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The first principle is that you must not fool
yourself — and you are the easiest person to fool

-Richard Feynman
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Chapter 1

Parton Distribution Functions

1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of the strong interaction,
one of the four fundamental forces in nature. It describes the interactions
between quarks and gluons, and in particular how they bind together to form
the class of particles called hadrons.

QCD emerged as a mathematically consistent theory in the 1970s, and
nowadays is considered by scientists as one of the cornerstones of the “Stan-
dard Model” of the elementary particles and their interactions.

One of the most used methods in high-energy physics research is collider
physics: particle colliders provide the highest available centre-of-mass en-
ergies and this permit us to probe the structure of matter at the shortest
distances availables [1].

This last fact can be explained with the asymptotic freedom, the ten-
dency of quark to be free at small distances (high energy scale), when the
forces between them become weaker. On the opposite side of the energy
scale (at long distances) quarks are seen as bind together for the confine-
ment, the tendency of components inside nucleons to be considered as highly
interacting states.

This behaviour is explained also by the values of the strong coupling
constant αs: it decrease at short distances and grows ad higher ones.

The quark model derived from the parton model, described in 1969
by Feynman, in order to give a simple explanation about the nucleons and
their smaller components, labeled at the time as partons. Now we know
that inside the nucleons and hadrons there are quarks and gluons, although
they do not have a well defined form. The internal structure of nucleons
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is described by Parton Distribution Functions (PDFs), which are literally
distribution functions that are able to provide a good explanation of the
features of particles inside hadrons and their behaviour [2].

1.2 PDFs

Parton Distribution Functions (PDFs) encode informations about the struc-
ture of strong interacting particles (like hadrons), and in particular of nucle-
ons, which are made of partons. Nowadays the internal structure of nucleons
is not well defined for the confinement, because their components can’t be
free. For this reason to describe their internal structure are used this func-
tion distributions, which give a parameterization of the nucleons internal
components. In this framework nucleons are composed of quarks and gluons,
representing the elementary degrees of freedom for Quantum Chromodynam-
ics (QDC).

Physically, PDFs have an important role in scattering processes. In par-
ticular, measuring the cross section σ for any process involving hadrons in the
initial state, that is determined by folding PDFs with the perturbatively com-
putable cross section that describes the interaction between partons (equa-
tion (1.1))

σ =
∑
a,b

σ̂a,b ⊗ fa/b1 ⊗ fb/b2 , (1.1)

where σ is experimentally measured and σ̂a,b is the partonic cross section
computed with quarks and gluons in the initial state. The convolution prod-
uct of the ath parton with the the bi hadron PDFs in (1.1) represents an
integration over the relevant initial-state kinematic variables.

Parton distributions are a set of functions determined through the com-
parison between the PDF-dependent prediction for physical processes and its
actual experimental value.

1.2.1 Theoretical framework

To determine PDFs it is necessary to start from a theoretical prediction of
various processes, which is compared to the experimental data.

The basic property that enables the perturbative computation of the cross
sections for processes with hadrons in the initial state is their factorization
into a partonic cross section (computed in perturbation theory) and parton
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distribution (which characterizes the hadronic bound states and are univer-
sal).
The factorization is different for the hadroproduction and for electroproduc-
tion: in the first case the scaling variable is a parameter τ , which depend on
the mass of the hadron in the final state and on the center-of-mass energy
of the hadronic collision; the second case uses structure functions F (x,Q2),
where x is the Bjorken scaling variable and Q2 the momentum of the virtual
photon produced.

Theory prediction for collider cross section can be written also as Equa-
tion (1.2)

σ(th){ω, θ} = σ̂ij(Q
2)⊗ Γij,kl(Q

2, Q2
0)⊗ qkQ0{ω, θ} ⊗ qlQ0{ω, θ}, (1.2)

where the ⊗ is the convolution product on x, σ̂ij (the hard-scattering cross
section) and Γij,kl (the kernel of the DGLAP evolution), using computational
parameters (for further details see Section 2.3).

In order to describe in a much compact way cross sections it is possible
to use an other approach, where the datasets from experiments are divided
into grids, represented as rows of a table, created using the DGLAP evolution
operator, which is the responsible of the evolution in perturbative framework
of the various data in energy.

In this way, the cross sections can be expressed in a much compact way,
as in Equation (1.3)

σ(th){ω, θ} =

nf∑
i,j=1

nx∑
a,b=1

FKijabqixa, Q0, {ω, θ}qjxb, Q0, {ω, θ}, (1.3)

where I labeled as “FK” the tables created from the various rows of data and
in Equation (1.3) represents tables where a and b run over a grid in x.

The PDFs are also defined using luminosities, defined as the number of
events in units of time and solid angles, written as Equation (1.4) 1 and (1.5),
considering the relevant parton-parton luminosities, rather than the PDFs
themselves:

Lab(x,M
2
X) ≡

∫ 1

x

dz

x
fa/b1(z,M2

X)fb/b2

(x
z
,M2

X

)
=

∫ 1

x

dz

z
fa/b1

(x
z
,M2

X

)
fb/b2(z,M2

X),

(1.4)

1where X is the final states and the a and b pedix label the incoming hadrons.



1.3 THE DETERMINATION OF PDFS 4

∑
q=u,d,s,c,b

(Lqq̄ + Lq̄q). (1.5)

The evolution of PDF determination has gone through various stages that
mirror the evolution of the theoretical and phenomenological understanding
of QCD. There was an improvement in methodology, given by the growing
accuracy of experimental data and an improving confidence in perturbative
QCD. Analyses are done using tools not only at the leading order (LO),
but especially at high perturbative orders (NLO, next to leading order and
NNLO, next-to-next leading order).

An important development came from the deep-inelastic data from the
HERA collider, which gave a great increase in both accuracy and kinematic
coverage, and yielded the global parton sets. For PDFs was assumed a func-
tional form, which was then parameterized by a relatively small number of
constants. The global parton sets were eventually determined by optimizing
the fit of the computer observables to the experimental data.

Figure 1.1 [3] shows a set of PDFs at two different energy scales: to
understand properties of hadronic cross sections and the impact of PDFs on
them, one should consider the relevant parton-parton luminosities, defined
as Equation (1.4).

1.3 The Determination of PDFs

1.3.1 Fitting methodology

Parton distributions are determined through comparison between the factor-
ized expressions of them and the experimental data. To obtain the best fit,
one determines a “confidence interval” in the PDFs space. By introducing a
PDF parameterization it is possible to reduce an infinite-dimensional prob-
lem of representing a space of functions in a finite-dimensional form (which
is mathematically well defined).

1.3.2 Uncertainties in the PDF

At first the only way to estimate uncertainties in the PDFs was to compare
results obtained with several parton sets, although historically physicist ob-
tained the set of PDFs with uncertainties by fitting only a restricted data
sets, typically from deep inelastic scattering (DIS) experiments, and propa-
gating all the correlated uncertainties through the fitting procedure.
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Figure 1.1: Parton distribution obtained in NNLO NNPDF global analysis at
scales (a) µ2 = 10 GeV2 and (b) µ2 = 104 GeV2 with αS = 0.118.

It was however necessary to use a systematic approach: to obtain statis-
tically meaningful results it is necessary to use a tolerance rescaling, defined
as a dynamic tolerance procedure for the determination of ∆χ2, considered
as > 1, introduced to take account of tension between data sets in the fit
(see [4] and [5]). Thereafter one can determine “error” PDF sets along with
the central best fit, allowing for the determination of a 1-σ contour in the
parameter space of the best fit. Later more refined versions of the tolerance
method were developed and have been used in subsequent global fits (see [6]
and [7]).

There is an alternative approach to PDF fitting, proposed by the NNPDF
collaboration, used in this work and better explained in Chapter 2.

1.3.3 Parton parameterization

A set of PDFs is a set of functions, one for each parton entering in the
equation used for the two different productions named in Subsection 1.2.1.
In principle there could be 13 independent PDFs in a given hadron (six
quarks, six antiquarks and the gluon). At first studies there were only two
PDFs, one for the quarks and one for the gluons, because the PDFs for all
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the quarks are assumed as equal. After a lot of studies, and considering that
valence quarks’ PDFs are different from sea quarks’ ones, it is possible now
to parameterize eight PDFs for each hadron (because the PDFs of charm
and anti-charm are considered as the same).

Once a suitable basis set of PDFs has been chosen, all existing PDF
determinations are based on the choice of a parameterization of PDFs at the
reference scale:

fi(x,Q
2) = xαi(1− x)βigi(x), (1.6)

where gi(x) tends to a constant for both x→ 0 and x→ 1.
A common choice for gi(x) is a polynomial function or the exponential of a
polinomial in x or

√
x. Moreover, typical contemporary PDF sets based on

this choices of functional forms are parametrized by ∼ 20-30 parameters.
There are also two ways to parameterize PDFs without using any theo-

retical prejudice: the Hessian Method or the MonteCarlo approach.
When unbiased PDF parameterizations are adopted and especially when

the number of free parameters is very large, the absolute minimum of the
figure of merit is not necessarily the best fit, because it may consider random
fluctuations in the data or display oscillations [8].

1.3.4 Global fits

For each process considered and for each datasets a great amount of informa-
tion is used to determine PDFs; this can become computationally intensive.
Current global fits use various processes to control different aspects of PDFs.

Different data constrains different aspects of PDFs and are for example:

• Information on the overall shape of quarks and gluons at medium x
comes from fixed-target DIS data on proton and deuterium targets;

• The determination of the behavior of the gluon and quark is done at
small x and of the individual light flavors at medium x;

• Information on the flavor separation at small x comes from Tevatron
Drell-Yan data (in particular from the W asymmetry);

• The flavor separation at medium x is mostly controlled by Tevatron
Drell-Yan data on fixed proton and nucleus target;

• The total valence component is constrained by the neutrino inclusive
DIS data;
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• Strangeness is constrained by neutrino dimuon data and the interplay
of W and Z production data with lower scale DIS and Drell-Yan data;

• The large x gluon, already determined by DIS scaling violations is
constrained by Tevatron jet data.

Other global fits may differ in some detail (such as the specific choice of
experiments or using different data sets), but all of them are based on the
datasets constructed on a similar logic.

Now there are newer data and best methods to make a global fits, con-
sidering processes with less uncertainties.



Chapter 2

Machine Learning and Neural
Networks

2.1 General strategy

In order to reach the final goal of this work (see Chapter 3) is necessary to
determine the PDFs of the proton in the global QCD analysis framework.
All data used for the determination derive from proton-proton and hadron-
hadron collisions.

For a more detailed description of the tools here described see for example
[9] and [10] and references therein.

2.1.1 Elements of the NNPDF global analyses

Global QCD fit is based on three inputs:

- experimental data;

- higher order perturbative calculations;

- statistical framework based on PDFs parameterization, estimating and
propagating their uncertainties.

Combining together these three elements it is possible to make a fit. One
defines the minimization of the figure of merit, the χ2, which includes all the
relevant sources of uncertainties and leads to define the shape of each PDF.

Fits are validated using complementary diagnosis tools and are trans-
lated into LHAPDF standard interface suitable for its public delivery and its
integration into other HEP codes and into the analysis framework of LHC
experiments. The general strategy used is summarized in Figure 2.1 [11].
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Figure 2.1: General strategy used in the NNPDF approach.

2.1.2 Machine learning

Machine learning techniques are useful in high-energy physics and are pecu-
liar in the PDFs parameterization and optimization. It is possible in this way
to define the best fit parameters and the subsequent validation, by means of
closure testing.

Multi-layer Neural Networks are used to parameterize a PDF independent
model and to do fragmentation, genetic algorithms are used for training and
optimization and then a final test is useful in order to have a sistematic
convalid of fitting methodology.

2.2 The Monte Carlo approach

PDFs at all scales can be obtained by solving evolution equations. A de-
termination of PDFs with uncertainties involves determining a probability
distribution in a space of several independent functions. Various methods
can be used to analyse experimental data. In particular, one possible choice
is that of the time-honored method, which assumes a specific functional form
for parton distributions, projecting the infinite dimensional problem onto a
finite-dimensional parameter space, and so that a representation of PDFs
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must be possible in terms of a finite number of parameters and there is an
optimal parameterization.

Two methodologies are complete and actually used: the Hessian ap-
proach, in which the best fit result is given in the form of an optimal set
of parameters and an error matrix centered on this optimal fit to compute
uncertainties, and a Monte Carlo approach, in which the best fit is deter-
mined from Monte Carlo sample by an average of the data and uncertainties
are obtained as variances of the sample. In the first case the parametriza-
tion is standard and inspired by QCD arguments; in the second method it
is possible to use artificial Neural Networks as interpolating functions in an
attempt to reduce the bias related to the choice of functional form.

2.2.1 The role of replicas in the Monte Carlo approach

In a Monte Carlo approach the probability distribution in the parameter
space is given by assigning a Monte Carlo sample of replicas of the total
parameter set.

In order to use a statistical framework, experimental data are converted
into an ensemble of N artificial MC replicas, which are named pseudodata:
these are randomly generated in accordance with multi-Gaussian distribu-
tions centered around each data point, with variance given by experimental
uncertainty.

Each replica contains the same number of data points as the original
experimental measurements. With enough replicas the set contains complete
experimental informations; experimental central value can be retrieved by
taking the mean and the experimental variance (which is calculated over
different replicas).

All possible approach includes data from various experiments of fixed tar-
get colliders, deep inelastic scattering and Drell-Yan experiments; the results
obtained are in form of observables such as cross sections and structure for-
mation. Experimental data are converted from the row format provided by
a single dataset to a common format used in order to fit them.

2.2.2 Monte Carlo treatment of uncertainties

Given an observable X I will have Nrep replicas, each time using a different
parameter replica: the central value for X is the average of these Nrep results
and the standard deviation is the variance. The procedure is as follows:
at first one starts with experimental data (denoted as FI) from which are
generated N replicas. Subsequently, it is found a set of PDFs (denoted as
q0(i)) for each replica. The PDFs can be parametrized at some reference
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scale and they are fitted to the data replicas, evolving them to the scale of
the data and using them to compute observables and minimizing the χ2 of
the comparison to the data with respect to the parameters.

However, the problem of constructing an adeguate sampling of param-
eters space has been reduced to that of constructing an adeguate Monte
Carlo representation of the original data. A given set of replicas provides an
accurate enough representation of the data that may be checked explicitly
for a given sample by comparing means, variances and covariances from the
sample with the desired features of the data.

2.3 Neural Networks

Neural Networks are a set of computing systems, used to fit some data with-
out giving a precise function, because the networks adapt themselves to the
experimental results.

The parton distribution functions are parameterized at low scale, around
boundary between perturbative and non-perturbative regimes of QCD, around
the proton mass of Q0 ≈ 1 GeV. The PDF shape, instead, is not parame-
terized in terms of simple function forms (inspired in QCD models), but are
used artificial Neural Networks as unbiased interpolants (NN do not use a
specifical model of functional form).

QCD itself provides some limits about the behaviour of PDFs at the
input parameterization scale Q0, such as the integrability conditions and the
momentum and valence sum rules.

Figure 2.2: General Architecture of a Neural Network structure.

Neural Networks are developed in a multi-layer structure, with a given
number of parameters put in the input layer, others in the hidden layers and
at the end there is the output, as schematically represented in figure 2.2 [12].
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The easiest form of them, with a 1-2-1 architecture, can be written as in
Equation (2.1)

f(x) =
1

1 + eθ
(3)
1 − ω

(2)
11

1+eθ
(2)
1 −xω(1)11

− ω
(2)
12

1+eθ
(2)
2 −xω(1)21

, (2.1)

where the ωij are the weights and the θi are the theresholds.
The NNPDF fit use a multi-layer feed-forward artificial NN with a 2-5-3-1
architecture for each PDF, with two inputs and one output neuron (directly
related to the value of PDF at input parameterization scale Q0). There are
296 parameters in the PDF determination in this framework.

The activation threshold of each neuron is denoted by ξli, with (l) as label
of the layer and i is the specific neuron within each layer.

The values of each activation states of neurons in the layer l are deter-
mined in terms of those of the previous layer (l − 1) and weights {ω(l)

ij },
connecting them as the activation thresholds of each neuron {θ(l)

i }. The
training of Neural Network consists in determining values of weights and
thresholds that fulfill the constraints of a given optimization problem.

2.3.1 Neural Network methodology

The PDFs are functional forms, and they may be fitted in the limit of in-
finite number of parameters. They are nonlinear and ”unbiased”, meaning
that a finite-dimensional truncation of the neural network parametrization is
adeguate to fit a very wide class of functions without the need to adjust the
form of the parametrization to the desired problem.

The best fit is instead determined using a cross-validation method. The
data are randomly divided into two samples: the training sample and the
validation one. The χ2 is computed for both the samples of data. The
validation stops when the χ2 for the two groups are in the same point, over
which the data is considered to be background noise [13].

2.4 Minimization and cross validation meth-

ods

2.4.1 Minimization methodology

Once PDFs has been parameterized, the optimal fit is obtained varying pa-
rameters of neural network in a way where the figure of merit is minimized.
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The training (or learning) phase of Neural Network is possible to make us-
ing two different strategies: the deterministic one, with the gradient-descent
and the back-propagation method, and the stochastic, used in this work,
which include a random selection of the data. The determination of fit pa-
rameters requires evaluation of gradients of χ2

∂χ2

∂ω
(l)
ij

and
∂χ2

∂θ
(l)
i

, (2.2)

and computing these gradients in the NNPDF case give a non linear relation
between experimental data and input PDFs, preceeds through convolutions
with DGLAP evolution kernels and hard-scattering partonic cross section
(encoded into APFELgrid fast interpolation strategy).

2.4.2 Genetic Algorithm

In proton NNPDF global analysis, the NN training carried out by the Ge-
netic Algorithms is based on a combination of deterministic and stochastic
ingredients. In this way is possible to explore complex parameters spaced
without getting stuck in the local minima. In this way is not required the
knowledge of χ gradients, but only local values.

Starting from a random population of solutions far from the minimum,
the spread (variance) of the population increases while at the same time the
average (center) solution moves closer to the minimum. As the number of
generations increases, the average solution remains close to the minimum but
now the variance has been reduced significantly, indicating that the algorithm
has converged.

2.4.3 Cross-validation

It is important to say that, although all said before, fit has not an absolute
minimum of the figure of merit, because in this way he would fit also the
noise. In order to avoid this is possible to use the cross-validation method to
determine the optimal fit.

The cross validation stopping strategy can be explained in four steps:

1. All the input experimental measurements or all the data replicas are
divided in a random way in two categories: the training sample and the
validation one, both with the same probability. In the fit is used only
the former, while the lattice is used as a control sample, to monitor
and validate the training process.
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Figure 2.3: Trading and validation sample fits.

2. In the figure in 2.3 [14] is labeled the optimal stopping point: one defines
the global minimum of the χ2 of the validation sample, computed over a
large fixed number of iterations (and from here the name“look-back”).

3. As shown in 2.3 the shorter fit is in an under-learning part, and NN
are not learning well the law. On the contrary, longer fits leads to the
over-learning, where NN ends up fitting statistical fluctuations.

4. The tell-tale sign of the latter is the addition of the validation of χ2,
that grows as the number of interactions increases. What is learned in
the trading sample is not in the validation (because here there are the
fluctuations).



Chapter 3

Results

The goal of this thesis is the determination of the charm quark mass, the
lightest of the so-called heavy quarks, within the context of a global fit of
parton distributions, a set of PDFs (obtained from experimental data).

In this last chapter I will explain my work in by describing step by step
the procedure I followed. I start talking about the theories and what could
be varied in each one of them. Then I explain the treatment of grids and
experimental data, how Neural Networks are used and the computational
features used in order to obtain the final result. At the end I say how I created
a code to plot the results of the fit (actually the χ2 from the comparison of
two fits) and find the minimum. This value is the charm quark mass that I
find in this framework.

In some parts of this chapter I give some informations that I will not
discuss further, because it is beyond the goal of this thesis.

3.1 Theories

By “Theory” I mean the set of the predictions to be compared to the data.
These depends on a large number of parameters.
In the NNPDF repository all the theories are stored in a file named “the-
ory.db”, a database file with now 198 theories.

All of them depend on diffferent parameters, necessary to determine all
possible PDFs corresponding to each theory. These includes for example:

- the perturbation order (which could be LO, NLO or NNLO),

- the flavour number scheme,
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- the intrinsic charm switch,

- the DGLAP solution mode

- the FK table initial scale Q0,

- the value of the strong coupling constant αS,

- values that express the dependence on QED,

- Qref , the reference scale for αS in GeV,

- the charm quark mass and the “c” production threshold ratio,

- the same values for the bottom and the top quark (the two heaviest
quarks),

- CKM matrix elements,

- Z boson and W boson mass (in GeV),

- target mass corrections,

- the proton mass MP ,

and other parameters that are expressed in the QCD Lagrangian [15].

I only varied the charm quark mass and its reference scale (both in GeV),
choosing as reference theory the one with a charm mass of 1.51 GeV (at NLO
perturbation order). This value is what is labeled in Equation I.1.19 in [16],
where the pole charm mass is mc = 1.51 ± 0.13 GeV.

I changed this value from 1.11 GeV from 1.81 GeV, spaced by 0.1 each
time, as summed in table 3.1.

3.2 APFELcomb and FK tables

3.2.1 Experimental data

The APFELcomb project consists of a set of tools for the generation of
FK tables, which provide the mechanism for computing predictions from
the theories in the NNPDF framework. This is achieved by taking DGLAP
evolution kernels from the APFEL code [17] and combining them with inter-
polated parton-level observable kernels of various forms.
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Theory ID Charm Mass (GeV)
190 1.11
191 1.21
192 1.31
193 1.41
194 1.51
195 1.61
196 1.71
197 1.81

Table 3.1: Summary of the new theories with the charm mass changed.

For this reason I considered the experimental data, divided into various
datasets. In a technical language, Dataset refers to the result of a specific
measurement, typically associated with a single experimental paper; instead
Experiment refers to a collection of Datasets, which have correlated uncer-
tainty.

Data, made available by experimental collaborations, come in a variety of
formats. For use in a fitting code, this data must be converted into a common
format that contains all the required information called as CommonData.

Each datapoint has an associated process type string: for each datapoint
three kinematic values are given: the first is the principal differential quan-
tity used in the measurement, the second defines the scale of the process and
the third represent the centre-of-mass energy of the process, or its inelasticity.

There are three basic process types:

• DIS: Deep Inelastic scattering measurements,

• DYP: Fixed-Target Drell-Yan measurements,

• APP: Hadronic measurements,

each including a large number of experiments, summarised in Table 3.2,
where the numbers from 1 to 8 indicate DIS experiments, 9 and 10 the DYP
and the remaining the APP ones.

All the data from the various datasets are computed in a list of grids and
subgrids (using evolution operator), which are merged in a single FK table
for each dataset.
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1. NMC.

2. SLAC,

3. BCDMS,

4. CHORUS,

5. NTVDMN,

6. HERACOMB,

7. HERAF2CHARM,

8. F2BOTTOM,

9. DYE886,

10. DYE605,

11. CDF,

12. D0,

13. ATLAS,

14. CMS,

15. LHC

Table 3.2: Experiments from which are derived all datasets used.

3.2.2 FK tables

In the NNPDF project, FK tables (or grids) are used to provide information
required to compute QCD cross sections in a compact way. With the FK
method a typical hadronic observable datapoint O is computed as

Od =
Nx∑
α,β

Npdf∑
i,j

σ
(Nx)(d)
αβij N0

i (xα)N0
j (xβ), (3.1)

where σ
(Nx)(d)
αβij is the FK table, a five index object with two indices in flavour

(i and j), two indices in x (α and β)) and a datapoint index (d). N0
i (xα)

is the ith initial scale PDF in the evolution basis at x-grid point x = xα.
Each FK table has an internally specified x-grid upon which the PDFs are
interpolated.

For each FK table the following information is provided:

• GridDesc: a short description of the table,

• VersionInfo: a list that specify the versions of the various pieces of code
used in the generation of the table,
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• GridInfo: a list that specify the architectural points of the FK tables,

• TheoryInfo: a list of theory parameters used in the generation of the
table,

• FlavourMap: a segment (for DIS) or a matrix (for APP) that describes
the flavour structure of the grid,

• xGrid: a segment that defines the x grid upon which the FK grid is
defined.

All the FK tables are stored as FastKernel, which is different for all
the processes considered. In addition there are the Compound files and the
CFactor ones.

Additional multiplicative factors to be applied at the output of the FK
convolution may be introduced with CFactor files, while Compound files
contains information on how to build the observable from FK tables. These
last files implement operations between the final observable prediction for
one definite point in the Dataset and the observable prediction for that point
arised from the FK table calculation.

3.3 Neural networks fits

The NNPDF approach uses a MonteCarlo strategy to perform fit of PDFs
as described in Section 2.2.

This includes:

• The MonteCarlo treatment for experimental data,

• The parameterization of PDFs with Artificial Neural Networks,

• The minimization strategy based on Genetic Algorithm,

all explained in Chapter 2.
The procedure is simple and I did it for each theory above defined (in my

case from theory 190 to theory 197).
As first step it was necessary for me to prepare the fit: this command

take in input an “.yml” file, one for each theory, where all the datasets that
I wish to fit are defined in the FK tables form.

After that I launched the nnfit program, using 200 replicas and taking
as input the folder of the theory considered, called runcard folder, created
in the setupfit step: this number of replicas is necessary in order to be sure
that 100 replicas survive after post selection.



3.3 NEURAL NETWORKS FITS 20

The post-fit program was launched with 100 replicas and has in input
the runcard folder. This allowed me to finalize the PDF set, applying the
post-selection criteria, which discard e.g. replicas from which minimization
has made convergence [18].

As final step I produced a set of comparison plots between each fit and
the reference (with mc = 1.51 GeV).

In Figure 3.1 - 3.2 these plots are shown for all PDFs for theory 190,
corresponding to mc = 1.11 GeV.

Figure 3.1: Comparison between PDFs with mc = 1.11 GeV and mc = 1.51 GeV.
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Figure 3.2: Same as 3.1 showing individual replicas.
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It was not possible to achieve a fit for theories 196 and 197, correspond-
ing to mc = 1.71 GeV and 1.81 GeV, because the charm mass was above the
starting scale of evolution. A way to correct this problem is under investiga-
tion.

3.4 Final result

The χ2 measure of fit quality for all the fits I performed are collected in
Table 3.3. They are shown in Figure 3.3, while in Figure 3.4 a quadratic fit
is shown.

Theory Mass (Gev) χ2

190 1.11 1.20580
191 1.21 1.19490
192 1.31 1.18993
193 1.41 1.18169
194 1.51 1.17665
195 1.61 1.16942

Table 3.3: Results obtained from the compare of two fits.

Figure 3.3: Plot of the resulted values.

It is clear that no minimum is found in this range. This is could have two
possible explanations.
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Figure 3.4: Quadratic fit to the datapoints.

It is possible that the charm mass is heavier than those supposed in [16]
as pole mass. In this way the real mass value is out of the range considered
in this work. In order to reach the exact value it is so necessary to consider
heavier masses, in order to find the correct minimum of the χ2 of the fits.

An other possible reason is that the datasets used are not sufficient to
pin down a well defined value of the mass. A possible solution is consider
new datasets, more sensitive to the charm mass than those used so far.
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