

PARTON DISTRIBUTIONS FOR PRECISION PHYSICS

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

LHCP19

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

PUEBLA, MAY 21, 2019

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

SUMMARY THE CHALLENGES OF PRECISION PHYSICS

- W mass determination and PDFs
- "TENSION" VS. UNCERTAINTIES: TOP PRODUCTION
- DATA VS. METHODOLOGY

 α_s : THE PITFALLS OF USING PDFs IN PRECISION ANALYSIS

- PARAMETER SPACE AND PDF SPACE
- CORRELATED REPLICAS

TOLERANCE: HOW ARE PDF UNCERTAINTIES DEFINED?

- $\Delta \chi^2$ and finite-size effects
- GAN REPLICA GENERATION

BETTER PDFs FOR PRECISION PHYSICS

(Bozzi, Citelli, Vicini, 2015)

- TEMPLATE METHOD: W MASS EXTRACTED BY COMPARING OBSERVED SPECTRA TO THEORY: LEPTON PAIR TRANSVERSE MASS, LEPTON p_T^l
- SHAPE DEPENDS ON p_T^l : LARGER M_W , FASTER DROP AT HIGH p_T^l , LARGER XSECT AT SMALL p_T^l
- STRONG CORRELATION TO LEADING PARTON LUMIS ($u\bar{d} \& c\bar{s}$ for W^+) BUT ALSO TO NL LUMI (GLUON-INDUCED: ug)

(Bozzi, Citelli, Vicini, 2015), for CT confirmed by (Hussein, Isaacson, Huston, 2019)

- STRONG DEPENDENCE ON PDF SET OF BOTH CENTRAL VALUE & UNCERTAINTY
- PECULIAR ASYMMETRY BETWEEN W^+ & W^-
- DIFFERENCE LARGE IN COMPARISON TO PDF UNCERTAINTY

WHAT'S GOING ON?

- For the $W p_T$ distribution the hard scale is $M_X = \left(\sqrt{p_T^{W^2} + m_W^2 + p_T}\right)$
- DIFFERENT SETS HAVE SIGNIFICANTLY DIFFERENT M_X SLOPES \Rightarrow DIFFERENT M_W
- UNCERTAINTIES IN $c\bar{s}$ LUMI SIGNIFICANTLY DIFFERENT

SMALL DIFFERENCES IN PDF AMPLIFIED TO LARGER DIFFERENCES IN SLOPE

- FLAVOR SEPARATION AFFECTED BY METHODOLOGY \Rightarrow see plenary talk
- LHC DATA HELP \Rightarrow see plenary talk

NEED BETTER PDFs!

THE IMPACT OF LHC DATA BEFORE LHC: PDFs mostly determined by DIS NNPDF2.1 vs NNPDF2.1 DIS ONLY

DISTANCES (difference in units of st. dev.)

 $d = 10 \Leftrightarrow$ one sigma difference

PDF COMPARISON DOWN

- ALL DIFFERENCES BELOW ONE SIGMA
- ONLY UP-DOWN SEPARATION SIGNIFICANTLY AFFECTED

THE IMPACT OF LHC DATA NOW: PDFS LARGELY DETERMINED BY LHC DATA NNPDF3.1 VS NNPDF3.1 NO LHC DISTANCES (difference in units of st. dev.)

- MANY PDFs CHANGE BY MORE THAN ONE SIGMA
- BOTH FLAVOR SEPARATION & GLUON SIGNIFICANTLY AFFECTED

THE IMPACT OF LHC DATA CONSISTENCY OF DIFFERENT OBSERVABLES THE GLUON

- BEFORE LHC \Rightarrow DIS SCALING VIOLATIONS, TEV JETS AT LARGE X
- AFTER LHC \Rightarrow Jets; $Z \ p_t$, top

- TOP HAS LARGEST IMPACT, FOLLOWED BY JETS
- ALL LHC DATA PULL CENTRAL VALUE IN SAME DIRECTION!

- FOR ATLAS m_{tt} & y distributions pull in opposite direction \Rightarrow compatible within uncertainties
- m_{tt} HAS MUCH LESS PULL
- FOR CMS, BOTH m_{tt} & y pull in the same direction

CONSISTENCY!

LESSONS:

- BEWARE OF XFITTER HERA+X FITS
- IN A GLOBAL FIT, DIFFERENT DATA ALWAYS PULL IN DIFFERENT DIRECTIONS!

DATA vs. METHODOLOGY

- EVEN WITH LHC DATA MAJOR METHODOLOGICAL CHOICES \Rightarrow SIGNIFICANT IMPACT
- EXAMPLE: HEAVY QUARKS INDEP. PARAMETRIZED \Rightarrow see plenary talk
- NNPDF3.1 vs NNPDF3.0: DATA AND METHODOLOGY HAVE SIMILAR IMPACT

LHC DATA+ METHODOLOGICAL IMPROVEMENTS \Rightarrow BETTER PDFS

SM PARAMETERS FROM PDF-DEPENDENT OBSERVABLES

• MINIMUM DETERMINED ALONG THE "BEST PDF" LINE $\Rightarrow \sigma_{old}$ FOR HIGHLY CORRELATED VARIABLES & UNEQUAL SEMIAXES, MAY UNDERESTIMATE ONE- σ ERROR $\Rightarrow \sigma_{\alpha}$

NEED SIMULTANEOUS MINIMIZATION IN (PDF, α_s) SPACE!

α_s from a global fit

PULLS FROM DATA SUBSETS

PULLS DON'T ADD TO ZERO?!

- PARTIAL VALUES ARE NOT PARTIAL BEST-FITS
- PDF SPACE HUGE \Rightarrow MINIMUM AT DIFFERENT α_s VALUE WHEN INCLUDING NEW DATA, AGREEMENT WITH OTHER DATA ESSENTIALLY UNAFFECTED
- \Rightarrow Cannot determine α_s without also determining the PDF

THE CORRELATED REPLICA METHOD NNPDF3.1 (2018)

- NNPDF method \Rightarrow each PDF replica fitted by GA to data replica
- IDEALLY PERFORM GENETIC MINIMIZATION IN (PDF, α_s) SPACE
- **PROBLEM** THEORY PREDICTION \Leftrightarrow **PRECOMPUTED** GRIDS DEPEND ON $\alpha_s \Rightarrow$ DIFFICULT TO TREAT AS CONTINUOUS PARAMETER
- SOLUTION DETERMINE BEST-FIT PDF REPLICA TO EACH DATA REPLICA FOR SEVERAL (DISCRETE) α_s VALUES: C-REPLICA
 - − EACH C-REPLICA $\Rightarrow \chi^2$ PROFILE $\Rightarrow \alpha_s$ VALUE

THE CORRELATED REPLICA METHOD NNPDF3.1 (2018)

- NNPDF method \Rightarrow each PDF replica fitted by GA to data replica
- IDEALLY PERFORM GENETIC MINIMIZATION IN (PDF, α_s) SPACE
- **PROBLEM** THEORY PREDICTION \Leftrightarrow PRECOMPUTED GRIDS DEPEND ON $\alpha_s \Rightarrow$ DIFFICULT TO TREAT AS CONTINUOUS PARAMETER
- SOLUTION DETERMINE BEST-FIT PDF REPLICA TO EACH DATA REPLICA FOR SEVERAL (DISCRETE) α_s VALUES:
 - − EACH C-REPLICA $\Rightarrow \chi^2$ PROFILE $\Rightarrow \alpha_s$ VALUE
 - EACH C-REPLICA \Rightarrow BEST-FIT α_s REPLICA

- NNPDF3.1 dataset (only NNLO jet data) \Rightarrow 3979 datapoints
- 400 C-REPLICAS FOR 21 α_s VALUES: $\alpha_s(M_z) = 0.106, 0.108, 0.102, 0.112, 0.113, 0.114, 0.115, 0.116, 0.117, 0.118, 0.119, 0.120, 0.121, 0.122, 0.123, 0.124, 0.125, 0.126, 0.127, 0.128, 0.130$
- **EXPERIMENTAL UNCERTAINTY** ⇔ STANDARD DEVIATION OVER REPLICA SAMPLE

THE RESULT $\alpha_s^{\text{NNLO}}(M_Z) = 0.11845 \pm 0.00052^{\text{exp}} \ (0.4\%)$ THE MEANING OF PDF UNCERTAINTIES

GLOBAL MSTW TOLERANCE

- (MSTW/MMHT) FOR EACH EIGENVECTOR IN PARAMETER SPACE DETERMINE CONFIDENCE LIMIT FOR THE DISTRIBUTION OF BEST-FITS OF EACH EXPERIMENT
- Rescale $\Delta\chi^2 = T$ interval such that correct confidence intervals are reproduced
- SIMILAR PROCEDURE ADOPTED BY CTEQ

WHAT ABOUT NNPDF?

$\frac{MC}{} \Leftrightarrow \frac{HESSIAN}{PDF}$ two different representations of PDF uncertainties

- TO CONVERT HESSIAN INTO MONTECARLO GENERATE MULTIGAUSSIAN REPLICAS IN PARAMETER SPACE
- ACCURATE WHEN NUMBER OF REPLICAS SIMILAR TO THAT WHICH REPRODUCES DATA

(Carrazza, SF, Kassabov, Rojo, 2015)

- TO CONVERT MONTE CARLO INTO HESSIAN, SAMPLE THE REPLICAS $f_i(x)$ AT A DISCRETE SET OF POINTS & CONSTRUCT THE ENSUING COVARIANCE MATRIX
- EIGENVECTORS OF THE COVARIANCE MATRIX AS A BASIS IN THE VECTOR SPACE SPANNED BY THE REPLI-CAS BY SINGULAR-VALUE DECOMPOSITION
- NUMBER OF DOMINANT EIGENVECTORS SIMILAR TO NUMBER OF REPLICAS \Rightarrow ACCURATE REPRESENTATION

WHAT IS THE NNPDF "TOLERANCE"?

FINITE-SIZE EFFECTS

- PERFORM HESSIAN CONVERSION OF NNLO NNPDF3.1 PDFs 50 or 100 eigenvectors
- DETERMINE χ^2 ALONG EACH EIGENVECTOR DIRECTION
- FIT A QUARTIC POLYNOMIAL
- STUDY DEPENDENCE ON NONGAUSSIANITY, NUMBER OF REPLICAS, NUMBER OF EIGENVECTORS,...

⁽Talon, MS thesis, 2019)

- NO SIGNIFICANT NONGAUSSIANITIY, DEVIATION FROM PARABOLIC, ...
- SIGNIFICANT DEPENDENCE ON NUMBER OF REPLICAS
- Asymptotic tolerance $T = 1.3 \pm 0.3$; $\Delta \chi^2 = 1.7 \pm 0.7$
- For $N_{\rm rep} = 100$, T = 2.3, even for $N_{\rm rep} = 1000$, T = 1.6

DO WE HAVE TO FIT 10000 REPLICAS? DO WE HAVE TO USE 10000 REPLICAS?

(Carrazza, Latorre, Kassabov, Rojo, 2015)

- START WITH LARGE REPLICA SAMPLE
- SELECT (BY GENETIC ALGORITHM) SUBSET OF REPLICAS \Rightarrow STATISTICAL FEATURES OPTIMIZED TO PRIOR
- FOR ALL PDFS ON A GRID OF POINTS MINIMIZE DIFFERENCE OF FIRST FOUR MOMENTS, CORRELATIONS; OUTPUT OF KOLMOGOROV-SMIRNOV TEST (NUMBER OF REPLICAS BETWEEN MEAN AND σ , 2σ , INFINITY)
- 50 COMPRESSED REPLICA REPRODUCE 1000 REPLICA SET TO PRECENT ACCURACY

SOLVING THE PROBLEM.... GAN REPLICA GENERATION

- CAN WE REDUCE THE NUMBER OF COMPRESSED REPLICAS WITHOUT LOSS OF INFORMATION? SOLUTION FOR USER
- CAN WE INCREASE THE NUMBER OF REPLICAS WITHOUT REFITTING? SOLUTION FOR PDF FITTER

GENERATIVE ADVERSARIAL NETWORKS

- TRAIN A NETWORK TO SIMULATE THE TRUE DISTRIBUTION (GENERATOR)
- TRAIN A NETWORK TO **DISCRIMINATE** TRUTH FROM SIMULATION (**DISCRIMINATOR**)
- TRAIN THE GENERATOR TO TRICK THE DISCRIMINATOR

IIP VALENCE AT FIXED x

(Carrazza, Rabemananjara, preliminary)

 ID GAN: REPRODUCE THE INFORMATION IN THE UNDERLYING REPLICA SET, BUT NO GAIN (WIGGLY REPLICAS)
⇒ REDUCE THE NUMBER OF COMPRESSED REPLICA WITH FIXED NUMBER OF FITTED REPLICAS W/O INFORMATION LOSS

 2D GAN: COMBINE CORRELATED INFORMATION FROM UNDERLYING REPLICA SET INFERRING THE TRUE UNDERLYING DISTTRIBUTION
⇒ REDUCE THE NUMBER OF INPUT REPLICAS W/O INFORMATION LOSS

OUTLOOK

SUMMARY

USE OF PDFs for precision physics

DOES NOT ALLOW SHORTCUTS

- CANNOT PICK THE DATASET
- MUST OPTIMIZE STATISTICS
- REMEMBER PDFS LIVE IN A SPACE OF FUNCTIONS

THE IMPACT OF LHC DATA FLAVOR SEPARATION

- BEFORE LHC \Rightarrow CC DIS, TeV FIXED-TARGET DY, W ASYM.
- AFTER LHC \Rightarrow wide range of W, Z production data

- SIZABLE SHIFT OF CENTRAL VALUE BY ALMOST ONE SIGMA
- LARGE x UNCERTAINTY DOWN BY LARGE FACTOR!

α_s FINAL RESULT & COMPARISON

 $\alpha_s^{\text{NNLO}}(M_Z) = 0.1185 \pm 0.0005^{\text{exp}} \pm 0.0001^{\text{meth}} \pm 0.0011^{\text{th}} = 0.1185 \pm 0.0012 (1\%)$

- SIGNIFICANTLY SMALLER EXP. UNCERTAINTY IN COMPARISON TO PREVIOUS NNPDF2.1 DETERMINATION (DESPITE MORE CONSERVATIVE ESTIMATE)
- SOMEWHAT LARGER CENTRAL VALUE THAN MMHT

CONSISTENCY VS INFORMATION LOSS

- PDF SETS MUST BE BACKWARD CONSISTENT (THEY ARE)
- PDF UNCERTAINTY MIGHT IMPROVE EVEN WITH UNCHANGED DATASET (THEY DO)

CONSISTENCY VS INFORMATION LOSS

- PDF SETS MUST BE BACKWARD CONSISTENT (THEY ARE)
- PDF UNCERTAINTY MIGHT IMPROVE EVEN WITH UNCHANGED DATASET (THEY DO)

- LONG-STANDING DISCREPANCY IN THE d/u ratio between $\ensuremath{\mathsf{MSTW}}$ and other global fits
- **Resolved** by W asymmetry data
- EXPLAINED BY INSUFFICIENTLY FLEXIBLE PDF PARAMETRIZATION \Rightarrow FIXED IN MSTW08Deut/MMHT

CORRELATING PDFS CORRELATION BETWEEN HIGGS SIGNAL AND BACKGROUND (HXSWG, YR2)

- CORRELATION BETWEEN PROCESSES AND PDFS, PROCESSES AND PROCESSES, PDF AND PDFS TRIVIAL TO COMPUTE \Rightarrow NO NEED TO RUN DEDICATED FITS
- PREVIOUS EXERCISES SUGGEST VERY LARGE CORRELATION (SHOULD BE 100% FOR SAME DATA)
- IN PDF4LHC15 CORRELATION ASSUMED TO BE 100%: SIMPLE AVERAGE WEIGHTED AVERAGE DUBIOUS AND DANGEROUS
 - PDFs w/ smaller uncertanity get larger weight uncertainty dominated by methodology \Rightarrow smaller uncertainty could just be bias!
 - UNCERTAINTY REDUCED IF CORRELATION LESS THAN 100% CAN WE BELIEVE IT IN THE ABSENCE OF NEW INFORMATION?

WHAT ABOUT XFITTER?

• OFTEN USED TO ASSESS IMPACT OF X IN "HERA+X" FITS

IMPACT OF THE TEVATRON W ASYMMETRY

- IMPACT EXAGGERATED BY
 - COMPARISON TO SMALL DATASET
 - SOMEWHAT RESTRICTIVE PARAMETRIZATION