

PARTON DISTRIBUTIONS YESTERDAY, TODAY, AND TOMORROW

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

RWTH AACHEN

NOVEMBER 8, 2018

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

PROLOGUE

(J. Campbell, 2012)

PDF uncertainty either dominant, or very large, or both typical PDF uncertainty $\sim 5-10\%$

PAST (NOT SO LONG AGO) THE PDF4LHC SET LUMINOSITY UNCERTAINTIES VS RAPIDTY & MASS

G.P. Salam, 2016

TYPICAL PDF UNCERTAINTY DOWN TO $\sim 2-5\%$ Towards 1% PDF uncertainties?

PRESENT: PDF CHALLENGES AN EXAMPLE: HIGGS IN GLUON FUSION ¥R4 VS. NOW

(APPR) N³LO+N³LL QCD (EFT); NLO PURE EW; NLO EXACT HQ; NNLO APPROX TOP; NNLO PDFS

 $\sigma(\text{LHC13}, m_H = 125 \text{ GeV}) = 48.58 \text{ pb} \pm \frac{2.2^{\text{TH}}}{4.5\%} (4.5\%) \pm 1.6^{\text{PDF} + \alpha_s} (3.2\%)$ $\sigma(\text{LHC13}, m_H = 125 \text{ GeV}) = \text{pb} \pm 1.6^{\text{TH}} (3.3\%) \pm 1.4^{\text{PDF} + \alpha_s} (2.8\%)$

PDF+ α_s UNCERTAINTY

PDF: $\pm 0.9 \text{ pb}$ (1.9%) $\pm 0.5 \text{ pb}$ (1%) α_s : $\pm 1.3 \text{ pb}$ (2.6%)

• BOTH PDF & THEORY UNCERTAINTY RAPIDLY DECREASING

• TOWARD 1% PDF UNCERTAINTIES!

SUMMARY PAST: WHAT EVERYBODY DOES

- FROM DATA TO PDF UNCERTAINTIES
- PDF COMBINATION
- ANALYSIS TOOLS

PRESENT: WHAT WE DO

- THE IMPACT OF LHC DATA
- HEAVY QUARK TREATMENT
- THE PHOTON PDF
- α_s from LHC data

FUTURE: WHAT WE'LL SOON DO

- RESUMMED PDFS
- THEORY ERRORS
- EW CORRECTIONS

CONTEMPORARY PDF TIMELINE (ONLY PUBLISHED GLOBAL)

	2008		2009		2010		2011	2011 2012		2013		2014		2015 2017		017
SET	CTEQ6.6	NNPDF1.0	MSTW 01	ABKM09	NNPDF2.0	(NLO)	NNPDF2.1 (NNLO)	ABM11 (02)	NNPDF2.3	(NNLO)	ABM12 (10)	ONNPDF3.0	MMHT (12)	CT14 (06)	ABMP16	NNPDF3.10
F. T. DIS	(=)	(00)	()	((=)		(01)	()		(=)	(= -)	()	(,	(1)	(
ZEUS+H1-HI Comb. HI	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~
7FUS+H1-HII	×	×	×	×	~	×	some	×	~	× some	~	~	×	×	~	~
	×	×	×	×	×	×		×	×		×	~	×	×	~	
HERA JEIS	×	×	~	×	×	×	×	×	×	×	×	×	~	×	×	×
F. T. DY	~	×	~	~	~	~	~	 ✓ 	~	 ✓ 	 	 ✓ 	 	 	~	 Image: A second s
TEV W+Z	 ✓ 	×	~	×	~	~	~	×	~	 ✓ 	X	~	~	~	X	 I
LHC W+Z	×	×	×	×	×	×	×	×	 ✓ 	×	some	~	~	~	some	~
TEV JETS	~	×	~	×	~	~	×	~	~	 ✓ 	×	~	 	 	×	
LHC JETS	×	×	×	×	×	×	×	×	~	×	×	 	~	 	×	✓
TOP TOTAL	X	×	×	×	X	×	X	×	×	×	~	~	×	×	~	 Image: A start of the start of
SINGLE TOP TOTAL	×	×	×	×	X	×	×	X	×	×	X	X	×	X	~	×
TOP DIFFERENTIAL	X	X	X	X	X	X	X	X	×	×	X	X	X	X	X	~
$W p_T$	x	X	X	X	X	X	X	x	x	x	x	~	X	X	X	X
W+c	×	r. X	r. X	r: X	r. X	r: X	Y I	x	×	r. X	Y I		r X	r. X	Y N	Y II
$Z p_T$	x	x	< ×	< ×	x	x	×	x	X	x	x	X	×	x	x	~

THEORY PROGRESS:

- MSTW, ABKM: all NNLO; NNPDF NNLO since 07/11 (2.1), CT since 02/13 (CT10); NNPDF THRESHOLD RESUMMATION (3.0RESUM, 07/15), SMALL *x* RESUMMATION (3.1SX, 10/17)
- MSTW, CT, NNPDF all GM-VFN; NNPDF since 01/11 (2.1); ABM FFN+ZM-VFN since 01/17 (ABMP16)
- NNPDF FITTED CHARM since 05/16 (NNPDF3IC)
- PHOTON PDF: (mrst2004qed), NNPDF2.3QED (08/13), NNPDF3.0QED (06/16), NNPDF3.1LUXQED (12/17)

TYPICAL GLOBAL DATASET NNPDF3.0 & NNPDF3.1 Kinematic coverage Fixed target DIS Collider DIS Fixed target Drell-Yan Collider Inclusive Jet Production 10^{6} Collider Drell-Yan Z transverse momentum Top-quark pair production Black edge: New in NNPDF3.1 10⁵ 10⁴ $Q^2(GeV^2)$ 10³ 0 0 0 10² 10¹ 10-3 10⁰ 10^{-4} 10-2 10^{-1}

х

PDF4LHC15: PDF UNCERTAINTIES (NLO)

- GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- TYPICAL UNCERTAINTIES IN DATA REGION $\sim 3-5\%$
- SWEET SPOT: VALENCE Q G; DOWN TO 1%
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS

PDF UNCERTAINTIES THE KARLSRUHE PLOTS

PDF4LHC15: PDF UNCERTAINTIES (NNLO)

- GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- TYPICAL UNCERTAINTIES IN DATA REGION $\sim 3-5\%$
- SWEET SPOT: VALENCE Q G; DOWN TO 1%
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS
- NO QUALITATIVE DIFFERENCE BETWEEN NLO AND NNLO

PDF PARAMETRIZATION & DELIVERY

- TRADITIONALLY, TWO DELIVERY METHODS FOR PDFS
- HESSIAN A CENTRAL PDF SET, & ERROR SETS CORRESPONDING TO EIGENVECTORS OF THE COVARIANCE MATRIX IN PARAMETER SPACE ADVANTAGE: EFFICIENT REPRESENTATION OF UNCERTAITY DISADVANTAGES: ASSUMES GAUSSIANITY
- MONTECARLO A SET OF PDF REPLICAS WHICH REPRESENTS THE PROBABILITY IN PDF SPACE (SO THE MEAN UNBIASEDLY ESTIMATES THE CENTRAL VALUE &C) ADVANTAGE: FAITHFUL REPRESENTATION OF PROBABILITY DISADVANTAGES: MAY NEED LARGE NUMBER OF REPLICAS
- TRADITIONALLY, DELIVERY ⇔ PARAMETRIZATION / MINIMIZATION
 HESSIAN USED WITH RELATIVELY SIMPLE FUNCTIONAL FORMS (SMALL NUMBERS OF PARAMETERS) ⇔ HESSIAN MINIMIZATION

- TO CONVERT HESSIAN INTO MONTECARLO GENERATE MULTIGAUSSIAN REPLICAS IN PARAMETER SPACE
- ACCURATE WHEN NUMBER OF REPLICAS SIMILAR TO THAT WHICH REPRODUCES DATA

(Carrazza, SF, Kassabov, Rojo, 2015)

- TO CONVERT MONTE CARLO INTO HESSIAN, SAMPLE THE REPLICAS $f_i(x)$ AT A DISCRETE SET OF POINTS & CONSTRUCT THE ENSUING COVARIANCE MATRIX
- EIGENVECTORS OF THE COVARIANCE MATRIX AS A BASIS IN THE VECTOR SPACE SPANNED BY THE REPLI-CAS BY SINGULAR-VALUE DECOMPOSITION
- NUMBER OF DOMINANT EIGENVECTORS SIMILAR TO NUMBER OF REPLICAS \Rightarrow ACCURATE REPRESENTATION

(Carrazza, Latorre, Kassabov, Rojo, 2015)

- CONSTRUCT A VERY LARGE REPLICA SAMPLE
- SELECT (BY GENETIC ALGORITHM) A SUBSET OF REPLICAS WHOSE STATISTICAL FEATURES ARE AS CLOSE AS POSSIBLE TO THOSE OF THE PRIOR
- \Rightarrow FOR ALL PDFS ON A GRID OF POINTS MINIMIZE DIFFERENCE OF: FIRST FOUR MOMENTS, CORRELATIONS; OUTPUT OF KOLMOGOROV-SMIRNOV TEST (NUMBER OF REPLICAS BETWEEN MEAN AND σ , 2σ , INFINITY)
- 50 COMPRESSED REPLICA REPRODUCE 1000 REPLICA SET TO PRECENT ACCURACY

TOOLS III NONGAUSSIAN BEHAVIOUR

$\begin{array}{c} \text{MONTE CARLO COMPARED TO HESSIAN} \\ \text{CMS } W + c \text{ production} \end{array}$

- DEFINE KULLBACK-LEIBLER DIVERGENCE $D_{\text{KL}} = \int_{-\infty}^{\infty} P(x) \frac{\ln P(x)}{\ln Q(x)} dx$ BETWEEN A PRIOR P AND ITS REPRESENTATION Q
- $D_{\rm KL}$ between prior and hessian depends on degree of gaussianity
- *D*_{KL} BETWEEN PRIOR AND COMPRESSED MC DOES NOT

- DEVIATION FROM GAUSSIANITY E.G. AT LARGE x DUE TO LARGE UNCERTAINTY + POSITIVITY BOUNDS \Rightarrow RELEVANT FOR SEARCHES
- CANNOT BE REPRODUCED IN HESSIAN FRAMEWORK
- Well reproduced by compressed MC

CAN (A) GAUGE WHEN MC IS MORE ADVANTAGEOUS THAN HESSIAN; (B) ASSESS THE ACCURACY OF COMPRESSION

TOOLS IV OPTIMIZED PDFS: SMPDF

- OLD ASPIRATION: PDFs OPTIMIZED TO PROCESSES (Pumplin 2009)
- SELECT SUBSET OF THE COVARIANCE MATRIX CORRELATED TO A GIVEN SET OF PROCESSES
- PERFORM SVD ON THE REDUCED COVARIANCE MATRIX, SELECT DOMINANT EIGENVECTOR, PROJECT OUT ORTHOGONAL SUBSPACE
- ITERATE UNTIL DESIRED ACCURACY REACHED
- CAN ADD PROCESSES TO GIVEN SET; CAN COMBINE DIFFERENT OPTIMIZED SETS
- WEB INTERFACE AVAILABLE

w_etmiss_13tev(LO)

(Carrazza, SF, Kassabov, Rojo, 2016)

- EG ggH, $Hb\bar{b}$, $W E_T^{\text{miss}} \Rightarrow 11$ EIGENVECTORS
- STUDY CORRELATIONS OF PDFS TO DATA AND AMONG THEMSELVES!

DATASET WIDENING NNPDF3.0 vs NNPDF3.1

Kinematic coverage

NEW DATA: (BLACK EDGE)

- HERA COMBINED F_2^b
- D0 W LEPTON ASYMMETRY
- ATLAS *W*, *Z* 2011, HIGH & LOW MASS DY 2011; CMS *W*[±] RAPIDITY 8TEV LHCB *W*, *Z* 7TEV & 8TEV
- ATLAS 7TEV JETS 2011, CMS 2.76TEV JETS
- ATLAS & CMS TOP DIFFERENTIAL RAPIDITY
- ATLAS $Z p_T$ DIFFERENTIAL RAPIDITY & INVARIANT MASS 8TEV, CMS $Z p_T$ DIFFERENTIAL

RAPIDITY 8TEV

THE IMPACT OF LHC DATA PDF UNCERTAINTIES IN DETAIL: NNPDF3.0 (NNLO)

• GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN

- TYPICAL UNCERTAINTIES IN DATA REGION $\sim 3-5\%$
- SWEET SPOT: VALENCE Q G; DOWN TO 1%
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS

- GLUON BETTER KNOWN AT SMALL x, VALENCE QUARKS AT LARGE x, SEA QUARKS IN BETWEEN
- TYPICAL UNCERTAINTIES IN DATA REGION $\sim 1-3\%$
- SWEET SPOT: VALENCE Q G; 1% OR BELOW
- UP BETTER KNOWN THAN DOWN; FLAVOR SINGLET BETTER THAN INDIVIDUAL FLAVORS
- NEW LHC DATA \Rightarrow SIZABLE REDUCTION IN UNCERTAINTIES

THE IMPACT OF LHC DATA BEFORE LHC: PDFs mostly determined by DIS data

NNPDF2.1 VS NNPDF2.1 DIS ONLY DISTANCES (difference in units of st. dev.)

• ALL DIFFERENCES BELOW ONE SIGMA

• ONLY UP-DOWN SEPARATION SIGNIFICANTLY AFFECTED

THE IMPACT OF LHC DATA

NOW: PDFs largely determined by LHC data

NNPDF3.1 VS NNPDF3.1 NO LHC DISTANCES (difference in units of st. dev.)

NNPDF3.1 NNLO, Impact of LHC data

- MANY PDFs CHANGE BY MORE THAN ONE SIGMA
- BOTH FLAVOR SEPARATION & GLUON SIGNIFICANTLY AFFECTED

THE IMPACT OF LHC DATA FLAVOR SEPARATION

- BEFORE LHC \Rightarrow CC DIS, TeV FIXED-TARGET DY, W ASYM.
- AFTER LHC \Rightarrow wide range of W, Z production data

- SIZABLE SHIFT OF CENTRAL VALUE BY ALMOST ONE SIGMA
- LARGE x UNCERTAINTY DOWN BY LARGE FACTOR!

THE IMPACT OF LHC DATA THE GLUON

- BEFORE LHC \Rightarrow DIS SCALING VIOLATIONS, TEV JETS AT LARGE X
- AFTER LHC \Rightarrow Jets; $Z \ p_t$, top

DISTANCES (difference in units of st. dev.)

(Nocera, Ubiali, 2017)

- TOP HAS LARGEST IMPACT, FOLLOWED BY JETS
- ALL LHC DATA PULL CENTRAL VALUE IN SAME DIRECTION!

HEAVY QUARK PDFs CHARM FROM DATA

• CHARM SHOULD NOT DEPEND STRONGLY ON CHARM MASS

• ITS SHAPE SHOULD NOT BE DETERMINED BY FIRST-ORDER MATCHING (NO HIGHER NONTRIVIAL ORDERS KNOWN)

• MIGHT EVEN HAVE A NONPERTURBATIVE COMPONENT

FITTED VS. LO PERTURBATIVE: SUPPRESSED AT MEDIUM-SMALL x, ENHANCED AT VERY SMALL, VERY LARGE x

- QUARK (ESPECIALLY QUARK-ANTIQUARK) LUMI AFFECTED BECAUSE OF CHARM SUPPRESSION AT MEDIUM-x
- FLAVOR DECOMPOSITION ALTERED
- UNCERTAINTIES ON LIGHT QUARKS NOT SIGNIFICANTLY INCREASED
- AGREEMENT OF 13TeV W,Z PREDICTED CROSS-SECTIONS IMPROVES!

- W, Z CROSS-SECTIONS AT 13 TEV IN PERFECT AGREEMENT WITH DATA THANKS TO FITTED CHARM!
- ELECTROWEAK CORRECTIONS IMPORTANT

THE PHOTON PDF BREAKTHROUGH

(Manohar, Nason, Salam, Zanderighi, 2016)

- **QED IS PERTURBATIVE** DOWN TO LOW SCALES \Rightarrow THE PHOTON PDF MUST BE COMPUTABLE IF THE INPUT QUARK SUBSTRUCTURE IS KNOWN
- \Rightarrow PDF expressed in terms of the structure function integrated over all scales
- LUX16/LUX17 SETS CONSTRUCTED FROM PDF4LHC15 \Rightarrow AGREE WELL WITH NNPDF3.0 QED, MUCH SMALLER UNCERTAINTY

THE LUXQED PHOTON PDF

(Carrazza et al., 2017)

- FIRST PDF SET BASED ON CONSISTENT FIT WITH LUX CONSTRAINT: NNPDF3.1LUXQED
- NNPDF3.1LUXQED VS LUX17: GOOD AGREEMENT BUT SMALLER UNCERTAINTIES
- SIZABLE IMPACT ON PRECISION PHYSICS: EG ASSOCIATE HIGGS PROD. WITH W

- MINIMUM DETERMINED ALONG THE "BEST PDF" LINE $\Rightarrow \sigma_{old}$ FOR HIGHLY CORRELATED VARIABLES & UNEQUAL SEMIAXES, MAY UNDERESTIMATE ONE- σ ERROR $\Rightarrow \sigma_{\alpha}$
- IN NNPDF METHODOLOGY, PDF UNCERTAINTY \Leftrightarrow DETERMINED FROM REPLICA SAMPLE VARIANCE \Rightarrow IS IT $\Delta \chi^2 = 1$? (TOLERANCE?)

NEED SIMULTANEOUS MINIMZATION IN (PDF, α_s) SPACE!

THE CORRELATED REPLICA METHOD NNPDF3.1 (2018)

- NNPDF method \Rightarrow each PDF replica fitted by GA to data replica
- IDEALLY PERFORM GENETIC MINIMIZATION IN (PDF, α_s) SPACE
- PROBLEM THEORY PREDICTION \Leftrightarrow PRECOMPUTED GRIDS DEPEND ON $\alpha_s \Rightarrow$ DIFFICULT TO TREAT AS CONTINUOUS PARAMETER

THE CORRELATED REPLICA METHOD NNPDF3.1 (2018)

- NNPDF method \Rightarrow each PDF replica fitted by GA to data replica
- IDEALLY PERFORM GENETIC MINIMIZATION IN (PDF, α_s) SPACE
- **PROBLEM** THEORY PREDICTION \Leftrightarrow **PRECOMPUTED** GRIDS DEPEND ON $\alpha_s \Rightarrow$ DIFFICULT TO TREAT AS CONTINUOUS PARAMETER
- SOLUTION DETERMINE BEST-FIT PDF REPLICA TO EACH DATA REPLICA FOR SEVERAL (DISCRETE) α_s VALUES: C-REPLICA
 - − EACH C-REPLICA $\Rightarrow \chi^2$ PROFILE $\Rightarrow \alpha_s$ VALUE

THE CORRELATED REPLICA METHOD NNPDF3.1 (2018)

- NNPDF method \Rightarrow each PDF replica fitted by GA to data replica
- IDEALLY PERFORM GENETIC MINIMIZATION IN (PDF, α_s) SPACE
- **PROBLEM** THEORY PREDICTION \Leftrightarrow PRECOMPUTED GRIDS DEPEND ON $\alpha_s \Rightarrow$ DIFFICULT TO TREAT AS CONTINUOUS PARAMETER
- SOLUTION DETERMINE BEST-FIT PDF REPLICA TO EACH DATA REPLICA FOR SEVERAL (DISCRETE) α_s VALUES:
 - − EACH C-REPLICA $\Rightarrow \chi^2$ PROFILE $\Rightarrow \alpha_s$ VALUE
 - EACH C-REPLICA \Rightarrow BEST-FIT α_s REPLICA

- NNPDF3.1 dataset (only NNLO jet data) \Rightarrow 3979 datapoints
- 400 C-REPLICAS FOR 21 α_s VALUES: $\alpha_s(M_z) = 0.106, 0.108, 0.102, 0.112, 0.113, 0.114, 0.115, 0.116, 0.117, 0.118, 0.119, 0.120, 0.121, 0.122, 0.123, 0.124, 0.125, 0.126, 0.127, 0.128, 0.130$
- EXPERIMENTAL UNCERTAINTY \Leftrightarrow STANDARD DEV. OVER REPLICA SAMPLE

 $\frac{\text{THE RESULT}}{\alpha_s^{\text{NNLO}}(M_Z) = 0.11845 \pm 0.00052^{\text{exp}} \ (0.4\%)}$

FINAL RESULT & COMPARISON

 $\alpha_s^{\rm NNLO}(M_Z) = 0.1185 \pm 0.0005^{\rm exp} \pm 0.0001^{\rm meth} \pm 0.0011^{\rm th} = 0.1185 \pm 0.0012 \ (1\%)$

- SIGNIFICANTLY SMALLER EXP. UNCERTAINTY IN COMPARISON TO PREVIOUS NNPDF2.1 DETERMINATION (DESPITE MORE CONSERVATIVE ESTIMATE)
- SOMEWHAT LARGER CENTRAL VALUE THAN MMHT

α_s from a global fit

PULLS DON'T ADD TO ZERO?!

- PARTIAL VALUES ARE NOT PARTIAL BEST-FITS (PDFS COME FROM GLOBAL FIT)
- PULLS CORRELATED THROUGH UNDERLYING PDFS
- REPLICA SELECTION BASED ON GLOBAL SET (SOME PARABOLAE \Rightarrow NO MINIMUM)
- MISSING SYSTEMATIC CORRELATION BETWEEN DATASETS

CANNOT DETERMINE α_s WITHOUT ALSO DETERMINING THE PDF

LESSONS

- COLLIDER DATA HAVE A LARGE IMPACT
- NO SIGNS OF TENSION OR INCOMPATIBILITY
- LHC DATA PULL TOWARDS LARGER α_s

RESUMMED PDFs

- **RESUMMATION NOT INCLUDED IN DEFAULT PDF SETS**
- RESUMMED CALCULATIONS MUST USE RESUMMED PDFs! (M. Spira)
- KEPT UNDER CONTROL IN FITS BY CHOICE OF CUTS

PDFS WITH THRESHOLD (LARGE x) RESUMMATION

- FIRST SET: NNPDF3.0resum
- **RESUMMATION INCLUDED** IN FIT (DIS, DY, TOP DATA), EFFECTS NOT NEGLIGIGLE AT NLLO, LARGE *x*, MORE MODERATE AT NNLO
- EFFECT ON PDFs comparable to effect on matrix ele-Ment, anticorrelated to it
- RELEVANT FOR NEW PHYSICS SEARCHES

(Bonvini et al., 2015)

HIGGS IN GLUON FUSION VS m_H

PDFS WITH HIGH ENERGY (SMALL x) RESUMMATION

 $10^{0} \downarrow 10^{-5}$

 10^{-4}

10-3

10-2

¥

 10^{-1}

100

THEORY UNCERTAINTIES THE MISSING HIGHER ORDER UNCERTAINTY

- DOMINANT THEORY UNCERTAINTY ON QCD PREDICTIONS \Rightarrow MHOU (SCALE)
- NOT INCLUDED IN PDF UNCERTAINTY
- HOW LARGE IS IT? \Rightarrow AT NLO, CAN CHECK NLO-NNLO PDF SHIFT

- TODAY: NLO PDF & MHOU UNCERTAINTIES COMPARABLE
- NEAR FUTURE: WORRY ABOUT NNLO MHOU!

SCALE VARIATION IN PDF FITTING

SIMPLE ESTIMATE FOR PDF MHOU

- PERFORM FIT WITH VARIOUS SCALE CHOICES
- TAKE ENVELOPE OF RESULTS
- COMPARE TO NLO-NNLO SHIFT

- REASONABLE ASSESSMENT OF FIRST MHO
- BUT ENVELOPE HAS NO STATISTICAL INTERPRETATION

CONSISTENT INCLUSION MHOU IN PDF ERRORS

MHOU AS A FIT UNCERTAINTY

• PDFs are determined by maximizing the likelihood

$$P = N \exp - \left(\frac{d-t}{2\sigma_{exp}^2}\right)$$

d, t are really vectors and $1/\sigma^2$ the inverse covariance matrix

- EXPRESSION COMPLETELY SYMMETRIC IN d and t
- CAN ENDOW THEORY PREDICTION WITH UNCERTAINTY, & FOLD INTO COVARIANCE MATRX

THE THEORY COVARIANCE MATRIX

- PERFORM CALCULATION WITH VARIOUS SCALE CHOICES
- USE DISTRIBUTION OF RESULTS TO COMPUTE THEORY COVARIANCE MATRIX
- PERFORM FIT WITH EXTRA CONTRIBUTION TO COVARIANCE MATRIX \Rightarrow MHOU included in PDF uncertainty

PRESCRIPTIONS & VALIDATION

- DEFINE "POINT PRESCRIPTION: E.G. SUM OVER 6 SCALE CHOICES, WITH CORRELATED FACTORIZATION & UNCORRELATED RENORMALIZATION ("7 POINT")
- CHOOSE CORRELATION PATTERN ("FAMILY OF EXPERIMENTS")
- COMPARE TO SHIFTS

VALIDATION: DIAGONAL UNCERTAINTIES

PRESCRIPTIONS & VALIDATION

- DEFINE "POINT PRESCRIPTION: E.G. SUM OVER 6 SCALE CHOICES, WITH CORRELATED FACTORIZATION & UNCORRELATED RENORMALIZATION ("7 POINT")
- CHOOSE CORRELATION PATTERN ("FAMILY OF EXPERIMENTS")
- COMPARE TO SHIFTS

MORE THEORY UNCERTAINTIES

EXAMPLE: ATLAS 7 TEV p_T DISTRIBUTION THE NNLO/NLO K-FACTOR

(Boughezal, Liu, Petriello, 2017)

- NUCLEAR CORRECTIONS
- NUMERICAL UNCERTAINTIES
- . . .

... CAN BE TREATED SIMILARLY

ELECTROWEAK CORRECTIONS PAST (NNPDF3.0)

EW CORRECTIONS INCLUDED WHEN LARGE FOR SPECIFIC PROCESSES

PRESENT (NNPDF3.1)

ALL DATA WITH LARGE EW CORRECTIONS REMOVED FROM DATASER

FUTURE (NNPDF4.0)

EW INCLUDED SYSTEMATICALLY \Rightarrow MadGraph5_aMC@NLO USED FOR ALL PROCESSES

(Frederix, Frixione, Hirschi, Pagani, Shao, Zaro, 2017)

WHAT I TALKED ABOUT AND WHEN

- NEW COMBINED PDF SETS PDF4LHC20?
 - Reliable experimental covariance matrices \Rightarrow LHC Run II
 - WIDEST DATASET \Rightarrow LHC RUN II-RUN III
- RESUMMED PDFs, N³LO PDFs, EW CORRECTIONS \Rightarrow LHC RUN II-RUN III
 - AUTOMATIZATION OF HO CORRECTIONS
 - PUBLIC CODES
- THEORY UNCERTAINTIES
 - THEORY PREDICTIONS WITH SUB-PERCENT NUMERICAL ACCURACY \Rightarrow NOW LHC Run II
 - FITTED HEAVY QUARK PDFs \Rightarrow NNPDF3.1 (2018), PDF4LHC20
 - PDFs with theory uncertainty \Rightarrow NNPDF4.0 (2019)
- CONSENSUS α_s WITH SUB-PERCENT ACCURACY \Rightarrow HL-LHC

RUN II: 2015-2018; RUN III: 2020-2023; HL-LHC: 2026-...

WHAT I DID NOT TALK ABOUT AND WHY

- HIGHER TWISTS, NUCLEAR CORRECTIONS \Rightarrow HISTORY!
 - FIXED-TARGET DATA OBSOLETE
 - COLLIDER-ONLY PDFs
- Systematic closure testing \Rightarrow known since NNPDF3.0
 - TUNING OF FITTING METHODOLOGY
 - VALIDATION OF PDF UNCERTAINTIES
 - STATISTICAL INTERPRETATION OF PDF CONFIDENCE LEVELS
- PDFs at subpercent accuracy
 - OPTIMIZED MINIMIZATION \Rightarrow N³PDF
 - MACHINE LEARNING PDF MINIMIZATION \Rightarrow N³PDF
 - THEORY UNCERTAINTIES FROM RESUMMATION \Rightarrow N³PDF
 - − PS-PDFs, MC-P DFs \Rightarrow N³PDF

CAN WE TRUST PDF UNCERTAINTIES?

- "PDF" UNCERTAINTIES REFLECT UNCERTAINTY FROM THE DATA & METHODOLOGY (NOT THEORY)
- UNCERTAINTIES ON GLOBAL FITS \Rightarrow SIMILAR SIZE DESPITE DIFFERENT PROCEDURES
- DUE TO UNCERTAINTY TUNING

- (MSTW/MMHT) FOR EACH EIGENVECTOR IN PARAMETER SPACE DETERMINE CONFIDENCE LIMIT FOR THE DISTRIBUTION OF BEST-FITS OF EACH EXPERIMENT
- Rescale $\Delta \chi^2 = T$ interval such that correct confidence intervals are reproduced
- WHY DO WE NEED TOLERANCE?
- DO WE UNDERSTAND PDF UNCERTAINTIES?

PDF UNCERTAINTIES: HOW MUCH DO THEY VARY?

- COMPUTE PERCENTAGE PDF UNCERTAINTY ON ALL DATA INCLUDED IN GLOBAL FIT
- COMPARE GLOBAL FITS

- MEDIAN SIMILAR
- DISTRIBUTION VERY DIFFERENT!
- NNPDF: SMALLER MODE, BUT FAT TAIL \Leftrightarrow GREATER FLEXIBILITY

ARE PDF UNCERTAINTIES FAITHFUL? CLOSURE TESTING BASIC IDEA

- ASSUME PDFs known: Generate fake experimental data
- CAN DECIDE DATA UNCERTAINTY (ZERO, OR AS IN REAL DATA, OR . . .)
- FIT PDFs to fake data:
- TEST WHETHER PDF UNCERTAINTY FAITHFULLY REFLECTS DATA UNCERTAINTY: E.G. TRUE VALUE WITHIN ONE-SIGMA 68% OF TIMES

CLOSURE-TESTING THE PDF UNCERTAINTIES RESULTS

UNCERTAINTIES: DISTRIBUTION OF DEVIATIONS BETWEEN FITTED AND "TRUE" PDFs, SAMPLED AT 20 POINTS BETWEEN 10^{-5} and 1

Find 0.699% for one-sigma, 0.948% for two-sigma c.l.

ARE PDF UNCERTAINTIES OPTIMAL? THE $\Delta \chi^2$ PROBLEM

- TOLERANCE MIGHT COMPENSATE FOR MISSING FUNCTIONAL UNCERTAINTY
- BUT WHAT IS $\Delta\chi^2$ for an NNPDF Fit?
- CAN ANSWER USING HESSIAN CONVERSION! $\Delta \chi^2 = 16 \pm 15$
 - NON-PARABOLIC BEHAVIOUR NEAR MINIMUM ON SCALE OF UNCERTAINTIES?
 - INEFFICIENCY OF THE MINIMIZATION PROCEDURE?

- MHOU DEPENDS ON DATASET
- NLO-NNLO SHIFTS GENERALLY SMALLER WITH LARGER DATASET
- \Rightarrow CORRELATION PATTERN BETWEEN MHO TERMS

- SCALE DEPENDENCE IS (OF COURSE!) DATASET DEPENDENT
- BOTH SIZE AND PATTERN OF BEST-FIT RESULTS DEPEND ON PROCESS
- WHAT IS THE CORRELATION BETWEEN SCALE DEPENDENCES?
- ENVELOPE??

THE METHODOLOGY AND ITS UNCERTAINTIES

- WHY IS THE EXPERIMENTAL UNCERTAINTY SO SMALL?
- BECAUSE THERE IS A LOT OF INFORMATION IN C-REPLICAS BATCH MINIMIZATION

- EACH REPLICA FOR EACH α_s FITTED THREE TIMES (BATCHES)
- BEST FIT CHOSEN
- SINGLE, DOUBLE & TRIPLE BATCH COMPARED \Rightarrow LITTLE DEPENDENCE OF CENTRAL VALUE, IMPROVEMENT OF UNCERTAINTIES SINGLE BATCH $\sigma^{exp} = 0.0006 - 0.0007$; THREE BATCHES $\sigma^{exp} = 0.0005$

METHODOLOGICAL UNCERTAINTIES FINITE-SIZE OF REPLICA SAMPLE

- ESTIMATED BY BOOTSTRAPPING: $\Delta^{\text{finite size}} = 0.00003$ (0.03%)
- DEPENDS ON REPLICA SELECTION \Leftrightarrow ONLY INCLUDE A C-REPLICA IF FIT CONVERGED FOR AT LEAST $N_{\min} \alpha_s$ VALUES
- MORE RESTRICTIVE SELECTION \Rightarrow SMALLER σ^{exp} , LARGER $\Delta^{\text{finite size}} = 0.00009$
- WITH MOST RESTRICTIVE SELECTION ($N_{\min} = 18$, 12 SURVIVING REPLICAS) $\Delta^{\text{finite size}} = 0.00009$ (0.08%), BUT $\sigma^{\exp} = 0.00031$ (0.3%)
- NO DEPENDENCE OF α_s VALUE ON CURVE SELECTION
- DEFAULT: CONSERVATIVE CHOICE $N_{\min} = 6$, 379 SURVIVING REPLICAS) $\Delta^{\text{finite size}} = 0.00003$ (0.03%), BUT $\sigma^{\exp} = 0.00052$ (0.5%) MINIMIZES UNCERTAINTY ON UNCERTAINTY

 $\alpha_{s}(m_{z})$ distribution at NNLO

METHODOLOGICAL UNCERTAINTIES PARABOLIC FITTING

- Fit $\exp \alpha_s$ or $\ln(\alpha_s + 1) \Rightarrow$ no change
- REMOVE OUTER VALUES OF α_s , SYMMETRICALLY OR ASYMMETRICALLY \Rightarrow LARGEST SHIFT $\Delta^{\text{parabolic}} = 0.00010$ (0.08%) \Rightarrow DOMINANT METH. UNCERTAINTY
- NO EVIDENCE THAT CUBIC FIT IS BETTER THAN QUADRATIC

 $\alpha_{s}(m_{Z})$ distribution at NNLO

- MULTIPLICATIVE UNCERTAINTIES (ALL HADRON COLLIDER SYST.) $\Rightarrow t_0$ METHOD, REQUIRES PRIOR FIT
- GROSSLY BIASED IF EXPERIMENTAL COVARIANCE MATRIX USED
- PRIOR FIT TAKEN FROM THREE DIFFERENT BATCHES \Rightarrow VERY SMALL SHIFT $\Delta^{t_0} = 0.00004$ (0.03%)

TOTAL METHODOLOGICAL UNCERTAINTY $\sigma^{\text{meth}} = 0.00011 \ (0.09\%)$

$$\begin{aligned} & \text{MISSING HIGHER ORDER UNCERTAINTIES} \\ & \alpha_s^{\text{NLO}}(M_Z) = 0.11845 \pm 0.00052^{\text{exp}} \ (0.4\%) \\ & \alpha_s^{\text{NNLO}}(M_Z) = 0.12067 \pm 0.00065^{\text{exp}} \ (0.5\%) \\ & \Delta \alpha_s^{\text{NLO-NNLO}} = 0.0022 \end{aligned}$$

- CACCIARI-HOUDEAU: $\alpha_s^{N^kLO} = \sum_{n=0}^k c_n [\alpha_s^{true}]^n$; BAYESIAN ESTIMATE FOR RANGE OF NEXT MISSING COEFFICIENTS
- DIFFICULTIES:
 - α_s^{true} NOT KNOWN \Rightarrow VARY IN WIDE RANGE
 - α_s^{LO} effectively not known \Rightarrow vary in wide range
 - IS IT MEANINGFUL FOR A COMBINATION OF PROCESSES?

$$\Delta \alpha_s^{\rm NLO, \, CH} = 0.003$$

$$\Delta \alpha_s^{\rm NNLO, \, CH} = 0.0004$$

NOTE AT NLO AGREES WELL WITH KNOWN NNLO-NLO SHIFT!

TOTAL THEORY UNCERTAINTY

VERY CONSERVATIVE ESTIMATE: $\sigma^{\text{th}} = 0.0011 \ (0.9\%)$

- HALF THE NLO-NNLO SHIFT
- THREE TIMES THE CH ESTIMATE