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Introduction

The determination of high precision theoretical predictions of the proton-proton
collisions is a fundamental task in modern particle physics phenomenology. Since
the proton structure is described in terms of Parton Distribution Functions (PDFs),
it is of crucial importance to obtain a precise assessment of PDFs and their un-
certainties. The PDFs represent at the lowest order in perturbation theory the
probability to find a given constituent of the proton carrying a given momentum
fraction and can not be determined from first principles by the current theory that
describes the proton constituent interactions, namely Quantum Chromodynamics
(QCD).

The determination of PDFs thus follows the same procedure of other QCD pa-
rameters, i.e. fitting appropriate experimental data given by the standard χ2 min-
imization. The main difficulty in parton density fits consists in the determination
of a function rather than a single parameter from a finite sample of experimental
measurements. Moreover, experimental uncertainties introduce fluctuations in the
functional space of PDFs and therefore an accurate description of the functional
probability distribution of PDFs is mandatory in order to understand parton den-
sity contribution in theoretical predictions.

The modern approaches to the determination of parton densities rely on a
parametrization that allows us to reduce the problem of fitting a functional prob-
ability distribution into a finite-dimensional problem in the space of parameters.
The description of the parameter probability distribution follows two main ap-
proaches, namely the Hessian representation and the Monte Carlo representation:
the former assumes that the χ2 near the minimum is a quadratic function of the
parameters which follow a multivariate gaussian distribution. The one-sigma con-
tour in the parameter space is then provided by the textbook parameter-fitting
criterion ∆χ2 = 1. However this criterion does not provide a reliable estimation of
the PDF uncertainties for existing Hessian sets which adopt instead the criterion
∆χ2 = t2, where t is called tolerance and typically t ' 5. In the Monte Carlo rep-
resentation the parameter probability distribution is provided by a Monte Carlo
replica sample and the uncertainties are calculated with statistical estimators.

The aim of this work is to study the problem of the introduction of a toler-
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ance for the Monte Carlo PDFs provided by NNPDF collaboration that adopts a
methodology based on the neural networks. Furthermore the main reason of the
need of a tolerance for the existing Hessian sets consists in the dataset incompat-
ibility, i.e. the results obtained from different datasets are not compatible within
their uncertainties produced with the parameter-fitting criterion ∆χ2 =1. The tol-
erance thus implies an inflation of the PDF uncertainties in order to accommodate
all the contributions from each dataset.

However the Monte Carlo sets provided by the NNPDF collaboration do not
exhibit any tension between the fit results with different datasets and therefore
it is important to understand if the tolerance concerns only the existing Hessian
PDFs or it represents a deeper property of PDF determination. Since the Monte
Carlo uncertainties do not rely on a parameter-fitting criterion upon the ∆χ2, a
Hessian conversion of the Monte Carlo PDF sets is required in order to assess the
need of a tolerance.

This elaborate is organized as follows: In the first chapter a brief review of
how PDFs were historically introduced is given along with a description of the
main property of PDFs. In the second chapter we introduce the experimental data
adopted in the PDF fits and then we discuss in detail the two main representations
of the PDF uncertainties. In the third chapter we introduce the problem of the
tolerance for a Monte Carlo set and we present the strategies adopted for the
calculation of the results.
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Chapter 1

From deep inelastic scattering to
parton distributions

In this section an overview of how PDFs arise from deep inelastic scattering is
presented.

We first briefly review the fundamental aspects of Quantum Chromodynamics
(QCD), particularly those related to the determination of PDFs. Afterwards we
approach the deep inelastic scattering in the naive parton model and then we will
introduce QCD-improved corrections which lead to PDF evolution equation.

1.1 Fundamentals of QCD

QCD is a gauge field theory which is invariant under local transformation of the
gauge group SU(3). The gauge bosons of the theory are called gluons and are
massless particles with spin 1. The fermions are called quarks and are massive
particles with fractional electric charge (either 2/3 or −1/3 for the quarks, and
the opposite sign for the antiquarks). There are three families of quarks each
containing a pair of quarks with their corresponding antiparticles and these six
types of quarks are generically called flavours. The Lagrangian density which is
invariant under local SU(3) transformations is:

L =
∑

flavours

ψa(iγµD
µ −m)abψb −

1

4
Tr [GµνG

µν ] , (1.1)

where ψa are the quark fields, Dµ is the covariant derivative

Dµ = ∂µ + ig0TaA
a
µ, (1.2)

where Aaµ is the gluon field and Ta are the eight generators of SU(3) in the fun-
damental representation. Ga

µν is the field strength tensor which can be defined in
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terms of the gluon field and the SU(3) structure constants fabc in the following
way:

Ga
µν = ∂µA

a
ν − ∂νAaµ − g0f

abcAbµA
c
ν . (1.3)

The parameter g0 is the bare coupling of the theory and the bare strong coupling

is defined by α0
S =

g2
0

4π
.

The amplitude of a QCD process can be computed perturbatively in α0
S using

the Feynman rules that can be deduced from the Lagrangian density in Eq. (1.1).
However, higher order terms in α0

S typically suffer from divergences that can be
cured by redefining some bare quantities such as α0

S in order to remove divergent
terms. This is the basic idea of a more general procedure called renormalization
that requires the introduction of an unphysical energy scale µ in order to isolate
the divergences involved in the definition of the new ’renormalized’ quantities.
Since physical observables do not depend on the particular choice of µ, it can be
shown that the renormalized strong coupling constant αS can be altered so that
it absorbs the unphysical dependence of µ. This dependence is determined by the
renormalization group equation (Callan-Symanzik):

µ2 d

dµ2
αS(µ2) = β(αS(µ2)), (1.4)

where the β function admits a perturbative expansion in αS:

β(αS) = −αS(β0 + β1αS + β2α
2
S). (1.5)

Eq. (1.4) implies that αS runs, i.e. the strength of the coupling constant depends
on the energy scale of the process in which it enters. At leading order, namely the
lowest order in αS, the running is determined by the β0 coefficient which is:

β0 =
33− 2nf

12π
, (1.6)

where nf is the number of flavours that are light at the scale µ2, i.e. their squared
masses are lower than µ2 . Since nf < 17 at any scale in QCD, the β function is
negative, implying that the strength of the coupling increases as the scale of the
interaction decreases. This property of QCD is known as asymptotic freedom [1][2]
and implies that quarks and gluons can be treated as free particles when µ2 →∞.
The solution of Eq. (1.4) at leading order can be written in terms of the value of
αS at some arbitrary fixed scale Q2

0 in the following way:

αS(µ2) = αS(Q2
0)

(
1− β0αS(Q2

0) log
µ2

Q2
0

)
, (1.7)
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thus it is enough to measure the coupling constant at one scale and then it can be
computed to any other scale using Eq. (1.7). Equivalently, the solution of Callan-
Symanzik equation at leading order can be expressed in terms of the parameter
Λ, known as the Landau pole of QCD:

αS(µ2) =
1

β0 log µ2

Λ

. (1.8)

The value of Λ is not given by the theory and it can be shown that Λ is of the
same order of the squared mass of the proton. Since Λ represents the energy scale
at which the coupling constant diverges (note that leading order approximation
becomes inadequate as a consequence), it can be used as a rough estimate of the
scale in which perturbation theory breaks down. This regime is known as long
distance physics while the opposite regime where the energy scale is greater than
Λ is called short distance physics.

1.2 Deep inelastic scattering

Parton distribution functions were introduced by Feynman in 1969 in the effort
to understand the scattering behavior of hadronic states in terms of parton model
and successfully describe the deep inelastic scattering measurements.

In this process, a high energy lepton with four-momentum kµ probes a proton
with four-momentum P µ with the exchange of a gauge boson. For simplicity we
only consider the charged current interaction mediated by a virtual photon. If we
label the outgoing lepton with k′µ, the four-momentum carried by the photon is:

qµ = kµ − k′µ, q2 = −Q2 < 0. (1.9)

In the inelastic regime Q2 is large and the proton fragments into an arbitrary
hadronic state X as illustrated at tree level in Fig. 1.1.

In the proton rest frame we can define the following invariant kinematic vari-
ables:

M2 = P 2,

ν = P · q = M(E − E ′),

y =
q · P
k · P

= 1− E ′

E
,

x =
Q2

2P · q
=
Q2

2ν
,

(1.10)

where M is the mass of the proton, E and E ′ are the energies of the ingoing and
outgoing lepton respectively, ν is the energy transfer and y is known as inelasticity
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and it ranges from 0 (elastic scattering) to 1 (maximum energy transfer). The
variable x is known as the Bjorken parameter and it will play a fundamental role
in the parton model.

Despite of the large number of kinematic variables, the squared amplitude can
be described using only two of them: the 8 unknown kinematic variables (hadronic
and leptonic outgoing four-momentum) are constrained by four equations from
energy-momentum conservation and on-shell condition for k′µ which reduce the
degrees of freedom by 5. Furthermore, the process is invariant under rotation
around the lepton direction and therefore the squared amplitude will not depend
on the azimuthal angle so that the actual number of degrees of freedom is decreased
to two.

We shall consider henceforth x and Q2 as independent kinematic variables.
Since QED is a gauge theory, the propagator of the photon depends on the partic-
ular gauge choice used to remove unphysical components of the photon field Aµ.
If we consider the covariant gauge that fixes ∂µA

µ = 0, the photon propagator
assumes the following form:

Dµν(q) = − i

q2

(
gµν − (1− ξ)qµqν

q2

)
, (1.11)

where ξ is a finite constant which fixes the specific gauge choice. In the Feynman
gauge ξ is set to 1 and the photon propagator becomes:

Dµν(q) = −igµν
q2

. (1.12)

Neglecting spin labels, the amplitude of this process in the Feynman gauge is thus

` `

Wµν

h

X

kµ k′µ

qµγ∗

Pµ

Figure 1.1: Deep inelastic scattering of a charged lepton with a target proton.
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given by:

iM = ū(k′)(−ieγµ)u(k)

(
−igµν

q2

)
〈X|J ν

h |P 〉 , (1.13)

where J ν
h is the hadronic current which can not be explicitly computed due to our

ignorance of the wavefuctions for the hadronic states |X〉 and |P 〉.
To isolate the problem, we are able to factorize the inclusive unpolarized

squared amplitude into an hadronic (Wµν) and leptonic (Lµν) part in the following
way:

|iM|2 =
e2

Q4

[
1

2

∑

pol

ū(k′)γµu(k)ū(k)γνu(k′)

][
1

2

∑

X

〈P |J †µh |X〉 〈X|J
ν
h |P 〉

]

=
e2

Q4
LµνW

µν

(1.14)

with:

W µν =
1

2

∑

X

〈P |J †µh |X〉 〈X|J
ν
h |P 〉 =

1

2
〈P |J †µh J

ν
h |P 〉 . (1.15)

Since the term 〈X|J µ
h |P 〉 is the amplitude for the interaction of an incoming proton

with a virtual photon that gives a final state X, the hadronic tensor therefore
represents the inclusive squared amplitude for the process γ∗ + P → X.
Instead the leptonic tensor can be straightforwardly calculated in the following
way:

Lµν =
1

2

∑

pol

ū(k′)γµu(k)ū(k)γνu(k′) =
1

2
Tr
[
/k′γµ/kγν

]

= 2 (k′µkν + k′νkµ − gµνk′ · k) ,

(1.16)

where we have neglected the lepton mass. The hadronic tensor W µν can not be
calculated from first principles in perturbation theory but we can retrieve informa-
tion about its structure by requiring invariance under parity transformation and
the conservation of the hadronic current:

qµWµν = qνWµν = 0. (1.17)

Hence the tensor may be parametrised without loss of generality in terms of the
QED structure functions F1 and F2:

W µν =−
(
gµν − qµqν

q2

)
F1

(
x,Q2

)
+

+

(
P µ − qµP · q

q2

)(
P ν − qνP · q

q2

)
1

ν
F2

(
x,Q2

)
.

(1.18)
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If parity-violating interactions were taken into account, a further function F3 would
arise from the hadronic tensor parametrization. We may now compute the squared
amplitude in Eq. (1.14), the flux factor and then the cross section in terms of the
structure functions. The differential cross section of DIS mediated by a virtual
photon is given by:

dσDIS
dxdQ2

=
16πM2E2

Q4

[1

2

(
1 + (1− y)2

)
xF1

(
x,Q2

)
+

(1− y)(F2(x,Q2)− 2xF1(x,Q2))−
(
M

2E

)
xyF2(x,Q2)

]
.

(1.19)

It is worth noting that the structure functions are related to DIS experimental
measurements through Eq. (1.19) and therefore they represent physical observ-
ables.

To analyse the hadronic tensor is now convenient to introduce the Sudakov
decomposition of a generic four-vector k in terms of two light-like vectors, namely
p and n, along with a space-like two-dimensional transverse vector:

kµ = apµ + bnµ + kµT , (1.20)

with

p2 = n2 = kT · p = kT · n = 0,

p · n = 1.
(1.21)

Therefore, we can write the initial state four-momenta as follows:

P µ = pµ +
M2

2
nµ,

qµ = νnµ + qµT .
(1.22)

Given the Sudakov decomposition, the structure functions can be projected out of
the hadronic tensor by:

F2 = νnµnνWµν ,

FL := F2 − 2xF1 =
Q4

ν3
pµpνWµν .

(1.23)

The term FL which appears in the second equation of Eq. (1.23) is known as the
longitudinal structure function.

So far, few assumptions have been made to describe the tensor Wµν : we success-
fully manage to encode all the proton QED structure in two dimensionless scalar
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` `

fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)fi(ξ)

h

Ŵ i
µν

X

kµ k′µ

γ∗

pµ

ξpµ

Figure 1.2: Parton model picture for DIS.

functions F1 (x,Q2) and F2 (x,Q2) by requiring charge conservation and Lorentz
covariance.

In the limit where Q2, ν → +∞, known as the Bjorken limit, the structure
functions were observed to obey an approximate scaling law, i.e. they depend only
on the dimensionless variable x:

Fi
(
x,Q2

)
→ Fi (x) . (1.24)

Bjorken scaling implies that the photon scatters off a pointlike particle, since
otherwise the dimensionless structure functions would depend on Q2 only through
Q2/Q2

0, where 1/Q2
0 refers to some length scale of the interacting particle.

1.3 Parton model

The first formulation of the parton model, also known as ’naive’ parton model,
states that for a sufficiently hard interaction the virtual photon scatters off a sin-
gle point-like parton inside the proton (Fig. 1.2) and we can treat the partons as
approximately free particles. A generic quantity which depends on the hadronic
state can be computed as the sum of partonic contributions calculable in per-
turbation theory weighted by a parton distribution function which encodes the
probability of the parton to carry a fraction ξ of proton total momentum. PDFs
can not be calculated from first principles as they depend on non-perturbative
internal structure of the proton. The ’naive’ parton model and its main features
can be summarized as follows:

• When Q2 is high enough that the binding energy of the proton can be ne-
glected, the photon becomes sensitive to proton constituents and interacts
only with one parton.
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• Parton carries a fraction ξ of the proton total momentum p, namely ξp,
and its intrinsic momentum due to parton dynamics inside the proton is
neglected.

• Each parton is associated with a probability density fi(ξ), where i represents
the type of the parton. The PDFs are fitted from data and thus can be
considered ’functional parameters’ of the theory.

• The hadronic tensor is assumed to follow:

Wµν

(
x,Q2

)
=

partons∑

i

fi ⊗ Ŵ i
µν

(
x,Q2

)
, (1.25)

where Ŵ i
µν refers to the parton-virtual photon scattering and we have intro-

duced the multiplicative convolution:

f ⊗ g (x) =

∫ 1

0

dξ

ξ
f (ξ) g

(
x

ξ

)
. (1.26)

The parton level tensor must obey the same symmetries as the hadron level tensor
W µν . Therefore, the form of Ŵ µν is:

Ŵ µν
i = −

(
gµν − qµqν

q2

)
F̂ i

1

(
x

ξ
,Q2

)
+

(
pµ − qµp · q

q2

)(
pν − qν p · q

q2

)
ξ2

ν
F̂ i

2

(
x

ξ
,Q2

)
,

(1.27)

where F̂ i
1 and F̂ i

2 are the parton level structure functions and are related to hadronic
ones as follows:

FJ(x,Q2) =

partons∑

i

∫ 1

0

dξ

ξ
fi (ξ) F̂

i
J

(
x

ξ
,Q2

)
, J = 1, L

F2(x,Q2) =

partons∑

i

∫ 1

0

ξdξfi (ξ) F̂
i
2

(
x

ξ
,Q2

)
.

(1.28)

The crucial advantage of parton model is that the partonic tensor and structure
functions are now computable in perturbation theory by calculating the squared
amplitude for the subprocess qi(ξp) + γ∗(q) → qi(l) since the partonic version of
W µν can be represented in the following way:

Ŵ µν
i =

1

2

∑

pol

〈qi|J †µh |qi〉 〈qi|J
ν
h |qi〉 . (1.29)
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qi

γ∗

ξpµ
lµ

qµ

Figure 1.3: Leading order Feynman’s diagram for qi(ξp) + γ∗(q)→ qi(l).

At leading order, also known as Born level, the amplitude is:

iMµ
i = −ieqiū (l) γµu (ξp) ,

Ŵ i
µν =

1

2

∑

pol

|Mi|2µν .
(1.30)

The unpolarized squared modulus of Eq. (1.30) can be found analogously to lep-
tonic tensor in Eq. (1.16) (neglecting parton masses). Ultimately, including the
phase space of the final parton and using parton level projectors in Eq. (1.23), we
find in the C.M. frame:

F̂ i
2 = ν

nµnν

ξ2
Ŵ i
µν = 4νe2

qi
δ(l2),

F̂ i
L =

Q4

ξν3
pµpνŴ i

µν = 0,

F̂ i
1 =

ξ2

2x

(
F̂ i

2 − F i
L

)
= 2νe2

qi

ξ2

x
δ(l2).

(1.31)

We can rewrite the delta in terms of ξp and q using four-momentum conservation:

δ(l2) = δ((ξp+ q)2) = δ(2ξp · q −Q2) =
1

2ν
δ (ξ − x) . (1.32)

We have found that the parton model prediction at leading order explains Bjorken
scaling since the structure functions do not depend on Q2; furthermore, the scaling
variable x actually describes the momentum fraction carried by the interacting
parton. The full QED structure functions of the proton can be evaluated inserting
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the parton level structure functions in Eq. (1.28):

F1

(
x,Q2

)
=

∫ 1

0

dξ
∑

i

fi(ξ)e
2
qi

ξ

x
δ (ξ − x) =

∑

i

e2
qi
fi(x),

F2

(
x,Q2

)
= 2

∫ 1

0

ξdξ
∑

i

fi(ξ)e
2
qi
δ (ξ − x) = 2x

∑

i

e2
qi
fi(x).

(1.33)

We may notice from Eq. (1.33) that F2 = 2xF1 and since FL = F2 − 2xF1 we find
FL = 0 which is known as Callan-Gross relation. Furthermore Eq. (1.33) implies
that parton distribution functions are tightly related to proton structure functions
which can be measured in deep inelastic scattering experiments.

1.4 Higher order corrections

The naive parton model was able to provide a good phenomenological description
of early DIS measurements. Its success also provided great support for QCD as
the correct description of the strong interaction. As matter of fact, the Bjorken
scaling introduced substantial constraints upon the theory governing the internal
dynamics of the proton. The asymptotic freedom of QCD allows for a consistent
description of Bjorken-scaling, where the constituents of the hadron can be viewed
as independent, non-interacting point like particles at high values of the resolution
parameter Q2 . The partons in Feynman’s model were therefore quickly associated
with the quarks and gluons of QCD and a theoretical proof of ’naive’ parton model
assumptions was given by Product Operators Expansion formalism.

We shall now investigate perturbative QCD corrections to structure functions
beyond leading order. As we shall see below, next-to-leading order (NLO) correc-
tions in αS lead to divergences which can be regularized, factorized and re-absorbed
in the definition of PDFs that acquire a dependence of the hard scale Q2. This
procedure gives rise to a structure function correction proportional to αS logQ2

that breaks Bjorken scaling.

The NLO amplitude involves the Feynman diagrams in Fig. 1.4 which are given

16



CHAPTER 1. FROM DEEP INELASTIC SCATTERING TO PARTON
DISTRIBUTIONS

qi

g

γ∗

qi

ξpµ
kµ

lµ

qµ

rµ

(a)

+

qi

g

γ∗

qi
ξpµ

kµ lµ

qµ

rµ

(b)

+

qi

γ∗

ξpµ

lµ

qµ

kµ

(c)

+

g

qi

γ∗

qi

ξpµ
kµ

lµ

qµ

rµ

(d)

Figure 1.4: NLO Feynman’s diagrams for real gluon emission in initial (a) and
final (b) state, virtual vertex correction (c) and initial gluon splitting (c).

by:

iMµ
a,i = u(l)(−ieqiγµ)

i/k

k2
(−igSγαT alm)u(ξp)ε∗α(r),

iMµ
b,i = u(l)(−igSγαT alm)

i/k

k2
(−ieqiγµ)u(ξp)ε∗α(r),

iMµ
c,i = u(l)

[ ∫
dk4

(2π)4
(−igSγαT alm)

i(ξ/p+ /q − /k)

(ξp+ q − k)2
(−ieqiγµ)

i(ξ/p− /k)

(ξp− k)2
(−igSγβT bml)

−igαβ
k2

]
u(ξp),

iMµ
d,i = u(l)(−ieqiγµ)

i/k

k2
(−igSγαT alm)v(r)εα(ξp),

(1.34)

where T aml are the Gell-Mann matrices and gS is the strong coupling constant with

αS =
g2
S

4π
.

When computing the squared amplitude we must take into account only terms
of O(αS) and thus we may consider only the squared modulus of real emissions
and twice the real part of their interference along with the interference term of
virtual vertex correction with Born amplitude (as shown in Fig. 1.5). As it regards
the initial state gluon diagrams, the squared amplitude is given by Fig. 1.6. Each
of these terms contains integrals which diverge in both the ultraviolet (UV) and
infrared (IR) regions. UV divergences are dealt with following QCD renormaliza-
tion procedure. IR divergences for real emission occur in two regions of the gluon
phase-space, namely the soft limit where gluon momentum approaches zero and
the collinear limit where the gluon transverse momentum becomes small.

When virtual correction divergences are taken into account, QCD infrared and
collinear safety theorem ensures the cancellation of real and virtual singularities if
the process is not sensitive to collinear and soft emission. However the collinear
divergences present in the real emission diagrams from the initial state partons
are not subject to the same cancellations as they modify the momenta at the
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(a) (b) (c) (d)

(e) (f)

Figure 1.5: Contributions to the squared amplitude at NLO: the first row describes
real emission terms and the second represents the interference between vertex cor-
rection and Born amplitude. Divergences in (b), (c), (d) and soft singularities in
(a) cancel out with (e) and (f) while collinear singularity in (a) is not involved in
this cancelation.

interaction vertex.

We may treat this infinities in a similar way as the renormalization cures the
UV divergences: by factorizing and reabsorbing them into some bare quantity.
In this case, we may assume PDFs as bare functional parameters of the theory
which are not related to any physical observables and they are redefined in such a
way they correspond to finite measurable quantities. We can explicitly show this
procedure by calculating the parton structure function at O(αS):

F̂ i
2

(
ξ,Q2

)
= 2e2

qi
δ (ξ − x) +

αS
2π

∑

j

(
Pij

(
x

ξ

)
log

(
Q2

κ2

)
+Hij(ξ)

)
+O

(
α2
S

)

(1.35)

where i and j refer to interacting and initial state partonic species respectively,
Hij(ξ) contains all the finite contributions and Pij(ξ) are the Altarelli-Parisi split-
ting functions. We have introduced the unphysical cutoff κ2 to regulate infrared
divergences that arise in the limit κ2 → 0. After convoluting the NLO parton
level structure functions with the bare PDFs denoted by f 0

i (ξ), we obtain the full
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(a) (b) (c) (d)

Figure 1.6: Contribution to squared- amplitude at NLO with initial state gluon.
Each term contains both soft and collinear singularities.

structure function:

F2

(
x,Q2

)
=
∑

i

xe2
qi

[
f 0
i (x)+

+
αS
2π

∫ 1

0

dξ

ξ

(
Pij

(
x

ξ

)
log

(
Q2

κ2

)
+Hij(ξ)

)
f 0
j (ξ)

]
+O(α2

S).

(1.36)

This expression for structure function still suffers from an IR divergence when κ2 →
0. We may attempt to factorize the divergent terms introducing the factorization
scale µF in order to separate long and short distance physics. The IR singularities
can then be reabsorbed into the bare PDF which already describes the strong
coupled dynamics of the hadron in the following way:

fi

(
ξ,
Q2

µ2
F

)
= f 0

i (ξ) +
αS
2π

∫ 1

0

dξ

ξ

∑

j

∆
(1)
ij

(
x

ξ
,
µ2
F

κ2

)
f 0
j (ξ) +O

(
α2
S

)
, (1.37)

where the counter terms ∆
(n)
ij are made up by a regular part ∆

(n)
r,ij and a singular

part ∆
(n)
s,ij. The singular part is uniquely specified by having to remove the collinear

divergence present in parton level structure functions. As regards Eq. (1.36), the
singularity may be subtracted by setting:

∆
(n)
s,ij

(
x

ξ
,
µ2
F

κ2

)
= Pij

(
x

ξ

)
log

(
µ2
F

κ2

)
, (1.38)

where Altarelli-Parisi splitting functions at NLO are:

Pqq(x) = CF

[
1 + x2

(1− x)+

+
3

2
δ(1− x)

]
+O

(
α2
S

)
, (1.39)

Pqg(x) = Tr
[
x2 + (1− x)2]+O

(
α2
S

)
. (1.40)
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where Tr and CF are respectively 1
2

and 4
3

and the plus distribution in the first
equation in Eq. (1.39) is defined so that its integral with a sufficiently smooth
function g(x) is:

∫ 1

0

dx
g(x)

(1− x)+

=

∫ 1

0

dx
g(x)− g(1)

(1− x)
,

1

(1− x)+

=
1

(1− x)
, 0 ≤ x ≤ 1.

(1.41)

Unlike the singular part, the regular part ∆
(n)
r,ij is not constrained by any require-

ment and in principle it can be set arbitrarily. The aforementioned procedure and
the choice of a specific regular part are known as factorization scheme. For ex-
ample, we may include all the finite terms in the regular part of the counter term
so that ∆

(1)
r,ij = Hij. This particular choice is called DIS factorization scheme and

allows us to write the hadronic structure function in a particularly simple way:

F2

(
x,Q2

)
= 2

∫ 1

0

ξdξ
∑

i

fDIS
i

(
ξ,
Q2

µ2
F

)
e2
qi
. (1.42)

However the DIS factorization scheme depends on the process where it is defined
and thus it does not allow a practical definition of PDFs across multiple exper-
iments. We may fulfill this request by introducing the modified minimum sub-
traction (MS) scheme where the regular term contains only process independent

contributions which at NLO are given by ∆
(1)
r,ij = log 4π − γE. In MS scheme the

PDFs assume the following form:

fMS
i

(
ξ,
Q2

µ2
F

)
= f 0

i (ξ) +
αS
2π

∑

j

[
Pij(x) log

Q2

κ2
+ log 4π − γE

]
⊗ f 0

j (x) +O
(
α2
S

)
.

(1.43)
As a consequence of factorization procedure, the new physically observable PDFs
acquire an explicit dependence on the hard scale Q2 as shown in Eq. (1.37).
In this factorization scheme the structure function F2 becomes:

F2

(
x,Q2

)
=
∑

i

xe2
qi

[
fMS
i

(
x,
Q2

µ2
F

)
+
αS
2π

∫ 1

x

dξ

ξ
fMS
i

(
x

ξ
,
Q2

µ2
F

)
H̃ij(ξ)

]
+O(α2

S),

(1.44)

where H̃ij(ξ) represents the finite term remaining after factorization. We may
notice that the NLO structure function in Eq. (1.44) involves logarithms of the
hard scale Q2 which break Bjorken scaling.
If higher order are taken into account, the general structure function in a process
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independent factorization scheme (such as MS) can be written as:

F (x,Q2) =
∑

i

∫ 1

x

dξ

ξ
Ci

(
x

ξ
,
Q2

µ2
F

, αS(Q2)

)
fi

(
ξ,
Q2

µ2
F

)
, (1.45)

where Ci are finite functions which can be computed perturbatively and represent
the Wilson’s coefficients if we perform Operators Product Expansion (OPE) of the
hadronic tensor. Eq. (1.45) states that the structure functions can be computed
convoluting process dependent coefficients Ci with the same set of PDFs, both
calculated at a fixed perturbative order in αS. This condition holds only if the
factorization of IR divergences is process independent, i.e. the singular part of
the counterterm in Eq. (1.37) is a universal function which has no sensibility to
vertex dynamics. This fundamental property of factorization procedure is due to
Universal Collinear factorization theorem [3] which is valid for a large number of
processes.

1.5 PDF Evolution Equation

The factorization procedure introduces an arbitrary scale µF in order to separate
the IR region from short distance physics. The scale µF is commonly set on the
same order of magnitude of the hard scale Q2 and has no physical meaning since
the structure functions do not depend on factorization scheme. As we may notice
in Eq. (1.45), the right hand side exhibits an explicit dependence on µF while the
left hand side does not depend on µF . The requirement of the independence of
structure function from the factorization scale can be expressed as follows:

µ2
F

d

dµ2
F

F
(
x,Q2

)
= 0. (1.46)

This relation leads to a renormalization group equation for parton distributions
and Wilson’s coefficients in terms of Altarelli Parisi splitting functions Pij :

µ2
F

d

dµ2
F

fi

(
y,
Q2

µ2
F

)
=
∑

j

∫ 1

y

dz

z
Pij

(y
z
, αS(µ2

F )
)
fj

(
z,
Q2

µ2
F

)
, (1.47)

µ2
F

d

dµ2
F

Ci

(
y,
Q2

µ2
F

, αS(µ2
F )

)
= −

∑

k

∫ 1

y

dz

z
Pik

(y
z
, αS(µ2

F )
)
Ck

(
z,
Q2

µ2
F

, αS(µ2
F )

)
.

(1.48)

The above equations are known as Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations and the results can be proven with OPE formalism and hold order by
order in perturbation theory. The right hand side of DGLAP equations may be
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interpreted as an anomalous dimension for PDFs and Wilson’s coefficients which
differ only by a minus sign. This feature ensures that a modification of factorization
scale µF for the PDFs cancels out with the same scale variation for the Wilson’s
coefficients leaving the structure function invariant under µF reparametrization.
We may thus define the parton densities at a fixed energy scale and measure them
by fitting experimental data and afterwards evolve PDFs at the new energy scale
by solving DGLAP equation in Eq. (1.47).
The general form of parton density evolution equations consists in a system of cou-
pled integro-differential equations with Altarelli-Parisi splitting functions as kernel
elements. However, the rank of the evolution matrix Pij is not maximal since the
charge conjugation invariance and the flavour symmetry (QCD is flavour blind)
reduce the number of independent splitting functions according to the following
constrains:

Pqiqj = Pqjqj ,

Pqiqj = Pqiqj ,

Pqig = Pqig,

Pgqi = Pgqi .

(1.49)

It is now convenient to choose an appropriate basis in the space of PDFs in order
to make the matrix evolution Pij as diagonal as possible. We first define:

q±i = qi ± qi. (1.50)

Because of the baryon number conservation, the combinations q−i (also called va-
lences) are preserved from evolution and thus decouple. Similarly, the following
triplets combinations decouple from the evolution of the remaining parton densi-
ties:

T3 = u+ + d+,

T8 = u+ + d+ − 2s+,

T15 = u+ + d+ + s+ − 3c+,

T24 = u+ + d+ + s+ + c+ − 4b+,

T35 = u+ + d+ + s+ + c+ + b+ − 5t+.

(1.51)

Instead, the singlet combination given by

Σ =
∑

i

q+
i (1.52)

couples with the gluon PDF.
Therefore, the non-singlets, namely the valences and the triplets, evolve according
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to:

µ2
F

d

dµ2
F

fNSi

(
x, µ2

F

)
=

∫ 1

x

dz

z
PNS
i

(x
z
, αS

)
fNSi

(
z, µ2

F

)
, (1.53)

where PNS
i are obtained inserting Eq. (1.50) and Eq. (1.51) into DGLAP equation

Eq. (1.47). The singlet combination couples with the gluon PDF so that their
evolution is given by the following system:

µ2
F

d

dµ2
F

(
g (x, µ2

F )
Σ (x, µ2

F )

)
=

∫ 1

x

dz

z

(
Pgg PgΣ
PΣg PΣΣ

)(
g (z, µ2

F )
Σ (z, µ2

F )

)
. (1.54)

This particular choice of the basis in the space of PDFs allows us to reduce the
1 + 2nf coupled equations in Eq. (1.47) to 2nf − 1 independent equations (nf for
valences and nf − 1 for triplets) along with an irreducible system of two equa-
tions for singlet and gluon PDFs. The solutions of Eq. (1.53) and Eq. (1.54) are
uniquely determined once the initial conditions are given, i.e. the PDF explicit
functional form at some initial scale Q2

0. However there is no analytical solution
and the determination of the PDF evolution typically follows one of two numerical
procedures; the most direct consists in solving DGLAP equations iteratively in the
x-space and it is implemented in codes such as HOPPET, QCDNUM and APFEL.
The alternative procedure relies on Mellin transformation which is give by:

f(n) =

∫ 1

0

xn−1f(x)dx, n ∈ C. (1.55)

The main advantage is that multiplicative convolution in the x-space is reduced
to a product in the Mellin-space:
∫ 1

0

dx xn−1

∫ 1

x

dy

y
h(y)g(x/y) =

∫ 1

0

dx xn−1

[∫ 1

0

dy

∫ 1

0

dz h(y)g(z)δ(x− yz)

]

=

∫ 1

0

dy yn−1h(y)

∫ 1

0

dz zn−1g(z)

= h(n) · g(n).

(1.56)

Therefore the solution of DGLAP equations becomes trivial in the Mellin-space
and the trade-off is then recovering the PDFs in x-space which usually requires a
numerical inversion procedure. The QCD-PEGASUS implements this approach.

1.6 Heavy quarks

So far we have being assuming the approximation that the partons involved in PDF
evolution equations are massless. Since the masses of the three lightest quarks u,
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d and s are far below Λ, this approximation is completely reasonable for them.
A more accurate treatment of the remaining flavours must be taken into account,
especially when the energy scale approaches the quark masses. In particular we
are interested in studying the case where the characteristic scale of the interaction
is smaller or bigger than quarks masses and how the transition between these two
regimes takes place in parton distribution evolution.

The effects of heavy quarks are encoded in several flavour number schemes
which can be summarized in two limiting cases, depending on the relation between
the quark mass mq and the energy scale Q2 where the PDFs are defined:

• m2
q & Q2 : the quark can be considered as a completely final state and it

does not participate in the evolution equation since there is no energy to
produce it. Moreover all the mass effects must be included in the calculation
of squared amplitude of the final state.

• m2
q � Q2 : the quark is treated as another massless parton so that its PDF

is perturbatively generated by DGLAP equation.

The first limit is well realized in the fixed flavour number scheme (FFNS) which
is based on the assumption that heavy quarks are treated as purely final state
particles and the only partons of the theory are the nl lightest quarks and the
gluon. When a single heavy quark with mass mh is introduced, the structure
function in this scheme becomes:

F (nl, Q
2,mh) =

nl∑

i

Ci

(
nl,

Q2

mh

,
µ2

mh

,
Q2

µ2

)
⊗ fi(nl, µ2). (1.57)

Notice that the sum runs only on the light flavours since there is no heavy quark
PDF and the Wilson’s coefficients acquire an explicit dependence on heavy quark
mass. Eq. (1.57) is accurate when the energy scale is near the mass threshold
and below but when Q2 increases this scheme may suffer from large logarithms of
Q2

m2
h

that are not treated in factorization procedure and threat perturbative series
convergence.

Instead the zero-mass variable flavour number scheme (ZM-VFNS) is accurate
in the second limit since it introduces a heavy quark PDF. In this scheme a generic
structure function is simply:

F (nl + 1, Q2) =

nl+1∑

i

Ci

(
nl,

Q2

µ2

)
⊗ fi(nl + 1, µ2). (1.58)

ZM-VFNS takes into account mass threshold by setting the heavy quark PDF
to zero when Q2 is below m2

q. Moreover, the heavy quark PDF evolves with
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the DGLAP equations for scales greater than the heavy quark mass. While this
method is accurate in the regime where FFNS fails, its treatment of the heavy
quarks in terms of massless parton completely ignores the massive contribution to
the Wilson’s coefficients and its reliability reduces in the large Q2 region where
powers of (Q

2

m2
q
) become significant.

Each of these schemes succeeds where the other breaks down. The General
Mass Variable Flavour Number Scheme (GM-VFNS) attempts to unify the advan-
tages of both ZM-VFNS and FFNS so that the effects of the heavy quarks are
accounted for all scales. The basic idea consists in switching from a FFNS with
nf flavours to a FFNS with nf + 1 flavours when Q2 matches the mass threshold.
The relation between PDFs at scales above and below the quark mass mh can be
established in terms of a (nf + 1, nf ) transition matrix:

fi(nf + 1, µ→ m+
h ) =

nf∑

j

Aij

(
nf ,

Q2

m2
h

)
⊗ fj

(
nl, µ→ m−h

)
. (1.59)

The matrix A can be computed perturbatively and is known at NNLO. Requiring
the continuity of the theoretical expression of the structure functions at mass
threshold, we find:

F (x,Q2) =
∑

k

C−k (nf ,mh)⊗ f−k (nl) =
∑

j

C+
j (nf + 1,mh)⊗ f+

j (nl + 1) =

=
∑

jk

C−j (nf + 1,mh)⊗ Ajk
(
nf ,

Q2

m2
h

)
⊗ f−k (nl).

(1.60)

Since the PDFs are continuous functions, the Wilson’s coefficients must obey:

C−k (nf ,mh) =
∑

j

C−j (nf + 1,mh)⊗ Ajk
(
nf ,

Q2

m2
h

)
, (1.61)

where in the previous equations the superindexes + and - refer to the direction
of the limit and the dependence on µ is suppressed. This guideline is refined in
various GM-VFNS such as ACO, TR and FONLL.

1.7 General properties of parton distribution func-

tions

The GM-VFNS allows us to generate perturbatively the PDFs of heavy quarks
when the energy scale Q2 exceeds the mass threshold. Therefore the number of in-
dependent PDFs is constrained by the initial scale Q2

0 where they are measured as
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the quark distributions with mass above the initial scale arise from DGLAP equa-
tion. Usually parton distributions are determined at some scale m2

s < Q2
0 < m2

c in
order to minimize the independent distributions while avoiding non-perturbative
effects. The seven PDFs of gluon, quarks u, d, s and their antiparticles repre-
sent the building block of the parton model applications since every theoretical
prediction involving hadronic states relies ultimately on them.

Although the parton densities describe the non perturbative dynamics of hadronic
constituents and therefore they can not be computed explicitly, some general state-
ments may shed light on their x and hard scale dependence. The most important
constrains are the parton distribution sum rules which fix the relative normaliza-
tion of PDFs. Firstly, the momentum sum rule states that the total fraction of
proton momentum carried by each parton must sum up to one, namely:

∫ 1

0

dx
[
xΣ(x,Q2) + xg(x,Q2)

]
= 1, (1.62)

where Σ is the singlet combination defined above. Moreover the valence sum rules
ensure the conservation of the quantum numbers that characterize the hadron; for
the proton we have:

∫ 1

0

dx u−(x,Q2) =

∫ 1

0

dx[u(x,Q2)− ū(x,Q2)] = 2,

∫ 1

0

dx d−(x,Q2) =

∫ 1

0

dx[d(x,Q2)− d̄(x,Q2)] = 1,

∫ 1

0

dx s−(x,Q2) =

∫ 1

0

dx[s(x,Q2)− s̄(x,Q2)] = 0.

(1.63)

Additional constrains can be inferred about the PDF structure from momentum
and valence sum rules. Eq. (1.62) requires that the first momentum of singlet and
gluon distributions must be integrable while the integrability of the distributions
themselves is not needed. Furthermore these parton densities must vanish in the
limit where x→ 1 in order to mitigate large contribution to the integral. Moreover
the valence sum rules in Eq. (1.63) enforce the integrability of the light quark PDFs
over the whole x range. The information obtained from momentum and valence
sum rules constrain the small and large x behavior of the singlet and valence PDFs
and thus we may isolate these dominant contributions in the following way:

q−(x,Q2) = NV xαV (1− x)βV rV (x),

Σ(x,Q2) = NΣ xαΣ(1− x)βΣrΣ(x),
(1.64)

where the coefficients α and β control the small and large x regions respectively.
These coefficients along with normalization N must implement the aforementioned
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considerations inferred from the sum rules. The remaining term r(x) describes the
functional form of the parton densities between the two x-limits and represents
the main object of research in the PDF determination.
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Chapter 2

Parton density representation

A precise description of the proton structure is a crucial task in modern parti-
cle physics as the parton densities connect the partonic dynamics to the physical
observables. The predictive power of a theory is therefore tightly correlated to
an accurate assessment of PDFs and their uncertainties. Since hadrons consist in
strong coupled QCD bound states, the perturbative approach to PDF determi-
nation is doomed to fail. Although a great deal of effort and progress has been
made in understanding PDFs through non perturbative methods such as Lattice
QCD [4], results are far from the accuracy requirements of practical applications
at hadron colliders.

The determination of PDFs thus follows the same procedure of other QCD
parameters, i.e. fitting appropriate experimental data. The main difficulty in
parton density fits consists in the determination of a function rather than a single
parameter from a finite sample of experimental measurements. Moreover, the
experimental uncertainties introduce fluctuations in the functional space of PDFs
and therefore an accurate description of the functional probability distribution
of PDFs is mandatory in order to understand the parton density contribution in
theoretical predictions.

2.1 Experimental data

All the different approaches to the parton density determination are based on the
selection of the datasets used in the fitting procedure. The experimental data rep-
resent thus the backbone of PDF analysis and are selected in order to provide the
maximum sensibility to the parton densities. Furthermore, the measured points
entering the fit must be described by accurate theoretical predictions in order to
minimize the PDF uncertainties. For this purpose experimental cuts are intro-
duce to remove e.g. non perturbative kinematic regions where non perturbative
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Figure 2.1: Kinematic coverage adopted by the NNPDF collaboration [5].

corrections become relevant.
In the following sections the most important processes in the determination of

PDFs are presented, focusing on how the experimental data affect parton density
combinations.

2.1.1 Fixed target and collider DIS

Deep inelastic scattering data represent the wider and more important dataset
for PDF analysis. The electron-proton scattering data from HERA and SLAC
explore the medium and large x region and improve statistical and systematic
uncertainties at medium and high Q2. This dataset provides the most reliable
probe of the proton electromagnetic structure functions while fixed-target DIS
experiments introduce important constrains at high x. Moreover, the neutral
current DIS measurements shed light on qi + qi combination and the Z mediated
processes give information about the PDF flavour separation through F3 structure
function. In addiction to proton measurements, the data obtained from scattering
off deuterium target provide constrains on light quark PDFs, namely u − d and
u/d combinations if the isospin symmetry is assumed.

Although the gluon contribution at DIS appears at NLO, the scaling violations
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of structure functions and the wide range of energy scale covered by the data ensure
an indirect but robust determination of gluon PDFs. DIS has been the historical
benchmark for QCD and parton model predictions and it represents one of the
best understood scattering process since his theoretical predictions are known at
second order in α2

S with full heavy quark mass contributions. Moreover, the clean
ep or µp environment provides datasets unaffected by nuclear correction even if low
energy data may suffer from non perturbative corrections. Appropriate kinematic
cuts avoid this problem.

2.1.2 Neutrino DIS

The scattering processes involving neutrino beams probe the electro-weak behavior
of the proton and allow the measurement of F ν

2 and F ν
3 structure functions whose

form in terms of partonic densities at leading is given by (suppressing CKM matrix
element):

F ν
2 (x) = x

(
u+(x) + d+(x) + 2s(x) + 2c(x)

)
,

F ν
2 (x) = x

(
u+(x) + d+(x) + 2s(x) + 2c(x)

)
,

(2.1)

and for F3 we have:

F ν
3 (x) = x

(
u−(x) + d−(x) + 2s(x)− 2c(x)

)
,

F ν
3 (x) = x

(
u−(x) + d−(x)− 2s(x) + 2c(x)

)
.

(2.2)

The fit of these distributions allows us to obtain a better description of valence
quark combination q − q. However the lack of an accurate description of large
nuclear corrections could lead to a misleading assessment of the uncertainties.

A further contribution from neutrino physics concerns semi-inclusive dimuon
production process pN → µµX which gives a direct handle on the strange distri-
bution s(x) which is Cabibbo favoured. These experimental measurements have
been provided by NuTeV/CCFR collaboration and introduce important constrains
upon strange quark distribution.

2.1.3 Drell-Yan and boson production

The measurements of electroweak boson production and Drell-Yan cross sections
have became really accurate in the LHC era and represent the most important
dataset after DIS results. In particular, Drell-Yan phenomenology views the pro-
duction of a pair of leptons from the scattering of two initial state hadrons. Since
the neutrinos pair measurements in scattering processes represent an extremely
prohibitive task, the interest in Drell-Yan experiments focuses on the lepton-lepton
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and lepton-neutrino pairs originating from γ∗/Z and W mediated interactions re-
spectively as shown in Fig. 2.2. The relevant kinematic variables in neutral current
process are the invariant mass of the lepton pair which depends on their energy
and momentum by

M2
ll = (E1 + E2)2 + (p1 + p2)2, (2.3)

and the intermediate boson rapidity, given in the detector frame by

y =
1

2
log

E + pL
E − pL

, (2.4)

with E and pL the energy and the longitudinal momentum of the intermediate
boson respectively.
These kinematic variables are directly associated to the Bjorken scaling parameter
by the following relation:

x± =
Mll√
s
e±y, (2.5)

where s is the centre of mass energy squared and the± denotes the parton direction
with respect to the beam frame. Therefore high rapidity measurements provide
precious information about the PDF behavior in both high and low x regions.
When charged current interactions are taken into account, the neutrino in the
final state can not be detected and the resolution of W rapidity deteriorates. This
problem can be avoided by expressing data in terms of the pseudorapidity of the
detected lepton, namely:

η = − log tan θ, (2.6)

where θ is the angle between the lepton direction and the beam axis.
Another relevant contribution to the PDF determination is the lepton asymmetry
in W -mediated Drell-Yan and it is defined by:

AlW =
dσl+/dηl − dσl−/dηl
dσl+/dηl + dσl−/dηl

(2.7)

and dσl±/dηl refers to the differential cross section for W± → l±νl.
Generally Drell-Yan measurements with fixed target (hydrogen or deuterium) pro-
vide a relatively clean probe of u/d PDF combination but poorly understood nu-
clear corrections from deuterium scattering could affect theoretical predictions.

On the contrary, collider experiments provide the theoretical cleanest environ-
ment for the Drell-Yan process since the high energy scale suppresses non pertur-
bative effects. Data from pp interactions at Tevatron include neutral current cross
sections, asymmetry measurements, Z rapidity distribution and lepton asymme-
try in Eq. (2.7). These datasets provide important information on u/d ratio and
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Figure 2.2: Drell-Yan process mediated by a virtual photon.

quark valence distributions. Moreover, less inclusive processes such as W produc-
tion in association with a charm jet give relevant constrains upon the strange PDF
because of the large strange-charm CKM matrix element.

The measurements of vector boson production and Drell-Yan cross sections
from LHC experiment represent another conspicuous contribution to PDF fit.
ATLAS and CMS provide precise measurements of W and Z distribution in both
rapidity and transverse momentum along with lepton charge asymmetry while the
LHCb sensibility to vector boson production in the very forward region probes
high rapidity regime.

2.1.4 Jet production data

So far the constrains upon the gluon PDF have been produced in a quiet indi-
rect way from scaling violations in DIS experiments. The request of an explicit
determination of gluon parton density is met by jet production measurements
which provide important information in the large x region. Jets are narrow cone
of particles produced by the hadronization of quark and gluon radiation and are
experimentally reconstructed from single particle data via appropriate clustering
algorithms. These clustering algorithms are required to provide a good description
of the jet structure and must satisfy QCD infrared and collinear safety theorem.
More recent experiments typically utilise sequential-combination algorithms such
as the Cambridge-Aachen [6], kT [7] or anti-kT [8] algorithms.

The cross section for the inclusive jet and dijet (i.e. the emission of a pair of
jets) data in hadron-hadron collisions are known at NLO and only approximate
NNLO results are available. The inclusive jet and dijet cross section measurements
are available from CDF, D0, ATLAS and CMS experiments.
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2.2 Treatment of multiplicative uncertainties

In general the task of the fitting procedure is to provide the best estimation for
an unknown parameter of a given theory by requiring the maximum likelihood
between the theoretical predictions of a specific observable and its experimental
measurements. Moreover the fitting process must provide an accurate assessment
of how the parameter probability distribution depends on the experimental uncer-
tainties.

Since the parton densities can be viewed as QCD functional parameters, the
problem of their determination consists in providing the best estimation of a func-
tional probability density in the space of PDFs from a finite number of experimen-
tal data. In general this task can be achieved by introducing an appropriate error
function χ2 that measures the fit quality and commonly is defined by:

χ2 =

Ndat∑

i,j

(ti −mi)(Cov−1)ij(tj −mj), (2.8)

where t are the theoretical predictions which depend on the PDFs, m are the
experimental data points and Cov−1 is the inverse of the experimental covariance
matrix. Although Eq. (2.8) represents the most common definition of χ2, other
definition can be adopted as we shall see later. The full experimental uncertainty
information is contained in the covariance matrix that is characterized by the sum
of three different contributions:

Covi,j = σunci σuncj +

Nadd∑

k

σaddik σaddkj +

Nmul∑

k

(σmulik σmulkj )mimj, (2.9)

where σunci is the uncorrelated uncertainty for the data point mi, σ
add
ik is the cor-

related addictive systematic error between mi and mj and σmulik is the correlated
multiplicative systematic error. Typically the main sources of multiplicative un-
certainties are the normalization of the data points. This method of constructing
the covariance matrix is unambiguously defined by the experimental results but
becomes unreliable for use directly in fitting procedure. Indeed, the multiplicative
uncertainties are proportional to the value of the data points and therefore smaller
data points are assigned a smaller uncertainty than bigger data points. It can be
shown that these uncertainties introduce a bias [9] in the fitting procedure when
combining datasets from independent experiments since the theoretical predictions
determined via χ2 minimization are systematically shifted lower than the true val-
ues. In particular this effect worsens as the number of the points that share the
same multiplicative error increases.

A typical method to avoid this bias consists in including the normalizations in
the fitting procedure as unknown parameters with an additional penalty terms to
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the χ2 to avoid large deviations of the normalizations nk in terms of its experi-
mental uncertainty sk. Eq. (2.8) thus becomes:

χ2(t, n) =

Nmul∑

k

Ndat∑

i,j

(ti/nk −mi)(Cov−1)ij(tj/nk −mj) +

Nmul∑

k

(1− nk)2

s2
k

. (2.10)

This procedure mitigates the effects of multiplicative uncertainties but still suffers
from the bias, especially when combining several normalizations from different
experiments.

A full unbiased description of the experimental covariance matrix is available
using the t0 prescription introduced by the NNPDF collaboration [10]. The basic
idea of this method consists in multiplying the normalization uncertainties for a
fixed value t0 rather than using the experimental data points m. The value of t0 is
determined before the fit and can be tuned to be consistent with the final result t.
Typically self-consistence is achieved using an iterative procedure that adopts the
results of a previous fit as the new input t0 for the subsequent fit and generally
convergence is very rapid. Assuming t0 prescription, the χ2 becomes:

χ2 =

Ndat∑

i,j

(ti −mi)(Cov−1
t0

)ij(tj −mj), (2.11)

where the covariance matrix is given by:

(Covt0)i,j = σunci σuncj +

Nadd∑

k

σaddik σaddkj +

Nmul∑

k

(σmulik σmulkj )t0,it0,j. (2.12)

2.3 Representation of PDF uncertainties

Fitting a function is a procedure that requires an infinite number of degrees of
freedom and since the experimental data are always a finite number this problem
is theoretically under-constrained. Nevertheless we can cope with this issue by pro-
jecting the infinite-dimensional space of parton densities onto a finite-dimensional
subspace. In fact PDFs are supposed to be smooth function of the variable x and
therefore they may be represented with a finite accuracy in terms of an appropriate
basis in a finite-dimensional subspace. For this reason it is possible to express the
parton densities in terms of a parametrization with a finite number of parameters.
The problem is then reduced to find the optimal parametrization that provides
the best description of parton densities without introducing potential biases.

Once the parametrization is fixed, the fitting procedure is well defined and typ-
ically depends on how the PDFs and their uncertainties are represented. Indeed
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parton distributions are delivered for practical applications as a set of member
functions which contains the best fit result, also called central value, along with
an error set that allows the propagation of uncertainties and is determined by fol-
lowing two main strategies: the Hessian approach and the Monte Carlo approach.
This two strategies are presented in the following sections along with the choice of
the parametrization adopted in each case.

2.3.1 Hessian representation

In the Hessian approach the parton densities are described by introducing a fixed
parametrization based on theoretical constrains such as the sum rules. The PDFs
at some fixed scale Q2

0 are thus determined by a set of parameters and the prob-
ability density in the space of PDFs is replaced by a probability density in the
parameter space which is assumed to follow a multivariate gaussian distribution.
For example, one possible parametrization of parton densities is

xf(x,Q2
0) = a0x

a1(1− x)a2 exp[a3x+ a4x
2 + a5

√
x+ a6x

a7 ] (2.13)

with different parameter sets ~a = (a1, a2, ...) for each flavour. The functional form
in Eq. (2.13) was used in the early fits while modern Hessian approaches adopt
more advanced functional form. The parameters ~a are then fixed by minimizing
an appropriate error function like χ2 which becomes a functional in the parameter
space given by:

χ2(~a) =

Ndat∑

i,j

(ti(~a)−mi)(Cov−1)ij(tj(~a)−mj), (2.14)

where the theoretical predictions t(~a) depend on the parameters ~a through PDF
evolution. The best fit set of parameters ~a0 is defined so that χ2(~a0) corresponds
to the absolute minimum of χ2 and under the assumption that the minimum is
unique and that the error function is quadratic around the minimum, a small
deviation from ~a0 induces an increment of the χ2 given by

∆χ2(~a) = χ2(~a)− χ2(~a0) = (~a− ~a0)H(~a− ~a0), (2.15)

where H is the Hessian matrix of the error function χ2 (with an extra factor 1/2)
evaluated at the minimum,

Hij =
1

2

∂2χ2(~a)

∂ai∂aj

∣∣∣∣
~a=~a0

. (2.16)
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It can be shown that the inverse of H represents the covariance matrix C that
describes the multivariate gaussian distribution of the parameters that is given by:

p(~a) =
(det(C))−

1
2√

(2π)N
exp

[
1

2

N∑

ij

(a− a0)iC
−1
ij (a− a0)j

]
, (2.17)

where N is the number of parameters. If we now define the shift in the parameter
space as ~δ = ~a− ~a0 then Eq. (2.15) reduces to:

∆χ2 = ~δH~δ. (2.18)

Since H is a real symmetric matrix, it can be diagonalized in terms of a complete
orthonormal basis of eigenvectors {~vi} with i = 1, ..., Neig. It is now convenient
to rescale each eigenvector ~vi by the square root of its eigenvalue λi and we may
define the new rescaled basis as ~ei = ~vi/

√
λi. The decomposition of ~δ in the new

basis can be expressed in the following way:

~δ =
∑

i

zi~ei, (2.19)

with zi = ~δ · ~ei. Inserting this decomposition in Eq. (2.18), we find:

∆χ2 =
∑

i

z2
i , (2.20)

which describes a hypersphere with radius
√

∆χ2 in the parameter space and the
one-σ contour (i.e. the 68% confidence level) around the central value is defined
by the condition ∆χ2 = 1, known as parameter-fitting criterion. Furthermore,
the choice of the basis {~e} allows also the diagonalization of the matrix C since
C = H−1 and thus the multivariate gaussian distribution in Eq. (2.17) reduces to
a product of independent univariate gaussian distributions for each eigenvector.

Assuming linear error propagation, the Hessian set of PDFs is composed by
a central value that corresponds to the best fit parameters ~a0 while the error set
corresponds to a shift in the parameter space from ~a0 along the direction of each
rescaled eigenvector ~ei given by:

~a(i) = ~a0 + t~ei, (2.21)

where t =
√

∆χ2 and is set to one for one-sigma deviation.
Any quantity O which depends on PDFs is also a function of the parameters in

the Hessian method and its best estimation is thereforeO(~a0) while the uncertainty
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Figure 2.3: Effect on the up and gluon PDFs of fitting subsets of MSTW 2008
global data from Ref. [14].

induced on O by the Hessian error set can be calculated in the following way
assuming again linear error propagation:

σO =

√√√√
N∑

i

(O(~a(i))−O(~a0))
2
. (2.22)

The relation in Eq. (2.22) holds also when the observable O is the PDFs themselves
and allows the determination of the PDF standard deviation σ and hence the one-σ
band, namely the symmetric interval centred in the best fit value with amplitude
σ.

However, in practical applications the parameter-fitting criterion ∆χ2 = 1 is
not adequate since the one-sigma band does not provide a realistic estimation of
the parton density fluctuations. In particular the results for the global fit, i.e. the
fit performed with the maximum number of available data points, and the results
fitted from a dataset of a single experiment are generally not compatible within
their error bands produced with ∆χ2 = 1 criterion, as shown in Fig. 2.3. This
tension between the results from different datasets emerges also when the minimum
chi squared for the global fit χ2

tot is compared to the minimum chi squared χ2
i of

the single dataset: it can be shown [13] that often the difference between χ2
i and

χ2
tot can not be explained in terms of statistical fluctuations.

This suggests that a correct assessment of global fit uncertainties must take
into account the compatibility with each dataset. This requirement is met by
introducing the concept of tolerance, namely the PDF error bands for the global
fit are produced by tuning the terms t in Eq. (2.21) known as tolerance in order
to provide a good agreement with the results of each dataset. Since t2 = ∆χ, the
tolerance coincides with the radius of the hypersphere defined in Eq. (2.20) that
represents the one-sigma contour in the space of parameters. The optimal value
for the tolerance therefore corresponds to the minimum radius that accommodates
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Figure 2.4: Down quark PDF from global fit at Q2 = 1.65 GeV 2 produced by
NNPDF3.1 collaboration: the left plot shows all the 1000 replicas and the central
values while the right plot shows the one-sigma band around the central value (solid
line) and the 68% band (dashed line).

all the minima ~a0,i of each experiment within their one-sigma contours produced
with the parameter-fitting criterion ∆χ2 = 1 which is described by an hypersphere
with unitary radius centred in ~a0,i. This procedure may be refined by introducing
a different tolerance tk for each eigenvector instead of a global tolerance for all
eigenvectors. This approach is called ’dynamical’ tolerance and typically tk ranges
in 2 < tk < 5 while the global tolerance method requires t ' 10. The dynamical
tolerance thus mitigates the large variation from ∆χ2 = 1 of the global tolerance
method.

Although the tolerance was introduced to cope with the incompatibility of the
datasets, other explanations for the need of a tolerance have been studied and can
be summarized in two main categories: dataset incompatibilities and parametriza-
tion bias. The dataset incompatibilities are related to the uncertainties of the quan-
tities entering the fit and include the discrepancies between experimental datasets,
non gaussian deviations and theoretical uncertainties due to missing higher order
perturbative corrections or QCD parameter uncertainties (such as αS). An assess-
ment of dataset incompatibilities can be performed studying the variation of ∆χ2

when a new experiment is added to the fit or analyzing the error propagation of
pseudodata produced from ‘a priori’ known distribution. Instead the parametriza-
tion bias depends on how the choice of a particular parametrization affects the
uncertainty propagation through the fitting procedure and its effects can be deter-
mined by adopting a more flexible or constraining parametrization. Both dataset
incompatibilities and parametrization bias have been studied [14] and generally
they contribute evenly to the determination of tolerance.
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2.3.2 Monte Carlo representation

In the Monte Carlo approach the probability distribution in the parameter space
is given by a Monte Carlo sample, i.e. a list of sets of parameters that describes
the unknown underlying distribution. Each set of parameters is associated to
a function in the PDF space called Monte Carlo replica. The error set in this
representation is thus constituted by Nrep Monte Carlo replicas and the best fit is
given by averaging over all the replicas. Any quantity O that depends on PDFs,
including PDFs themselves, assumes a different value Ok for each replica and
the dependence of O from the PDF fluctuations can be evaluated by computing
statistical estimators over the set of values {Ok}. For example, the central value
is given by the sample mean defined by

〈O〉 =
1

Nrep

Nrep∑

k

Ok, (2.23)

while the uncertainty due to PDF fluctuations is the standard deviation of {Ok}:

σO =

√√√√ 1

Nrep − 1

Nrep∑

k

(Ok − 〈O〉)2 . (2.24)

Unlike Hessian approach, Monte Carlo parametrization does not assume a priori
distribution and therefore is sensitive to non gaussian effects. Moreover, a practical
way to assess non gaussianity consists in comparing the one standard deviation
band around the central PDF and the 68% confidence level band which contains
the central 68% of the replica sample: since a gaussian distribution requires these
two bands to coincide, a difference between them is a symptom of a non gaussian
behavior. However in most cases the one-sigma band does not differ too much
from the 68% band with the exception of large and small x regions as shown in
Fig. 2.4.

Unlike the Hessian representation, the Monte Carlo representation does not
require the introduction of the tolerance since there are no contrasts between
global and data subset results. The Monte Carlo approach is adopted by the
NNPDF [11] collaboration with a parametrization based on neural network [12].
Neural networks allow an extremely flexible parametrization and are ’unbiased’
since they are able to fit a very wide class of functions with a finite number of
parameters without adjusting the functional form according to the problem.

2.4 Hessian conversion of a Monte Carlo set

The way PDF uncertainties are determined in the Hessian approach deeply differs
from the Monte Carlo representation: the former is founded on the knowledge of

40



CHAPTER 2. PARTON DENSITY REPRESENTATION

the χ2 in the vicinity of the minimum and requires the introduction of a tolerance
to provide reliable predictions while the latter requires the calculation of statistical
estimators and does not rely on a tolerance. Nevertheless, both these approaches
must provide in principle the same description of the structure of the proton and
therefore it may be possible to pass from a representation to the other without
(too much) loss of information.

The Monte Carlo representation of a Hessian set can be carried out with ease by
drawing a Monte Carlo sample of parameters from the gaussian distribution pro-
vided by the Hessian representation. The list of replicas in the space of parameters
is then uniquely associated to a Monte Carlo list of replicas in the space of PDFs
through the Hessian parametrization and thus the new Monte Carlo distribution
is by construction gaussian.

Instead the Hessian conversion of a Monte Carlo set requires a more careful
treatment. First the Monte Carlo representation does not require the assumption
of gaussianity which on the contrary represents the fundamental hypothesis of the
Hessian approach. Therefore, a Hessian representation of a Monte Carlo set can
only make sense if the Monte Carlo distribution is gaussian. Whereas deviation
from gaussianity may be important in specific kinematic regions, typically when
PDF uncertainties are dominated by theoretical constraints due to limited ex-
perimental points, the assumption of gaussianity provides a good approximation,
especially when PDF fluctuations are driven by a wide number of experimental
data which follow a gaussian distribution.

Once gaussianity is provided,the basic idea of the Hessian conversion [15] is to
construct a covariance matrix in the space of Monte Carlo replicas that allows a
gaussian representation of PDF distribution. The eigenvectors of the covariance
matrix are then represented as a linear combination of replicas. We shall assume
that the prior Monte Carlo set contains Nrep replicas {f (k)

α }, k = 1, .., Nrep where
α = 1, .., Npdf represents the type of PDF with Npdf = 2Nq + 1 and Nq is the
number of quarks. We may define a discrete covariance matrix by introducing a
sample of Nx points in the x-space for each PDF flavour. This sampling requires
only to be fine grained enough that the differences between neighboring points are
no-negligible. The (NxNpdf × NxNpdf ) covariance matrix is thus defined by the
corresponding statistical estimator in the space of PDFs:

covlm =
Nrep

Nrep − 1

(
〈f (k)
α (xi) f

(k)
β (xj)〉rep − 〈f (k)

α (xi)〉rep〈f (k)
β (xj)〉rep

)
, (2.25)

where l = Nx(α − 1) + i and m = Nx(β − 1) + j run over all NxNpdf points and
〈 · 〉rep is the average over all replicas. An analogous definition of Eq. (2.25) can
be provided introducing the rectangular (NxNpdf ×Nrep) matrix:

Xlk = f (k)
α (xi)− f (0)

α (xi), (2.26)
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Figure 2.5: Comparison between the Monte Carlo uncertainties (red) and the Hes-
sian conversion uncertainties with 100 eigenvalues (blue) of the down PDF nor-
malized to the central PDF.

and f (0) represents the central value PDF. The covariance matrix can be expressed
in terms of X by the following relation:

covlm =
1

Nrep − 1
XXT . (2.27)

We can diagonalize the covariance matrix using Singular Value Decomposition
(SVD) of the matrix X which allows us to factorize X in the following way:

X = USV T , (2.28)

where U and V are orthogonal matrices with dimensions (NxNpdf ×NxNpdf ) and
(Nrep×Nrep) respectively and S is a diagonal rectangular matrix with dimensions
(NxNpdf ×Nrep) whose diagonal elements are called singular values of X and rep-
resent the square roots of the eigenvalues of the covariance matrix multiplied by
the normalization constant (Nrep − 1)−

1
2 . The singular values may be listed in

descending order along the diagonal entries of S and it can be shown that the
columns of U are the eigenvectors of the covariance matrix. We can define the
matrix Z = US which has the property:

ZZT = US(US)T = US(V TV )STUT = (USV T )(USV T )T = XXT , (2.29)

where we used V TV = 1. However Z can be expressed in the following way:

Z = US(V TV ) = (USV T )V = XV (2.30)
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and thus it provides the sought-for representation of the multigaussian covariance
matrix in terms of the original PDF replicas: specifically, Vkj is the expansion
coefficient of the j-th eigenvector over the k-th replica.

We have thus provided an exact Hessian representation of the covariance matrix
in terms of Monte Carlo replicas. However the number of Hessian eigenvalues is
equal to N

(0)
eig = NxNpdf which is generally large. In practice the smallest eigenval-

ues will give a modest contribution to the covariance matrix and so we can select
a smaller set of Neig < N

(0)
eig eigenvectors which corresponds to the largest singular

values. Due to the ordering of diagonal elements of S, the matrices U and S are
therefore replaced by their submatrices u and s with dimensions (NxNpdf ×Neig)
and (Neig × Nrep). Because s has only Neig non-vanishing diagonal entries, only
the (Nrep ×Neig) submatrix of V contributes. We call this principal submatrix P
and replace the matrix V when only the largest Neig eigenvalues are considered.
Fig. 2.5 shows a good agreement between the one-sigma bands of the Monte Carlo
set and its Hessian conversion with 100 eigenvalues with the exception of small x
region where non-gaussian contributions become relevant.
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Chapter 3

χ2 for Hessian converted Monte
Carlo set

The Monte Carlo approach allows a definition of parton densities in terms of
statistical estimators that ignore the shape of the error function χ2 in the vicinity
of the minimum. On the contrary, the Hessian approach relies on the knowledge
of the χ2 when a parametrization is given; however, for existing Hessian PDF sets
the parameter-fitting criterion ∆χ2 = 1 does not provide an adequate description
of PDF uncertainties and the introduction of the tolerance is needed in order to
accommodate the effects of dataset incompatibilities and parametrization bias.

Since the tolerance represents a shift from the minimum of χ2 along each Hes-
sian eigenvector direction, the need of a tolerance is a requirement that concerns
only the Hessian representation of uncertainties and therefore it can not be intro-
duced for Monte Carlo sets unless a Hessian conversion is provided. Indeed, the
Hessian representation of a Monte Carlo set of PDFs provides a set of Hessian
eigenvectors that describe the one-sigma band of the prior Monte Carlo set. Since
each eigenvector is associated to a variation ∆χ2 from the minimum of χ2, the
problem of the tolerance for a Monte Carlo set may be treated in terms of its
Hessian conversion that can be used to study the χ2 shape in the proximity of the
minimum.

These aspects are investigated in detail in the following sections, focusing on
the construction of a reliable Hessian conversion and the description of the χ2 near
the minimum which is directly connected to the problem of the tolerance.

3.1 ∆χ2 for Hessian eigenvectors

We first consider the Monte Carlo NNLO global set of PDFs provided by the
NNPDF collaboration [5] with 1000 replicas and the Hessian conversion of this
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Figure 3.1: ∆χ2 for each eigenvector (left) and the histogram of ∆χ2 distribution
(right) from the Hessian representation with 100 eigenvalues of the prior Monte
Carlo NNPDF3.1 NNLO with 1000 replicas.

prior Monte Carlo set is provided by the code mc2hessian [15]. Since the eigen-
vectors of the Hessian conversion are linear combinations of Monte Carlo replicas
and are not determined by any parameter-fitting criterion on the ∆χ2, we may
thus find the variation ∆χ2 induced by each eigenvector, where ∆χ2 is the dif-
ference between the eigenvector χ2 and the χ2 of the central value of the Hessian
conversion (which is the same of the prior Monte Carlo set by construction); both
these χ2 are calculated with the definition in Eq. (2.8).

The values of ∆χ2 for a Hessian conversion with 100 eigenvalues are presented
in Fig. 3.1: not only the ∆χ2 for the single eigenvector does not correspond to the
parameter-fitting criterion ∆χ2 = 1, but also about the 50% of the values of ∆χ2

are negative and the ∆χ2 ranges in −10 . ∆χ2 . 25. However, the χ2 defined in
Eq. (2.8) contains the experimental covariance matrix in Eq. (2.9) which adopts
the data points for the determination of the multiplicative uncertainties. Since
the NNPDF collaboration relies on the t0 prescription to avoid the bias arising
from multiplicative uncertainties, the actual experimental covariance matrix used
in the PDF fits is the matrix Covt0 defined in Eq. (2.12). Therefore the definition
of χ2 must be replaced with Eq. (2.11) which contains the experimental covariance
matrix produced with the t0 prescription. The results obtained from the definition
of χ2 with the t0 covariance matrix are shown in Fig. 3.2: the range of ∆χ2

variations is almost halved and it spans the interval given by −7 . ∆χ2 . 15
but there is still a large number of negative values of ∆χ2. The t0 prescription
therefore mitigates the variation of ∆χ2 and henceforth it will be adopted for
the computations of the χ2. It is worth noting that the differences between the
experimental covariance matrix and the t0 covariance matrix are extremely small
but produce a considerable effect in the determination of the ∆χ2 which also
represents a rather small effect compared to the minimum χ2 which is χ2

min ' 5070.

The negative values of ∆χ2 however are quite disturbing since they are related
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Figure 3.2: ∆χ2 for each eigenvector (left) and the histogram of ∆χ2 distribution
(right) computed with the χ2 definition provided by the t0 prescription. The eigen-
vectors represent the error set for the Hessian conversion with 100 eigenvalues of
the prior Monte Carlo NNPDF3.1 NNLO with 1000 replicas.

to the directions in the space of PDFs pointed by the corresponding eigenvectors
along which the χ2 decreases over the minimum. This interpretation may suggest
an inefficiency in the fitting procedure, i.e. the minimization algorithm does not
find the real minimum of the χ2.

Although the inefficiency could be a possible cause for the negative values of
∆χ2, the large variations of ∆χ2 can be referred to the fluctuations of the one-
sigma contour in the space generated by the basis of the eigenvectors. In particular,
this space is completely analogous to the space of the Hessian parameters with di-
mension equal to the number of eigenvalues adopted in the Hessian conversion.
For example, in a ideal case the shape of the χ2 near the minimum is a multi-
dimensional paraboloid in the space of parameters defined by Eq. (2.15) and the
one-sigma contour is given by the canonical parameter-fitting criterion ∆χ2 = 1.
However in the real case the edge of the paraboloid given by ∆χ2 = 1 is subjected
to large fluctuations that deform the one-sigma contour in the parameter space.
Therefore a careful assessment of the possible causes of these fluctuations is needed
in order to provide a correct explanation for the negative values of ∆χ2.

Since the previous results were produced from a prior Monte Carlo set with
1000 replicas, we may repeat the previous calculations for the ∆χ2 of the Hessian
eigenvectors with a subset of the prior set with 1000 replicas. The error members
of this new set are thus a subset of the 1000 replicas and the new central value is
calculated averaging over the new error members. Therefore we may produce 10
batches of Monte Carlo PDFs each containing 100 replicas. We may then compute
the ∆χ2 for each of these Monte Carlo subsets analogously to the previous case
with 1000 replicas. This procedure has the double purpose of testing the ∆χ2

dependence from the size of the prior Monte Carlo set and validating the results
over a sample of independent batches.
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Figure 3.3: Histograms of ∆χ2 distribution for the Hessian conversion with 100
eigenvalues of the 10 Monte Carlo subsets.

The histograms for the 100 values of ∆χ2 for each batch are shown in Fig. 3.3:
even if the number of negative ∆χ2 is slightly decreased compared to the case with
1000 replicas, the ranges of ∆χ2 values span a wider interval than the previous
case. Indeed in the most cases the lower extreme of ∆χ2 values is ∆χ2 ' −10
while the upper extreme occurs for ∆χ2 ' 20. The increase of ∆χ2 fluctuations
when a smaller number of replicas is considered suggests that a component of ∆χ2

fluctuations may be related to finite-size effects. Indeed, the probability distribu-
tion given by the Monte Carlo replica sample provides an approximation of the
real probability distribution and therefore it is subjected to statistical fluctuations
that will vanish in the limit Nrep → +∞.

This hypothesis is corroborated by the comparison between the one-sigma
bands of the Hessian converted set with 1000 replicas and 100 replicas: in most
cases the one-sigma uncertainties produced from the ten Monte Carlo subsets differ
significantly from the uncertainties of the set with 1000 replicas. Fig. 3.4 provides
two explicit examples of this discordance. Moreover, Fig. 3.4 shows both the full
one-sigma band and the one-sigma band calculated without the contribution of
the eigenvectors with negative ∆χ2 that we will refer to as negative eigenvectors
for simplicity. Since these two bands does not coincide, the negative eigenvectors
represent a genuine (and thus non-negligible) contribution to the PDF uncertain-
ties.
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Figure 3.4: Ratio plot of gluon (left) and strange (right) PDFs given by the Hessian
conversion with 100 eigenvalues of the set with 1000 replicas (blue) and the set
100 replicas (red). The inner bands are the one-sigma uncertainties without the
contribution of the eigenvectors with negative ∆χ2 while the outer bands are the
full one-sigma uncertainties. The thin lines are the negative eigenvectors.

3.2 Non gaussianity

Since the most direct way to get rid of (or at least mitigate) the finite-size effects
is to increase the number of replicas, we may attempt to assess the contribution of
finite-size effects from ∆χ2 fluctuations by producing a Monte Carlo set with the
largest number of replicas as possible. Thought so far only global Monte Carlo sets
have been considered, we choose to fit only the deep inelastic scattering data in
order to provide a large Monte Carlo sample. The reasons of this choice are both
practical and theoretical: the deep inelastic scattering provides the most consistent
dataset and thus the Monte Carlo fits are extremely faster than the global fits even
if DIS dataset contains a great number of data points, namely 3092 experimental
points. Furthermore, the consistency of deep inelastic scattering data allows us to
remove the potential effects due to dataset incompatibilities.

Fig. 3.5 shows the ratio plots of the light quark and gluon PDFs given by the
Monte Carlo set with 3000 replicas produced by the fit at NNLO of deep inelastic
scattering datasets. Unlike the global Monte Carlo set with 1000 replicas, these
plots manifest a non gaussian behavior across the whole x range; for example the
peaks of the 68% band for x ' 0.1 exhibit a clear deviation from the one-sigma
band for the d, d, u and u PDFs.

Since the gaussian assumption is the fundamental hypothesis of the Hessian
conversion, a careful treatment of non-gaussian deviations of the Monte Carlo
sets must be provided in order to obtain a meaningful Hessian representation.
Because the Hessian conversion is possible once the covariance matrix in the space
of replicas is provided, we can cope with the problem of non-gaussianity by simply
rejecting the points of the x sample for each flavour that do not exhibit a gaussian
behavior. For this purpose we may quantify the non gaussianity by introducing
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Figure 3.5: Ratio plots of light quark and gluon PDFs for the DIS only Monte
Carlo set with 3000 replicas. The solid lines are the mean value and the one-sigma
band while the dashed lines represent the 68% confidence level band.

the parameter ε which corresponds to the percentage difference between the 68%
band (σ68%) and the one standard deviation band (σstd) at a given x that thus is
defined by:

ε(x) =
|σ68%(x)− σstd(x)|

σstd(x)
. (3.1)

We may choose a threshold value ε independent of x that can be interpreted as
the goodness of gaussian approximation and then discard the x points that give a
value of ε(x) above this threshold.

The ideal Hessian conversion therefore requires a prior Monte Carlo set with ε =
0 along the whole x range but in practice a reliable Hessian conversion requires ε to
be small enough so that the gaussian assumption provides a good approximation.
Moreover, the optimal value of εmust produce a connected covariance matrix in the
space of PDFs, namely the points below ε must provide a connected interval of the
x-sample and therefore only the points at large and small x can be removed from
the computation of the covariance matrix. We introduce this requirement because
the central x region contains a wide number of experimental data whose gaussian
uncertainties lead the PDF fluctuations. A large value of ε in this kinematic
region is therefore more likely to depend on statistical fluctuations rather than
non-gaussianity. Nevertheless we may relax the requirement of a full connected
covariance matrix by considering a connected interval in the x range with at most
few isolated rejected points.
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Figure 3.6: Plots of ε(x) for the light quark and gluon PDFs from the DIS only
Monte Carlo set with 3000 replicas.

Since the threshold value ε is the same for all flavours, Fig. 3.6 shows that
the optimal values of ε for the DIS only Monte Carlo set with 3000 replicas is
ε = 1.25 as it manages to accommodate the large peaks at x ' 0.1 for the u and d
PDFs. Such a large value of ε corresponds to a 68% band that may become twice
as large as the one-sigma band and therefore the gaussian assumption provides
a poor approximation for this Monte Carlo set. We then attempt to produce a
new Monte Carlo set from the previous set with 3000 replicas by introducing more
strict replica selection criteria, i.e. removing the outlier replicas with a χ2 that lies
outside the three sigma interval of the χ2 distribution of all replicas. Even if the
ε optimal value for this improved Monte Carlo set decreases to ε = 1.0, we may
conclude that such large values of ε for these DIS Monte Carlo sets do not allow
a meaningful Hessian conversion.

The experience of the DIS Monte Carlo sets suggests that the global Monte
Carlo PDF set may provide a more gaussian behavior since it is determined by a
greater number of experimental data. We then repeat the same analysis of non-
gaussianity for the global Monte Carlo set and we find that the optimal value for ε
corresponds to ε = 0.30 which provides both a reasonable gaussian approximation
and a connected x sampling as shown in Fig. 3.7.
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Figure 3.7: Accepted (green) and rejected (red) x points for the Monte Carlo global
set with 1000 replicas with ε = 0.30 for the fitted PDF flavours (i.e. the light quarks
and antiquarks and the gluon).

3.3 Hessian conversion with sigma fractions

Since the non-gaussianity of the DIS only Monte Carlo set prevented us to increase
the number of replicas we may not remove the finite-size effects. We are then forced
to adopt a different strategy that takes into account all the possible contributions
to ∆χ2 fluctuations that can be summarized as follows:

• Non-gaussian behavior: as widely discussed in the previous section, the
Hessian conversion requires gaussian uncertainties for the prior Monte Carlo
set. We can control non-gaussian deviations within the level of accuracy
provided by the parameter ε.

• Finite-size effects: these effects are related to the statistical fluctuations
of the PDF probability distribution. In principle they can be removed in-
creasing the number of replicas. Alternately, we may assess these effects
by analysing the dependence of the ∆χ2 fluctuations from the number of
replicas Nrep.

• Inefficiency: since the fitting procedure requires the minimization of the
χ2, a potential inefficiency in the minimization algorithm could lead to the
wrong evaluation of the χ2 minimum which thus introduces a bias when we
perform the Hessian conversion.

• Parabolic deviation: the assumption of a quadratic χ2 behavior near the
minimum may not provide a good approximation when the actual shape of
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Figure 3.8: Comparison between the one-sigma (blue) and half-sigma (red) Hessian
conversion of the same Monte Carlo set normalized to the central value. The prior
Monte Carlo set is the global set with 1000 replicas.

the χ2 is more complex. For example, the actual χ2 could have a valley of
equivalent multiple minima or it could have a relative minimum which hides
the absolute minimum. Both these examples introduce a deviation from the
parabolic assumption which the Hessian conversion relies on.

A possible way to quantify these effects is to produced a Hessian conversion
that takes into account different sizes of ∆χ2. This procedure allows us to
move along the Hessian eigenvectors so that we may explore the shape of the
∆χ2 in the vicinity of the minimum.

In general, the construction of a Hessian conversion that takes into account a dif-
ferent size of fluctuations may be carried out by multiplying the PDF covariance
matrix by a fixed quantity that corresponds to the size of the sought for represen-
tation. For example, a Hessian conversion of a given Monte Carlo sample of an
unidimensional variable is determined by the variance of the sample σ2 and thus
the parameter associated to this Hessian conversion follows a gaussian distribution
with variance σ2. If we now want to reduce the amplitude of the parameter fluc-
tuations by a factor 2, we can simply define the variance of the Hessian conversion
as (σ

2
)2 instead of σ2. This trivial example can be generalized to the case of parton

densities and therefore we define the Hessian conversion with sigma fraction k as
the Hessian set of eigenvectors produced from the Monte Carlo PDF covariance
matrix rescaled by a factor k2. As a consequence of the rescaling of the PDF co-
variance matrix, the Hessian error band is as well reduced by a factor k as shown
in Fig. 3.8.

Since this method allows us to probe the shape of ∆χ2, it can be adopted also to
study the contribution due to the inefficiency. Indeed in the Hessian representation
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the inefficiency of the minimization algorithm implies that the best fit value ~a0 does
not correspond to the minimum of χ2 and therefore the Taylor expansion of the
∆χ2 contains a non-vanishing first derivative. The ∆χ2 assumes thus the following
form:

∆χ2(~a) = ~5χ2|~a0 · (~a− ~a0) + (~a− ~a0)H(~a− ~a0). (3.2)

A linear term in the expansion of the ∆χ2 is therefore tightly correlated to the
minimization inefficiency.

3.4 Single parameter model for ∆χ2

Once the main sources of ∆χ2 fluctuations are provided, we may assess the size
of each of these contributions by comparing the ∆χ2 results to the theoretical
prediction of an appropriate model that describes the expected ∆χ2 behavior.

Since the Hessian conversion of a Monte Carlo set is equivalent to a Hessian
set with Neig independent parameters that correspond to the basis of the Hessian
matrix eigenvectors, we may assume that all these parameters follow the same
underlying distribution and therefore it can be possible to describe the ∆χ2 in
terms of a single parameter model.

We start considering the ’true’ Hessian representation that contains the single
parameter θ distributed according to a gaussian with mean θ0 and variance σ2.
Since the ∆χ2 is deformed by the aforementioned effects, we may consider the
Taylor series expansion of the χ2 truncated at the fourth order that is given by:

χ2(θ) = χ2(θ0) + a
(θ − θ0)

σ
+ b

(θ − θ0)2

σ2
+ c

(θ − θ0)3

σ3
+ d

(θ − θ0)4

σ4

∆χ2(θ) = χ2(θ)− χ2(θ0),
(3.3)

where the coefficients a, b, c and d are proportional to the χ2 derivatives and
therefore they directly describe the ’true’ shape of the ∆χ2. In particular the term
a is related to the inefficiency, the term b is the analogous of the tolerance and
the terms c and d are related to both non-gaussianity and parabolic deviation.
The determination of this coefficients allows us to understand the size of ∆χ2

fluctuations and they can be computed by comparing the numerical results to the
model predictions.

Moreover we may take into account the finite-size effects by producing a Monte
Carlo representation of the parameter θ by drawing a Monte Carlo sample of
N replicas {θi} from the gaussian distribution of the parameter θ. Due to the
statistical fluctuations of the finite-size sample, the mean value µ and the variance
s2 of the Monte Carlo replica sample do not coincide with the ’true’ values θ0 and σ2

respectively. Once the Monte Carlo representation is provided, we can propagate
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the finite-size effects to the parameter θ by producing a Hessian conversion with
sigma fraction k of the previous Monte Carlo sample. The procedure of Hessian
conversion states that the parameter θ is now distributed according to a gaussian
distribution with mean µ and variance s2/k2. It can be shown that the sample
mean µ and the sample variance s2 obey the following statements:

• µ and s2 are independent random variables.

• µ is a random variable that follows a gaussian distribution with central value
θ0 and variance 1

N
σ2

k2 .

• s2 can be expressed in the following way:

s2 =
σ2

k2

X

N − 1
, (3.4)

where X is a random variable that follows a χ2
N−1 probability distribution

with N − 1 degrees of freedom that is given by:

p(X;N − 1) =
1

2
N−1

2 Γ(N−1
2

)
X

N−1
2
−1e−

N−1
2 . (3.5)

Because the Hessian conversion was produced from a finite-size Monte Carlo
set, its central values is given by the mean µ of the Monte Carlo sample and the
Hessian matrix reduces in the unidimensional case to 1

s2
, namely the inverse of the

sample variance. Moreover, the Hessian conversion assumes a quadratic behavior
of the error function near the central value µ given by:

∆χ2
samp(θ) =

(θ − µ)2

s2
, (3.6)

where the ∆χ2
samp refers to the Hessian conversion assumption and must not be

confused with the ’true’ ∆χ2 in Eq. (3.3). The one-sigma contour in the pa-
rameter space is thus given by the parameter-fitting criterion ∆χ2

samp = 1 which
corresponds to a shift from the central value µ given by µ±s. This shift is the anal-
ogous of the variation from the central value along each direction of the rescaled
eigenvectors in the multidimensional Hessian representation.

However the shift µ± s induces an increase of the actual χ2 in Eq. (3.3) which
differs from the parameter-fitting criterion ∆χ2

samp = 1 and it is given by:

∆χ2 = χ2(µ± s)− χ2(µ). (3.7)

The above expression allows the assessment of the behavior of ∆χ2 due to statis-
tical fluctuations of both central value and one-sigma contour so that finite-size
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effects can be expressed by computing statistical estimators of ∆χ2 in Eq. (3.7).
Moreover, we can explicitly write Eq. (3.7) in terms of powers of s

σ
= X

k(N−1)
and

(µ− θ0). In particular, the sample mean and the sample standard deviation of the
∆χ2 require the computation of the expectation value of powers of (µ − θ0) and

X
k(N−1)

with respect to their probability distributions. The first case is trivial since

(µ− θ0) represents a gaussian random variable with zero mean while the expecta-
tion value of powers of X

k(N−1)
can be carried out using the probability distribution

in Eq. (3.5) and thus we obtain:

E

[( s
σ

)l]
= E

[
X l

kl(N − 1)l

]
=

1

kl
Γ
(
m
2

+ l
)

(
N−1

2

)l
Γ
(
m
2

) =
1

kl
GN(l), (3.8)

where GN(l) stands for the expression with the gamma functions and E[·] is the
expectation value over the sample of ∆χ2. We expect that the mean over a ∆χ2

sample differs from the sample mean value within the statistical fluctuations de-
scribed by the sample standard deviation.

We are now able to compute the sample mean and the sample standard devi-
ation of the ∆χ2 which may be expressed in the following way:

∆χ2 = aN
1

k
+ bN

1

k2
+ cN

1

k3
+ dN

1

k4
, (3.9)

where the dependence from the number of replicas N has been included in the
coefficients which then assume the following form along with their standard devi-
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ation:

aN = ±a0GN

(
1

2

)
,

σa = a0

√
1−G2

N

(
1

2

)
,

bN = 1,

σb = b0

√
2

3N − 2

N(N − 1)
,

cN = ±c0

[
GN

(
3

2

)
+

3

N
GN

(
1

2

)]
,

σc = c0

√
N3 + 19N2 + 3N − 15

N(N − 1)2
− c2

N

c2
0

,

dN = d0
N2 + 7N − 6

N(N − 1)
,

σd = d0

√
(N + 1)(N + 3)(N + 5)

(N − 1)3
+ 28

(N + 1)(N + 3)

N(N − 1)2
+ 140

(N + 1)

N2(N − 1)
+ 540

1

N3
− d2

N

d2
0

,

(3.10)
where the coefficients a0, b0, c0 and d0 are real numbers that do not depend on N .

We may notice that in the limit where N → +∞ the N dependence of the mean
values vanishes while the standard deviations tend to zero. Furthermore, the N
dependence of bN appears only in the standard deviation and the coefficients aN
and cN are sensible to the direction of the shift from the mean value.

This procedure can also be implemented in a numerical simulation that basi-
cally repeats the calculation of the ∆χ2 in Eq. (3.7) for a huge number of different
Monte Carlo samples in order to obtain a conspicuous set of ∆χ2 replicas. We
may then compute the expectation values directly on this ∆χ2 sample; we find
that the numerical results are in good agreement with the model predictions as
shown in Fig. 3.9 for the coefficients aN and bN .

This model allows us to reduce the problem of the ∆χ2 fluctuations due to
finite-size, inefficiency, non-gaussianity and parabolic deviation to the determina-
tion of the four coefficients a0, b0, c0 and d0. In particular, there are two contri-
butions due to finite-size effects: the explicit dependence on N of the coefficients
aN , bN , cN and dN and the statistical fluctuations of these coefficients which are
described by their standard deviations in Eq. (3.10). Once the finite-size effects
are removed from the N dependent coefficients, we find that a0 describes the con-
tribution due to the inefficiency, b0 is the analogous of the tolerance and c0 and d0
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Figure 3.9: Comparison of the N dependence between the model prediction and
the numerical simulation results for the mean value and standard deviation of the
coefficients aN and bN .

are related to both non-gaussianity and parabolic deviation.
Since the χ2 in Eq. (3.3) is a polynomial with respect to 1

k
, we may determine

the coefficients by fitting the dependence of 1
k

for the χ2 obtained as follows: we
may produce from the Monte Carlo global set with 1000 replicas the maximum
number of Monte Carlo subsets with a given fixed number of replicas Nrep. We
then define Nbatch as the number of Monte Carlo subsets and it represents the
quotient between 1000 and Nrep.

We therefore produce for each batch of Monte Carlo subsets a Hessian conver-
sion with Neig = 50 for several values of the sigma fraction k rejecting the same x
points of the aforementioned conversion of the set with 1000 replicas with the op-
timal value ε = 0.3. We do not impose the ε criterion directly on the Monte Carlo
batches because potentially large statistical fluctuations of PDF uncertainties may
be mistaken for non-gaussian effects. The final value of χ2 is thus defined as the
average over all the Hessian eigenvectors of all the batches and an estimation of
its statistical fluctuations is provided by the sample standard deviation. We adopt
this specific strategy because we made the assumption that all the eigenvectors
are described by the same distribution.

We calculate the χ2 with this strategy for different values of k both smaller
and greater than 1, namely k = {7, 6, 5, 4, 3 ,2 ,1 , 0.66, 0.5, 0.4, 0.33, 0.2, 0.166,
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Figure 3.10: Plots of the χ2 (solid line) and the fit results (dashed line) as a
function of 1/k for each value of Nrep. Each plot is lifted by 100 in order to
improve the readability.

0.125}. As regards the number of Monte Carlo replicas, we choose to vary Nrep

in the range {50, 57, 65, 75, 83, 90, 100, 250, 500, 750, 1000}. Since the number
of batches Nbatch is inversely proportional to Nrep and the χ2 sample contains
NeigNbatch elements, when Nrep increases the size of the χ2 sample becomes small
and thus it may be subjected to statistical fluctuations. So far we have considered
the χ2 variation along only one direction of the Hessian eigenvectors and now we
can repeat the ∆χ2 calculation for the shift in the opposite direction.

Finally the coefficients aN , bN , cN and dN are found for each value of Nrep by
fitting the values of χ2 with a polynomial of degree four as shown in Fig. 3.10.
We may then remove the dependence from Nrep calculated in Eq. (3.10) and thus
we obtain the N -independent coefficients a0, b0, c0 and d0 for each value of Nrep.
The final results are then given by the average of the N -independent coefficients
over the values obtained varying Nrep and thus we find a0 = 0.12565 ± 0.00009,
b0 = 5.90682± 0.00007, c0 = 0.000448± 0.000008 and d0 = 0.000412± 0.0000002.
The uncertainties of these coefficients are calculated from the standard deviations
provided by the fits.

Once a0, b0, c0 and d0 are provided, we may check the predicting power of the
model by comparing the N -dependent coefficients aN , bN , cN and dN with the fit
results. From the comparisons in Fig. 3.11, we may deduce that aN and cN are
subjected to large fluctuations that are underestimated by the model predictions.
The coefficient dN presents statistical fluctuations that are compatible with the
model prediction. However the fit results deeply deviate from the model prediction
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Figure 3.11: Comparison between the fit results and the model prediction for the
N-dependent coefficients aN , bN , cN and dN .

for the coefficient bN which represents the main contribution to ∆χ2 fluctuations
since it is at least an order of magnitude greater than the other coefficients. The
strong N dependence of the coefficient bN implies that an important contribution
of finite-size effects is not considered by the model.

Since the Hessian conversion neglects the eigenvectors of the PDF covariance
matrix with small eigenvalues, we may suggest that the loss of information intro-
duced by this approximation can not be neglected and thus represents a further
contribution to ∆χ2 fluctuations. We therefore test the stability of the fit results
by varying the number of elements involved in the χ2 average.

We first test the stability of the fit results considering the χ2 average over dis-
jointed subsets of eigenvectors for each Monte Carlo batch. Since the eigenvectors
are ordered in terms of the corresponding eigenvalue, we evenly divide the eigen-
vectors in four subsets which give the results shown in Fig. 3.12. While aN and
cN present the same fluctuations of the previous case, the coefficients bN and dN
are clearly not stable when we modified the number of eigenvectors. This behavior
may support the hypothesis that the missing eigenvector contribution can not be
neglected. This hypothesis can be tested in the following way: in the previous
case we divide the total set of eigenvectors in four parts and thus we obtain four
disjointed subsets. For Neig = 50 the first subset thus contains the first 12 eigen-
vectors, the second subset contains the second 12 eigenvectors etc. We can now
produce four cumulative subsets by taking the first subset and adding each time
the next subset. In the case Neig = 50, the first cumulative subset contains the first
12 eigenvectors, the second contains the first 24 eigenvectors, the third contains
the first 36 eigenvectors etc. Assuming the hypothesis of the missing eigenvectors
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Figure 3.12: The plot on the left shows the coefficients related to the χ2 average
over four disjointed subset of eigenvectors. The plot on the right shows in addition
to previous results for the coefficient bN the fit results with the cumulative subsets
of eigenvectors (dashed lines).

contribution, the cumulative subsets provide a better estimation of the χ2 than the
single subset which they are made of and therefore we expect that the fit results
for bN produced with the cumulative subsets lay under the corresponding results
of the disjointed subsets. However, the right plot of Fig. 3.12 shows the opposite
behaviour and therefore the dependence on Neig is not related to the neglected
eigenvectors in the Hessian conversion.

We then produce the χ2 for fixed sigma fraction k and number of Monte Carlo
replicas Nrep by averaging over each Hessian eigenvector for a smaller number of
Monte Carlo batches. The results for the fits with four different choices of batches
are shown in Fig. 3.13: the fluctuations of the coefficients aN and cN are larger by
a factor two and thus are compatible with the statistical fluctuation effects which
typically scales with the squared root of the sample size. Indeed the statistical
fluctuations are expected to increase by a factor 2 since we reduce the χ2 sample
by a factor 4. As regards the coefficients bN and dN , the stability test confirms the
decreasing Nrep dependence although dN is subject to statistical fluctuations too.

Since there is a clear dependence of the fit coefficients from the number of
eigenvectors, we deduce that the assumption according to which all the parame-
ters of the Hessian conversion follow the same distribution must take into account
further finite-size contributions that are related to the multidimensional problem
of the diagonalization of the PDF covariance matrix. For example, this model does
not consider the variation of the eigenvector directions due to statistical fluctua-
tions. Since the one-sigma contour in the space of parameters is the hypesphere
defined by Eq. (2.20) which is subjected to statistical fluctuations, the finite-size
effects involve a Neig dimensional region in the space of parameters and therefore
we expect that the sample size must scale with the volume in this Neig dimensional
space in order to provide a good coverage of the one-sigma contour.
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Figure 3.13: Fit results for the N-dependent coefficients aN , bN , cN and dN
obtained with four different choices of batches in the χ2 calculation.

3.5 Model independent approach

The quartic approximation of the ∆χ2 provide a really good description of the
sigma fraction k dependence since the quartic parameter dN is small and on turn
the fits of the χ2 shape provide an excellent agreement with the numerical results
as shown in Fig. 3.10. We may thus conclude that the functional form of the ∆χ2

is well described by Eq. (3.9). Furthermore the aN , bN , cN and dN coefficients can
be expressed by factorizing the N dependence in the following way:

zN = z0fz(N), (3.11)

where z = {a, b, c, d}, fz(N) is a function that tends to 1 when N → +∞ since
the finite-size effects are supposed to vanish in the limit of infinite size and z0

represents the asymptotic coefficient.
We can now adopt a model independent approach based on the analysis of ∆χ2

data in order to evaluate the coefficients and their asymptotic values. The N de-
pendence of the coefficients can be found in the same way of the previous analysis:
we calculate the χ2 for fixed k and Nrep by averaging over all the eigenvectors for
each batch. We than fit the k dependence for each value of Nrep and we obtain
the values of aN , bN , cN and dN for different values of Nrep. Since we know that
the χ2 depends on the number of Hessian eigenvectors involved in the average, we
may calculate the uncertainties due to these effects by computing the standard
deviation of the coefficient sample obtained by the average of the χ2 over the set
of batches only. Fig. 3.14 shows the dependence of the coefficients from Nrep with
the one-sigma band for two values of Neig, namely Nrep = 50 and Nrep = 30. We
may draw the following conclusions:

62



CHAPTER 3. χ2 FOR HESSIAN CONVERTED MONTE CARLO SET

Figure 3.14: Coefficient results with error band obtained from the standard devia-
tion over the eigenvector sample. The plots on the left is produced with Neig = 50
while the plots on the right with Neig = 30 .

• The coefficients aN and cN do not show a particular dependence from Nrep

and therefore we can assume fa(N) = fc(N) = 1. Furthermore the asymp-
totic values are both compatible with zero and are subjected to large uncer-
tainties that we may assess as follows:

a0 = 0± 2,

c0 = 0.0± 0.1.
(3.12)

• The coefficient bN represents the dominating contribution and shows a clear
Nrep dependence while the uncertainties are about 30% of the central value.
We may thus introduce a functional form in order to estimate fb(N) and b0.

• The coefficient dN is really small but it is not compatible to zero within the
one-sigma band. Moreover it has an extremely weak dependence on Nrep.
Due to these facts, we can reasonably assume that fd(N) = 1 and thus we
find d0 = 0.007± 0.008

We may therefore estimate the Nrep dependence of the coefficient bN by intro-
ducing a functional form that must provide a good description of both the results
obtained with Neig = 50 and Neig = 30. We thus find that the bN values are well
described by the following function:

bN =
n0 + n1

√
N + n2N

d0 + d1

√
N + d2N

(3.13)

where the coefficients n0, n1, n2, d0, d1 and d2 are determined by an appropriate
fit for both Neig = 50 and Neig = 30.

Fig. 3.15 shows a good agreement between the fit results and the values of bN .
We may then express bN as in Eq. (3.11) by rewriting its functional form in the
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Figure 3.15: Coefficient results with error band obtained from the standard devia-
tion over the eigenvectors sample. The plots on the left is produced with Neig = 50
while the plots on the right with Neig = 30 .

following way:

bN = b0

1 +
n′1√
N

+
n′2
N

1 +
d′1√
N

+
d′2
N

= b0fb(N) (3.14)

We can therefore factorize the dependence of Nrep contained in fb(N) from bN and
its uncertainty and we finally obtain the following values for b0:

b0 = 1.68± 0.72 for Neig = 50

b0 = 1.74± 0.63 for Neig = 30
(3.15)

Since these two values are compatible within their uncertainties, we may thus
conclude that the asymptotic values is b0 = 1.7 ± 0.7 and it is independent from
the number of eigenvectors.

Since the other coefficients provide a poor contribution to ∆χ2, the coefficient
b0 thus coincides with the variation ∆χ2 of the one-sigma contour in the limit of
infinite size of the sample. Since the tolerance is defined as the squared roots of this
∆χ2, we conclude that the value of b0 is completely analogous to the introduction
of a tolerance t =

√
b0 = 1.3±0.3. Such a value of the tolerance is compatible with

1 and the deviation from 1 of the central value of t can reasonably be related to
both experimental uncertainty underestimation and theoretical uncertainty con-
tribution. Therefore the introduction of the tolerance for the Monte Carlo PDF
sets provided by the NNPDF collaboration introduces only a small deviation from
the parameter-fitting criterion ∆χ2 = 1 which is not compatible with the large
values of the tolerance (t ' 5) required by the existing Hessian PDF sets.
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Conclusions

In this thesis we discuss the problem of the tolerance for the Monte Carlo PDF
sets provided by the NNPDF collaboration in terms of an appropriate Hessian
conversion. For this purpose we provide a covariance matrix in the space of Monte
Carlo PDF replicas and then we express the Hessian eigenvectors as a linear com-
bination of Monte Carlo replicas. We then compute the ∆χ2 and we find that
∆χ2 values range in −7 . ∆χ2 . 15 and the t0 prescription must be adopted
for the definition of χ2. We interpret this behavior in terms of large fluctuations
of the one-sigma contour which can depend on the following effects: finite-size
effects, non gaussianity, inefficiency of the minimization algorithm and parabolic
deviation of the χ2 shape.

We approach the finite-size effects by increasing the number of Monte Carlo
replicas fitted from deep inelastic scattering dataset. However this Monte Carlo
set suffers from large non-gaussian deviations that invalidate the Hessian conver-
sion. We thus adopt a global Monte Carlo set with 1000 replicas that presents
more gaussian uncertainties and we improve the Hessian conversion rejecting non
gaussian contributions. We also provide an Hessian conversion with fractional co-
variance matrix that describes different size of fluctuations in order to probe the
underlying shape of the ∆χ2.

All the aforementioned effects are then included in the quartic expansion of the
χ2 with coefficients that depend on the replica sample size and can be calculated
by fitting the Hessian conversion results produced with different fractions of the
covariance matrix from several Monte Carlo sets with different sizes.

We compute the coefficients of the χ2 expansion with the assumption that the
∆χ2 for each eigenvector follows the same underlying distribution given by a single
parameter model. However we find that the single parameter model predictions
for the χ2 coefficients do not consider further finite-size effects related to the mul-
tidimensional problem of one-sigma contour fluctuations in the Neig dimensional
space of parameters. We thus conclude that the replica sample size must scale
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with the volume of the hypersphere in the space of parameters in order to provide
a good coverage of ∆χ2 fluctuations.

We therefore compute the finite-size dependence of the coefficients from the
numerical data for the χ2. We find that the linear, cubic and quartic coefficients
are related to inefficiency, non-gaussianity and parabolic deviation. In particular
these coefficients are subjected to large statistical fluctuations but provide a small
contribution to ∆χ2. Moreover, the dominant contribution to ∆χ2 is driven by
the quadratic coefficient that shows a strong dependence from the replica size.
Once the finite-size effects are factorized, we find that the quadratic coefficient is
analogous to the introduction of a tolerance t = 1.3± 0.3. We then conclude that
such a value of the tolerance is compatible with 1 and the deviation from 1 of
the central value of t can reasonably be related to both experimental uncertainty
underestimation and theoretical uncertainty contribution.

Since the NNPDF collaboration provides Monte Carlo sets of PDFs with 100
replicas optimized from the prior set of 1000 replicas, the large finite-size effects
discussed in this work may suggest a more careful assessment of the size of the
Monte Carlo replica sample.

The methodologies discussed in this work may be improved by providing a more
accurate assessment of the non gaussian deviation in the Hessian conversion. Fur-
thermore the explicit calculation of the finite-size effects for the Neig-dimensional
case could explain the strong dependence from the Monte Carlo replica sample
size of the parameter bN and provide a more accurate assessment of the effects due
to inefficiency, non-gaussianity and parabolic deviation. Moreover, the calculation
of the ∆χ2 results of the Hessian conversion produced from a larger Monte Carlo
replica sample represents the most direct way to remove the large finite-size effects
as we supposed when the DIS only Monte Carlo sets were provided.
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