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A common trend in presentations

“The LHC has found no New Physics. Therefore further progress relies on
precision studies.”
Consequently we have to

• Improve experimental data.
• Improve theory.

• Any low hanging fruits?
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Precision studies

Precision studies typically answer two kinds of question:

Parameter estimation What are the values and errors of the best fitting
parameters given a model and a dataset?

Hypothesis testing Does a given dataset allow to reject a given model?

• Note that these two do not commute.

• Significative improvements can be made in the process of comparing data
and theory, namely in the statistical treatment.

• Crucially related to PDF determinations.
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Improvements in statistical treatment

• Maximize the sensitivity w.r.t. the things we want to understand.
• Minimize it w.r.t. the things we don’t understand (robustness).
• Consider all relevant degrees of freedom.
• Understand the underlying optimization problem.
• Perform the optimization effectively.
• Consider all relevant sources of uncertainty.

This talk:

• Examples of how improvements in each of these can result in better precision
studies.

• Related progress in PDF determination.

Overall effect is to improve consistency of parameter estimations and decrease
sensitivity to new models. But can inform on the best way forward.
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Unstable covariance matrices: Introduction

Can compare data and theory by
looking at plots
But:

• Need a quantitative measure.
• Insensitive to correlations.
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The 𝜒2 statistic is typically used

𝜒2 =
𝑁

∑
𝑖

𝑁
∑

𝑗
(data𝑖 − prediction𝑖)Σ−1

𝑖𝑗 (data𝑗 − prediction𝑗) = 𝛿𝑇 Σ−1𝛿

• Predictions supplied by the theoretical model.
• Central measurement of data and covariance matrix Σ supplied by
experiments.

• Expected value (under suitable assumptions): ⟨𝜒2⟩ = 𝑁 . Larger values
indicate disagreement between data and theory.
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Problems with covariance matrices

• Datasets with problematic correlation models have become common recently
• ATLAS Jets at 7 TeV (arxiv: 1410.8857): Enormous sensitivity to correlations studied

in detail in [Harland-Lang, Martin, Thorne arxiv:1711.05757].

• CMS 8 TeV double-differential Drell-Yan data at 8 TeV (arXiv:1412.1115) had to be
discarded from NNPDF 3.1 (arxiv:1706.00428).

• Similar issues found in “several” newer datasets.

• We now study the issue within a toy model. Will showcase a request to
experimentalists and a warning to theorists.
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Systematics dominated covariance matrices

• Experiments have reached an impressive level of statistical precision.
• Statistical component of the uncertainty (typically uncorrelated across bins) less
important.

• Systematic uncertainties (correlated across bins) tend to dominate.

• A somewhat realistic toy model for a covariance matrix from HepData:

Σ ∝
⎡
⎢⎢⎢
⎣

𝜖2 + 1 1 1 1
1 𝜖2 + 1 1 1
1 1 𝜖2 + 1 1
1 1 1 𝜖2 + 1

⎤
⎥⎥⎥
⎦

with 𝜖2 ≪ 1.
• Assumes 4 data points, and uncorrelated error of size 𝜖 and one completely
correlated systematic of size 1.

7



Allowed fluctuations

Σ ∝
⎡
⎢⎢⎢
⎣

𝜖2 + 1 1 1 1
1 𝜖2 + 1 1 1
1 1 𝜖2 + 1 1
1 1 1 𝜖2 + 1

⎤
⎥⎥⎥
⎦

The eigenvector decomposition is:

⎛⎜⎜⎜⎜⎜
⎝

𝜆1,2,3 = 𝜖2, 𝑒1,2,3 =
⎡
⎢⎢⎢
⎣

−1
1
0
0

⎤
⎥⎥⎥
⎦

,
⎡
⎢⎢⎢
⎣

0
0
1

−1

⎤
⎥⎥⎥
⎦

,
⎡
⎢⎢⎢
⎣

−1
−1
1
1

⎤
⎥⎥⎥
⎦

⎞⎟⎟⎟⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

𝜆4 = 𝜖2 + 4, 𝑒4 =
⎡
⎢⎢⎢
⎣

1
1
1
1

⎤
⎥⎥⎥
⎦

⎞⎟⎟⎟⎟⎟
⎠

𝜒2 = ∑
ℓ

⟨𝛿|𝑒ℓ⟩
𝜆−1

ℓ
‖𝑒ℓ‖

2 ⟨𝑒ℓ|𝛿⟩

Fluctuations in 𝛿 = (data − theory) larger than 𝜖 in the subspace spanned by
𝑒1,2,3 lead to 𝜒2 ≫ 𝑁 .
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Problem: Uncertainties in the correlations

• Well known that exact experimental correlations are hard to determine
precisely.

• Model the uncertainty in correlations with unknown parameter 𝑥 ∈ [0, 2]
controlling the correlations of the last bin.

⎡
⎢⎢⎢
⎣

𝜖2 + 1 1 1 1 − 𝑥
1 𝜖2 + 1 1 1 − 𝑥
1 1 𝜖2 + 1 1 − 𝑥

1 − 𝑥 1 − 𝑥 1 − 𝑥 𝜖2 + 1

⎤
⎥⎥⎥
⎦

• We are keeping the total variance fixed. It is realistic to think that 𝑥 could be
anywhere in the range.

• Experimental results often presented by default with the highest correlation
(i.e. 𝑥 = 0).
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Modified eigenvalue

• Now one eigenvalue depends critically on 𝑥.

• The problematic situation is where:

• Experimental analysis claims high correlations (𝑥 = 0).
• Actual correlations are lower (e.g. 𝑥 = 0.3).

• Instability translates directly to the 𝜒2.
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𝜒2 with incorrectly predicted correlations

Note: this is all assuming that there are no free parameters to fit.
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Choices of correlation models

• A plethora of correlations models (up to 18) was proposed to address issues
with ATLAS Jets at 7 TeV, (B. Malescu QCD@LHC’18).

• Also done in other datasets (e.g. ATLAS dijets offer three correlation models)
• This is a positive development but:

• Pushes the work to test each correlation model downstream.
• Causes fragmentation among different analyses.
• Data should inform PDF (and other theory) models; not the other way around.
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Other solutions and take away

• Experimental uncertainties should be robust w.r.t. unknown parameters,
particularly correlations.

• Possible improvements:

Decorrelation Assume lower correlations unless proven otherwise. Note
that even a small decorrelation (e.g. make 𝑥 = 0.3) makes a
big difference.

Regularization Add a term to Σ that makes Σ−1 more stable. E.g. Tikhonov
regularization: Add a diagonal term making Σ → Σ + 𝜌𝐼

• Advatage: Best fit theory could be the same.

• Both experimentalist and theorists should be aware of these issues when
comparing results.

• Improvements here crucial. Can’t do precision physics with unstable precision
tests.
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On partial fits to partial data

From SHERPA, arxiv:0811.4622

If a given parameter is to be fitted from hadronic data, its best fit value
depends on its effect on the full picture.

Example: Interaction of 𝛼𝑠 and PDF fits.
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𝛼𝑆 from PDFs

• 𝛼𝑆 Can be determined from global PDF fits. Most recently [NNPDF,
arxiv:1802.03398].

• Methodology: Determine simultaneously (𝛼𝑠, PDF), by minimizing the global
𝜒2 of the full (NN)PDF dataset (see Z.K., QCD@LHC’18).
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• Best attainable total 𝜒2 changes strongly with 𝛼𝑠 (leading to a very precise
prediction, if theory uncertainties are ignored).
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𝛼𝑆 from hadronic data

• Many determinations of 𝛼𝑆 based on hadronic data exist. For example CMS 𝑡 ̄𝑡
determination at 7 TeV (arXiv:1307.1907), included as “independent” category in
the PDF average.

• Methodology:
• Compute the 𝜒2 of the particular dataset in a range of 𝛼𝑆 and determine the
minimum.

• Use external PDFs scanned fitted at each scanned value of 𝛼𝑆 . Value of PDF 𝜒2

ignored.

• Some also provide simultaneous PDF determinations although with
limitations in dataset and parametrization (e.g. H1 jets, arXiv:1709.07251; see
talk by K. Rabbertz).
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Interplay between partial and global 𝜒2

(See Z.K., arxiv:1802.05236)

• Hadronic predictions (and thus the partial 𝜒2) depend on PDFs.
• The PDFs are themselves the result of a global 𝜒2 optimization.
• Suddenly there are two 𝜒2s in the problem as well as two datasets: Partial
and global.

• Certainly PDF and hadronic based determinations cannot be considered
independent.

• The methodology, i.e.
1. Restricting to the best fit PDF and
2. then minimizing the partial 𝜒2 along 𝛼𝑆

minimizes neither the partial or the total 𝜒2 nor a combination of them.
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Erroneous minimization in a real example

• Can perform an “hadronic” determination with any subset of data used in the
global NNPDF 𝛼𝑠 fit.

• Choose Z 𝑝𝑇 data and find that “best fit” is 𝛼𝑆 = 0.124.

• Could find a “better best fit” at 𝛼𝑆 = 0.120. Both Z 𝑝𝑇 and the rest of the
data agree better.

𝜒2/d.o.f.. 𝛼𝑆 = 0.120 weighted 𝑍𝑝𝑇 𝛼𝑆 = 0.124 default

Total 1.226 1.281
𝑍𝑝𝑇 0.94 1.11

• Found it by minimizing (global 𝜒2) + 31(𝑍𝑝𝑇 𝜒2), but that’s a detail.
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Erroneous minimization in a toy model

• Imagine PDF characterized by a single parameter 𝑏. (𝛼, PDF) parameter space
simply a plane.

• Assume both partial and total 𝜒2 are paraboloids

𝜒2
total(𝛼, 𝑏) = 𝑡1 (𝛼 cos 𝜃 + 𝑏 sin 𝜃)2 + 𝑡2 (−𝛼 sin 𝜃 + 𝑏 cos 𝜃)2

𝜒2
partial(𝛼, 𝑏) = 𝑝1 ((𝛼 − 𝛿𝛼) cos 𝜙 + (𝑏 − 𝛿𝑏) sin 𝜙)2

+𝑝2 (−(𝛼 − 𝛿𝛼) sin 𝜙 + (𝑏 − 𝛿𝑏) cos 𝜙)2

The best PDF for a given 𝛼 is

𝑏best(𝛼) = arg min
𝑏

𝜒2
total(𝛼, 𝑏)
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Better fit regions

• The procedure using best fit PDFs would yield the minimum of the partial 𝜒2

along the best fit PDF (red square)
• In fact the overlapping region describes better both datasets.
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Making it worse

• Parameters can be tweaked so that the restricted minimum is far away from a
desirable value.
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A slightly more realistic model

• A more realistic situation is where the partial set doesn’t determine both 𝛼𝑠
and the PDF on its own, but only a combination of them.

𝜒2
partial(𝛼, 𝑏) = 𝑝1 ((𝛼 − 𝛿𝛼) cos 𝜙 + (𝑏 − 𝛿𝑏) sin 𝜙)2

• Similar situation: Now there is a better fit segment.
• Datasets with little handle on 𝛼 can look artificially inconsistent.
• Can consider the lim𝑤→∞ 𝜒2

total + 𝑤𝜒2
partial 22



Dangers of partial fits

• Inconsistent minimization puts into question several determinations of 𝛼𝑆 ,
as well as the QCD average.

• PDFs generally cannot be considered external to fitting problems.
• Problems not limited to 𝛼𝑆 , but affect any parameter that changes PDFs.
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Fits of EFT coefficients

(See talk by Emma Slade and Hartland et al, arxiv:1901.05965)

• Used fitting methodology and validation inspired by NNPDF to constrain EFT
coefficients in the top sector.

• Some results:
• Bounds derived from fitting only one operator at a time (and fixing the rest to
zero) much tighter than in a full fit.

• Including more operators results in looser bounds.
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Residuals on a closure test

• Methodology tested on simulated data assuming SM only.

(a) Individual fit. Note: Marker shapes not meaningful
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(b) Simultaneos fit

• Suggests EFT bounds only reliable when constrained globally.
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EFT effects inside the PDF

(See Carrazza et al, arxiv:1905.05215)

• PDF fits sensible to inclusion of EFT effects in the determination itself.
• Added EFT corrections to DIS structure functions and used the result to
determine PDFs .

• Results might vary more with an increased dataset.
• Putting it all together should be interesting: Global dataset + “complete” set
of operators + PDFs + other parameters. 26



Visualization and analysis tools

(See talks by Carl Schmidt and Timothy Hobbs)

• Existing ways to understand how PDFs change upon inclusion of new data and
which datasets cause discrepancies are ad hoc and manual.

• It would be good to be able to visualize data dependency.
• Lots of work on open source tools done by CTEQ lately.
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Examples of tools

PDFSense (Wang et al, arxiv:1808.07470) code to study various data
dependency, such as cluster data points by their effect on PDFs.

ePump (Willis et al, arxiv:1809.09481) Can estimate the effect of new data
in PDFs.
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Improvements in the NNPDF fitting methodology

(See talk by Juan Cruz, and Carrazza, Cruz-Martinez arxiv:1907.05075)

• Current NNPDF methodology was state of art Machine Leaning some 10 years
ago. But the field has moved:

• Gradient based optimization of large networks and complicated function.
• Quality industry backed library present.

• The NNPDF methodology has been implemented with Keras + Tensorflow
using gradient techniques.

• Performance increased by a factor 20.
• Allows to remove a lot of legacy code.
• Still have to patch Tensorflow a bit to get good memory usage with convolutions.

• Increased speed will open the door to new classes of studies!
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Results (so far)

• Central values and fit quality remarkably stable.
• PDF uncertainties significatively reduced.

• Not so much at the level of predictions: High frequency component removed.
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Theory uncertainties in PDFs

• Most important issue in current PDF sets is that they do not account for any
uncertainty in the underlying theory, and specifically Missing Higher Order
Uncertainties.

• Scale variations typically used as a proxy. Only method known to generalize to
multiscale problems like PDF fits.

• Much work towards improving on it lately. E.g. (Harland-Lang, Thorne,
arxiv:1811.08434)

• A First Determination of Parton Distributions with Theoretical Uncertainties
(NNPDF, arxiv:1905.04311)

• NLO PDFs with a model for MHOUs available for first time.
• General formalism: NNPDF, arxiv:1906.10698.
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Theory covariance fit in NNPDF

• Idea: Include the integrated effect of scale variations in each PDF replica.
• In that case “scale variation systematics” can simply be added in quadrature
to the experimental uncertainties. Define by:

1. Labelling each dataset with a process: DIS CC, DIS NC, DY, Top, Jets
2. Defining a covariance model for points belonging to the same or a different

process.
• Note that both the size of the uncertainties and the correlation model are heuristic.

Choose to generalize envelopes with plausible correlations (“9 point prescription”).
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Effects of the theory covariance matrix

• Data with large scale scale uncertainties weighted down in favour of more
perturbatively stable data.

• Central value shift towards NNLO.
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Concluding remarks

• PDF fits might be obsolete for precision physics. Need global fits including
PDF parameters.

• Frameworks (both the theoretical and software ones) need to become more
open and integrated.

• Independent cross checks very valuable
• E.g. photon PDF in (Harland–Lang, Martin, Nathvani, Thorne, arxiv: 1907.02750,
talk by Thomas Cridge) re-derives a LUXQED-like framework in an elegant way
and finds consistent results.
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Thank you!


