^2 + \sum_n a_n^2$$

[J. Pumplin et al., arXiv:hep-ph/0201195]

(4)

Figure 2: Comparison between the optimal fluctuations obtained with our NucUnc and NucCor fits, and the shifts δT_i^N .

