

THEORY UNCERTAINTIES $\stackrel{\text{IN}}{\text{PDF DETERMINATION}}$

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

PHYSICS AT TEV COLLIDERS

Les Houches, June 14, 2019

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

SUMMARY WHAT ARE PDF UNCERTAINTIES?

- PDFs as proxies for observables
- NLO-NNLO SHIFT
- DIFFERENT SCALE CHOICES

THE THEORY COVARIANCE MATRIX

- MHOU AS NUISANCE PARAMETERS
- PRESCRIPTIONS
- THEORY CORRELATION
- VALIDATION: SHIFT VS COVARIANCE MATRIX

PDFs with THEORY UNCERTAINTIES

- FIT QUALITY AND TENSIONS
- DEPENDENCE ON THE PRESCRIPTION
- PHYSICAL OBSERVABLES

THE MISSING HIGHER ORDER UNCERTAINTY

- DOMINANT THEORY UNCERTAINTY ON QCD PREDICTIONS \Rightarrow MHOU (SCALE)
- NOT INCLUDED IN PDF UNCERTAINTY
- WHAT IS IT?

MISSING HIGHER ORDER UNCERTAINTY ON FACTORIZED OBSERVABLES

 $\sigma = \hat{\sigma} \otimes f \otimes f$ schematically

 $\sigma(M_w^2) = \hat{\sigma}(M_w^2) \left[\Gamma(M_w^2, Q^2) F_2(Q^2) \right]^2; \ \Gamma(M_w^2, Q^2) = \exp \int_{Q^2}^{M_W^2} \frac{d\alpha}{\beta(\alpha)} \gamma(\alpha)$

- HADRONIC XSECT= PARTONIC XSEC TIMES PDFs (CONVOLUTION)
- PDFs Are a proxy for another process (DIS)
- MUST EVOLVE BETWEEN TWO PROCESSES

SOURCES OF MHOU UNCERTAINTY

- MHOU IN THE "DRELL-YAN" XSECT \Rightarrow STANDARD SCALE VARN.
- MHOU IN THE STRUCTURE FUNCTIONS \Rightarrow TH. UNCERTAINTY ON PDFs (1)
- MHOU IN THE EVOLUTION \Rightarrow TH. UNCERTAINTY ON PDFs (2)

- TODAY: NLO PDF & MHOU UNCERTAINTIES COMPARABLE
- NEAR FUTURE: SHOULD WE WORRY ABOUT NNLO MHOU?

THE MISSING HIGHER ORDER UNCERTAINTY ON PDFS CAN WE ESTIMATE IT? SCALE VARIATION IN PDF FITTING

NAIVE IDEA FOR PDF MHOU ESTIMATE

- PERFORM FIT WITH VARIOUS SCALE CHOICES
- TAKE ENVELOPE OF RESULTS
- 7-POINT \Rightarrow OK!; 9-POINT \Rightarrow UNSTABLE!
- **RESULTS DEPEND STRONGLY ON THE CHOICE OF ENVELOPE**

THE THEORY COVARIANCE MATRIX

(NNPDF, 2019)

• ASSOCIATE MHOU TO NUISANCE PARAMETER \Rightarrow THEORY COVARIANCE MATRIX S_{ii}

•
$$S_{ij} = \frac{1}{N} \sum_{k} \left(T_i^{(k)} - T_i^{(0)} \right) \left(T_j^{(k)} - T_j^{(0)} \right)$$

 $\left(T_i^{(k)} - T_i^{(0)} \right)$: k-th shift of *i*-th datapoint about central prediction $T_i^{(0)}$

• SHIFT: GUESS FOR POSSIBLE MHO TERMS \Rightarrow SCALE VARIATION

EXPERIMENTS AND PROCESSES

Datasets

Process Type

DIS NC

DIS CC

DY

JET TOP

- CLASSIFY DATA INTO PROCESSES
- PICK A SET OF SCALE VARIATIONS
- DECIDE HOW TO CORRELATE SCALE VARIATION BETWEEN DIFFERENT PROCESSES •
- **RENORMALIZATION** \Rightarrow **MATRIX ELEMENT**; FACTORIZATION \Rightarrow EVOLUTION

PDF THEORY ERROR AS A FIT UNCERTAINTY

• PDFs are determined by maximizing the likelihood

$$P = N \exp - \left(\frac{d-t}{2\sigma_{exp}^2}\right)$$

d, t are really vectors and $1/\sigma^2$ the inverse covariance matrix

• CAN VIEW THIS AS THE PROBABILITY OF THE THEORY t BEING CORRECT GIVEN DATA d, WHICH BY BAYES IS

 $P(t|d) \propto P(d|t)P(t)$

- IF THEORY WAS KNOWN EXACTLY, THEN $P(t) = \delta(t t^{\text{exact}})$
- IN ACTUAL FACT ONLY SOME PERTURBATIVE RESULT t_p is exactly known so $t^{\text{exact}} = t_p + \Delta_p$, where Δ_p includes MHO
- Assuming Δ to be Gaussianly distributed, with uncertainty $\sigma_{\rm th}$ and integrating out

$$P = N \exp\left[rac{d - t_p}{2\left(\sigma_{exp}^2 + \sigma_{th}^2
ight)}
ight]$$

- THEORETICAL UNCERTAINTY ADDED IN QUADRATURE, PROPAGATES INTO PDF UNCERTAINTY UPON MINIMIZATION
- SCALE VARIATION FOR EACH DATA POINT \Rightarrow EIGENVECTOR OF COVARIANCE MATRIX (NUISANCE PARM.)

THE THEORY COVARIANCE MATRIX: PRESCRIPTIONS FACTORIZATION VS RENORMALIZATION SCALE

Scale	MHOU	'Traditional' name	'Modern' name[PDG]
$\left \begin{array}{c}\mu_r\\\mu_f\\\widetilde{\mu}\end{array}\right $	in hard xsec		renormalization scale
	in PDF evolution	renormalization scale	factorization scale
	in physical xsec	factorization scale	scale of the process

- $\mu_r \Rightarrow$ MHOU in hard cross section
- $\mu_f \Rightarrow MHOU$ in anomalous dimension

PRESCRIPTIONS

- **3 POINT**: $\tilde{\mu} = \mu_r = \mu_f$ uncorrelated between processes
- **5 point**, $\overline{5}$ **point**, **9 point**: $\mu_r \ \mu_f$ varied independently, μ_r uncorrelated, μ_f correlated
- **7 POINT**: $\widetilde{\mu}$ added to **5** point

THE THEORY COVARIANCE MATRIX: CORRELATIONS

- INDEPENDENT NUISANCE PARAMETERS \Rightarrow TH. AND EXP. ERRORS COMBINE IN QUADRATURE $\chi^2 = \sum_{i,j=1}^{N_{\text{dat}}} \left(D_i T_i^{(0)} \right) [S+C]_{ij}^{-1} \left(D_i T_i^{(0)} \right)$
- REN. SCALE ⇒ CORRELATIONS INDUCED BETWEEN EXPERIMENTALLY UNRELATED MEASUREMENTS OF SAME PROCESS
- FACT. SCALE \Rightarrow CORRELATIONS INDUCED BETWEEN DIFFERENT PROCESSES

EXPERIMENT

THE COVARIANCE MATRIX

THEORY (9 PT)

Theory Covariance matrix (9 pt)

EXPERIMENT

EXP+THEORY ($\overline{5}$ PT)

EXP+THEORY (7 PT)

Experimental + Theory Correlation Matrix (3 pt)

OIS NC

DIS N

DIS CC

DY

JETS

F

TOP

DISCC

I NI

50

IET TOP

EXP+THEORY (9 PT)

Experimental + Theory Correlation Matrix (5 pt)

CORRELATION MATRICES EXP+THEORY (3 PT) EXP+THEORY (5 PT)

THE THEORY COVARIANCE MATRIX: VALIDATION

- COMPARE NLO THEORY COVMAT TO OBSERVED NLO-NNLO SHIFTS
- DETERMINE EIGENVECTORS e_i of COVMAT $\Rightarrow 28$ evecs for 9pt, five processes
- Determine vector of shifts δ
- DETERMINE PROJECTION OF δ IN SUBSPACE SPANNED BY e_i : IS IT CONTAINED IN IT?
- DETERMINE SIZE δ_i OF PROJECTIONS OF δ ALONG e_i : ARE THEY OF COMPARABLE SIZE?

- ALL PRESCRIPTIONS BUT 3-PT PERFORM WELL
- ANGLE SCALES WITH NUMBER OF DATAPOINTS \Rightarrow MORE POINTS, WORSE AGREEMENT

•	ANGLE	DOMINATED	BY	WORSE	PROCESS
---	-------	-----------	----	-------	---------

PRESCRIPTION	Nauk	θ	PRESCRIPTION			θ		
				DIS NC	DIS CC	DY	JET	ТОР
3-рт	6	52 ⁰	3-pt	54^{O}	36 ⁰	39 ⁰	24 ⁰	12 ⁰
5-рт	8	33 ⁰	5-рт	39 ⁰	21 ⁰	25^{O}	17 ⁰	11 ⁰
<u>5</u> -pt	12	31 ⁰	<u>5</u> -pt	38 ⁰	17 ⁰	23 ⁰	22 ⁰	10 ⁰
7-pt	14	29 ⁰	7-pt	35 ⁰	17 ⁰	22 ⁰	16 ⁰	3 ⁰
9-PT	28	26 ⁰	9-pt	32^{O}	16 ⁰	22 ⁰	14 ⁰	3 ⁰

THE THEORY COVARIANCE MATRIX: VISUALIZING PROCESS IMPACT

- PROJECT THE SHIFT VECTOR δ on each eigenvector
- LOOK AT THE INDIVIDUAL $\sim 3000 \text{ components}$
- GROUP POINTS BY PROCESS
- RELATION BETWEEN SCALE VARIATION EIGENVECTORS & PROCESSES

projection of the shift vector along the four dominant eigenvectors

EQUALLY PRECISE BUT MORE ACCURATE RESULT!

CENTRAL VALUE MOVES TOWARDS KNOWN NNLO

- EXTRAPOLATION REGION: PDF UNCERTAINTY SIGNIFICANTLY INCREASES
- DATA REGION: PDF UNCERTAINTY ALMOST UNCHANGED
- RELATIVE ERROR ϕ ON PREDICTION DOES NOT CHANGE
- FIT QUALITY χ^2 IMPROVES

	С	$C + S^{(3\mathrm{pt})}$	$C + S^{(9\mathrm{pt})}$
χ^2	1.139	1.139	1.109
ϕ	0.314	0.310	0.315

EQUALLY PRECISE BUT MORE ACCURATE RESULT!

CENTRAL VALUE MOVES TOWARDS KNOWN NNLO

- EXTRAPOLATION REGION: PDF UNCERTAINTY SIGNIFICANTLY INCREASES
- DATA REGION: PDF UNCERTAINTY ALMOST UNCHANGED
- RELATIVE ERROR ϕ ON PREDICTION DOES NOT CHANGE
- FIT QUALITY χ^2 IMPROVES

	C	$C + S^{(3\mathrm{pt})}$	$C + S^{(9\mathrm{pt})}$
χ^2	1.139	1.139	1.109
ϕ	0.314	0.310	0.315

PDFS WITH THEORY UNCERTAINTIES

- Results mildly dep. On prescription \Rightarrow 3pt closer to result w/o theory uncertainty
- "UNSTABLE" SCALE VARIATIONS \Rightarrow NO IMPACT ON FIT
- 7PT ENVELOPE RATHER MORE CONSERVATIVE ENVELOPE DOES NOT INCLUDE EXP. UNCERTAINTY

STATISTICAL INDICATORS

Process		n_{dat}		$\chi^2/n_{ m dat}$ in the NNPDF3.1 global fits NLO					
		uat		$C + S^{(9pt)}$	$C + S^{(7\text{pt})}$	$C + S^{(3pt)}$	$C + S_{\text{fit}}^{(9\text{pt})}$) $C + S_{\text{sampl}}^{(9\text{pt})}$	C
DIS DIS	5 NC 5 CC	1593 552	1.088 1.012	1.079 0.928	1.086 0.933	1.095 0.960	1.081 0.929	1.227 1.036	1.084 1.079
DY JE TO	rs P	484 164 26	1.486 0.907 1.260	1.447 0.839 1.012	1.485 0.858 1.016	1.483 0.901 1.077	1.461 0.848 1.001	1.434 0.911 1.264	1.231 0.950 1.068
Tot	TAL	2819	1.139	1.109	1.129	1.139	1.113	1.217	1.105
	Proci				ϕ in the N	INPDF3.1 GLOBAL F	TTS		
		288	$C \mid c$	$C + S^{(9\mathrm{pt})}$	$C + S^{(7\text{pt})} \qquad C$	$(Y + S^{(3pt)}) = C$	$C + S_{\mathrm{fit}}^{(9\mathrm{pt})}$	$C + S_{\text{sampl}}^{(9\text{pt})}$ N	NLO C
	DIS N DIS C	IC 0. IC 0.	C C 266 .389	$C + S^{(9pt)}$ 0.268 0.376	$ \begin{array}{c} \text{NI}\\ C + S^{(7\text{pt})} & C\\ 0.262\\ 0.367 \end{array} $	$\begin{array}{c c} LO \\ \hline & + S^{(3\text{pt})} \\ \hline & 0.261 \\ 0.391 \\ \end{array} \right C$	$S + S_{fit}^{(9pt)}$ 0.261 0.369	$ \begin{array}{c c} C + S_{\text{sampl}}^{(9\text{pt})} & N \\ \hline 1.137 & 0 \\ 0.502 & 0 \end{array} $	NLO C 305 471
	DIS N DIS C DY JETS TOP	IC 0. IC 0. IC 0. IC 0. IC 0.	C C 266 389 361 295 375	$ \begin{array}{c} C + S^{(9pt)} \\ 0.268 \\ 0.376 \\ \hline 0.343 \\ 0.312 \\ 0.352 \\ \end{array} $	$ \begin{array}{c} \text{NI}\\ C + S^{(7\text{pt})} & C\\ 0.262\\ 0.367\\ \end{array} $ $ \begin{array}{c} \text{0.340}\\ 0.279\\ 0.318\\ \end{array} $	$\begin{array}{c c c} LO \\ \hline & + S^{(3pt)} & C \\ \hline & 0.261 \\ \hline & 0.391 & \\ \hline & 0.358 \\ \hline & 0.291 \\ \hline & 0.331 & \\ \end{array}$	$ \begin{array}{c} C + S_{\rm fit}^{(9{\rm pt})} \\ 0.261 \\ 0.369 \\ 0.349 \\ 0.298 \\ 0.319 \\ \end{array} $	$\begin{array}{c c} C + S_{\text{sampl}}^{(9\text{pt})} & \\ \hline \\ 1.137 & 0 \\ 0.502 & 0 \\ \hline \\ 0.603 & 0 \\ 0.461 & 0 \\ 0.612 & 0 \\ \end{array}$	NLO C 305 471 380 392 363

- MILD PRESCRIPTION DEPENDENCE
- COVMAT ONLY IN FITTING \Rightarrow SAME CENTRAL VALUE, REDUCED UNCERTAINTY TH COVMAT RESOLVES TENSION

- MODERATE EFFECT ON UNCERTAINTIES
- VISIBLE SHIFT OF CENTRAL VALUES

OUTLOOK

- INCLUSION OF MHOU THROUGH COVARIANCE MATRIX REASONABLY STABLE
- MORE DETAILED SCALE VARIATION PATTERNS TO BE EXPLORED
- NEXT STEP: APPLICATION TO NNLO GLOBAL FITS

CORRELATIONS

- Harland-Lang, Thorne 2018: FACTORIZATION SCALE VARIATION "DOUBLE COUNTED" BETWEEN PDF AND HARD PROCESS
- RECALL FACTORIZATION SCALE \Rightarrow SCALE OF EVOLUTION
- INITIAL PDF SCALE AT SAME SCALE AS PROCESS \Rightarrow NO EVOLUTION UNCERTAINTY
- WOULD NEED A PDF SET FOR EACH SCALE \Rightarrow UNIVERSALITY BROKEN