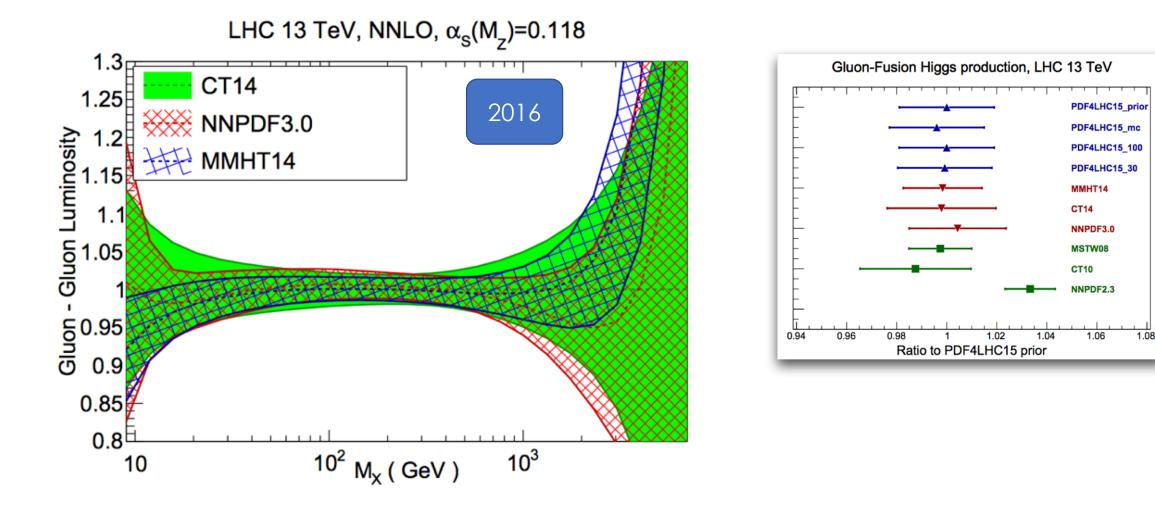
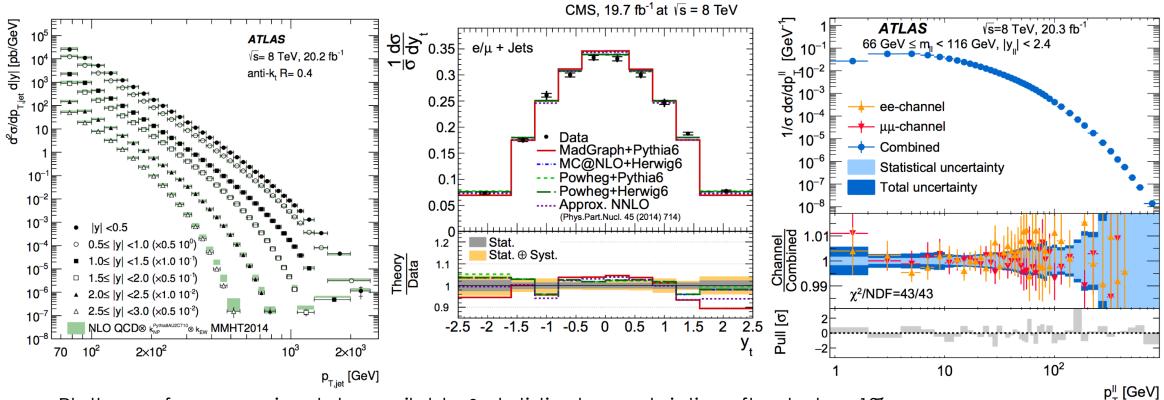
Update on PDFs

WG1 PDF subgroup:

J. Bendavid (CMS), J. Huston (ATLAS) J. Huston, R. Thorne, <u>M. Ubiali (</u>theory)


Workshop of the LHC Higgs Cross Section Working Group – CERN, 12 Dec 2018

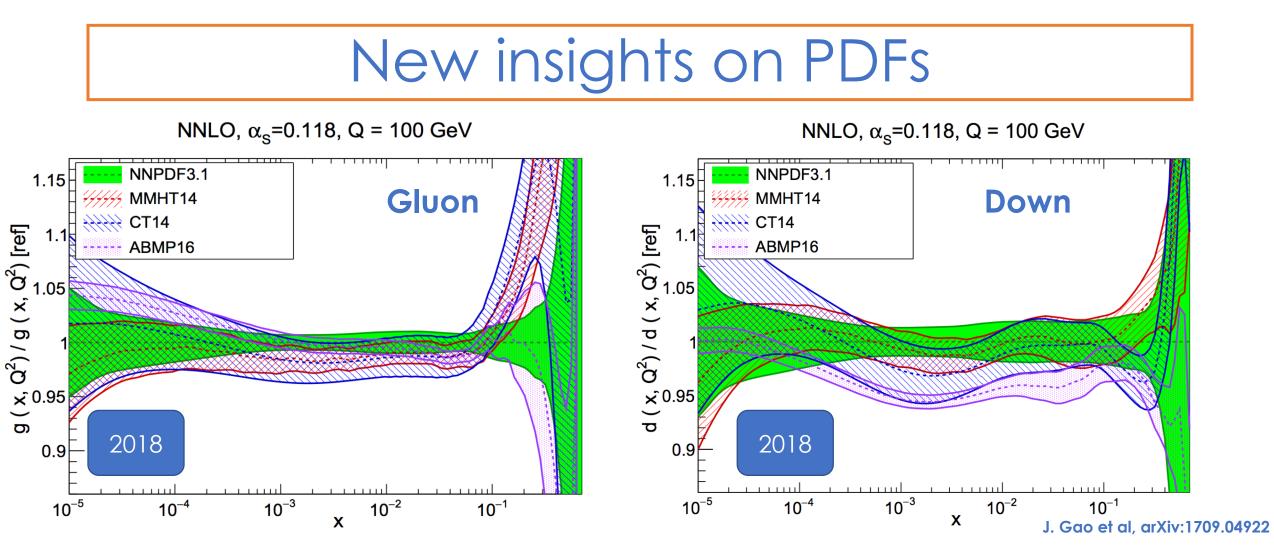
- Introduction
- Updates from PDF fitting collaborations
- Summary and conclusions


Disclaimer: not a comprehensive review, for that see e.g. J. Gao et al, arXiv:1709.04922, here focus on global PDF sets combined in Yellow Report 4

The PDF4LHC15 combination

Yellow report 4, Deciphering the nature of the Higgs sector, arXiv: 1610.07922 PDF4LHC15, J. Butterworth et al, J.Phys. G43 (2016) 023001

A new precision era

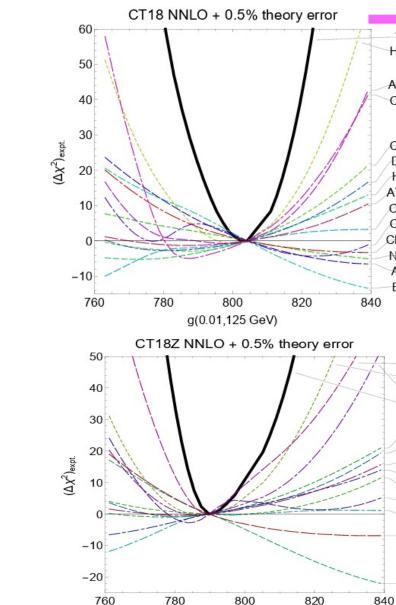


Plethora of very precise data available & statistical uncertainties often below 1%
 E.g. Gluon: top pair, jets and Z transverse momentum distributions all constrain gluon at large x

• NNLO calculations available

Czakon et al [PRL 110(2013)], Czakon et al [JPCP (2014)], Czakon et al [JHEP 1301(2015)] Gehrmann-De Ridder et al [JHEP 07 (2016)], Gehrmann-De Ridder et al [JHEP 11 (2016)], Boughezal et al [PRL 16 (2016)], Boughezal et al [PRD 14 (2016)] Currie et al [PRL 118 (2017)]Currie et al [PRL 119 (2017)]Gehrmann-De Ridder et al [PRL 110 (2016)

Fast interface available now also at NNLO (M. Sutton et al APPLfast-NNLO)


- A number of LHC Run I data included in PDF fits and impact of several data analyzed. Sizeable impact.
- Breakthrough in theory constraints on photon Manohar et al Phys. Rev. Lett. 117 (2016)
- Progress in QCD+EW PDF evolution and corrections in hard processes
- Developments in fitted/intrinsic charm

$CT \ updates \rightarrow CT18 \ \text{and} \ CT18Z$

- CT18 PDFs to be released in near future
 - >10 new LHC data sets at 7 and 8 TeV from ATLAS, CMS and LHCb included
 - ATLAS/CMS inclusive jets are most constraining LHC data sets; include all ATLAS 7 single-inclusive jet data
 using decorrelation models provided by the experiment
 - Drell-Yan (including W,Z, Z p_T)
 - tt double differential distributions from ATLAS and CMS with statistical correlations
 - CT14 data set, including some early LHC data and fixed-target DIS, continues to impose dominant

- PDFsense (arXiv:1803.02777) allows a preliminary determination of the impact (correlation+sensitivity) of each new data set
- ePump (arXiv:1806.07950) allows new data sets to be added into an existing PDF (such as CT14)
- Global PDF fit is carried out at NNLO (using applgrid, fastNNLO) with a faster, parallelized version of the fitting code
 - when justified, a small Monte-Carlo error added for NNLO/NLO K-factors
- Further detailed studies are carried out using Lagrange Multiplier Technique, not dependent on the Hessian approximation (next slide)
- A complementary **CT18Z** fit with alternative choices of data sets, charm mass and factorization scale in DIS

Lagrange Multiplier scan: g(0.01, 125 GeV)

g(0.01,125 GeV)

from

Jpdates

•Upper figure: CT18

Total HERAI+II

ATLAS7 jets

CMS8 jets

CCFR F2

D02 jets

HERA c ATL8 ttb ptMtt

CDF2 jets CMS7 jets

ATL8ZpT

E866pp

CMS8 ttb pTtyt NuTeV nub

> CMS8 jets HERAI+II

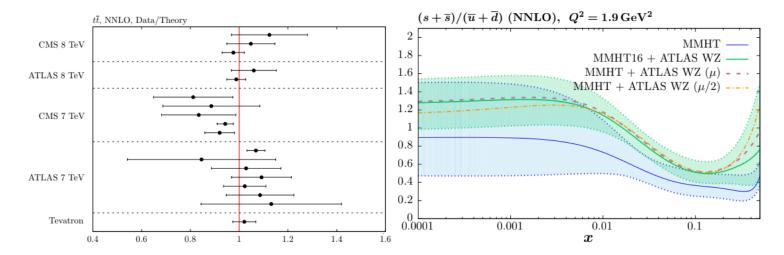
ATLAS7 jets Total

ATL8 ttb ptMtt ATL7ZW

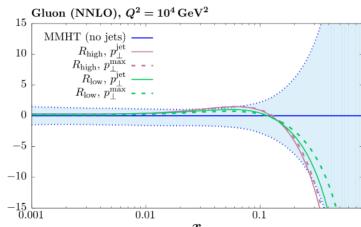
CMS8 ttb pTtyt

HERA c D02 jets

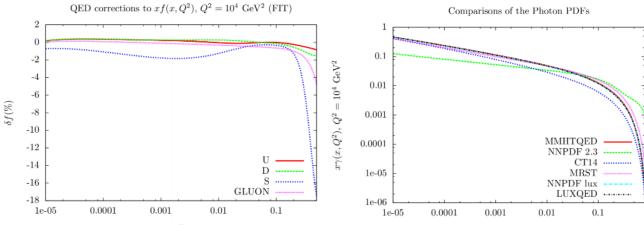
CCFR F2 CMS7 jets CDF2 jets


E866pp

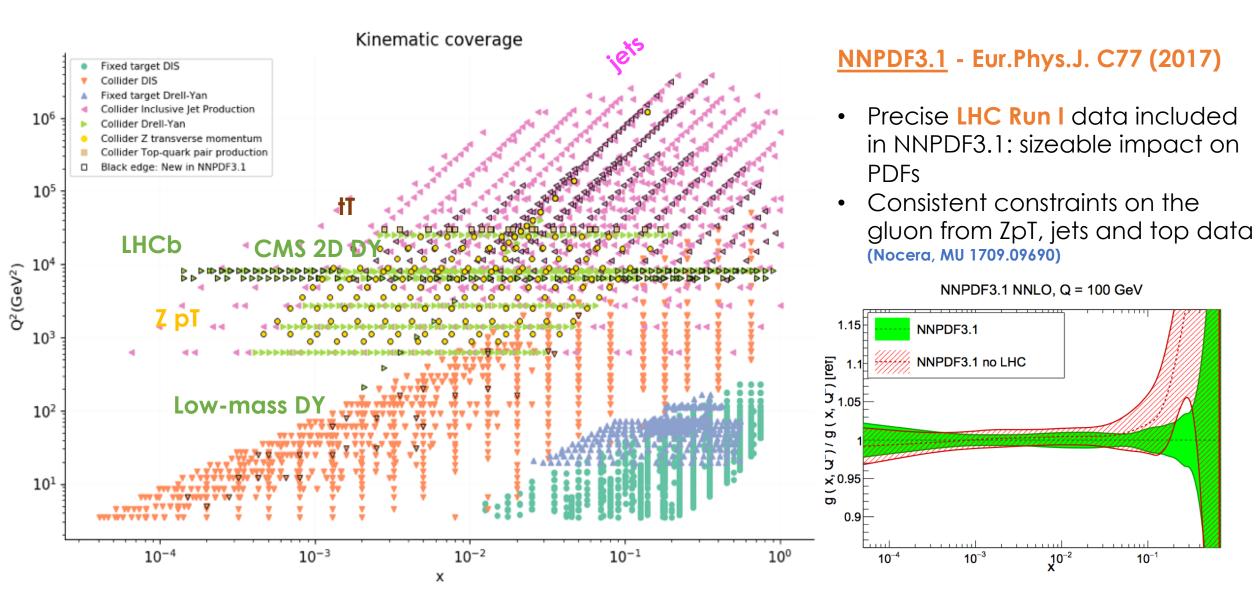
- HERA1+II data set provides the dominant constraint, followed by ATLAS, CDF2, CMS, D02 jet production, HERA c
- tT double differential cross sections provide weaker constraints
- •Lower figure: CT18Z
 - CT18Z: a lower NNLO gluon in the Higgs production region than for CT14/CT18 as a result of
 - higher charm mass, $m_{c^{\text{pole}}}$ =1.4 GeV
 - including ATLAS7 W/Z production
 - a special factorization scale in DIS that mildly improves χ² and approximates effect of small x resummation

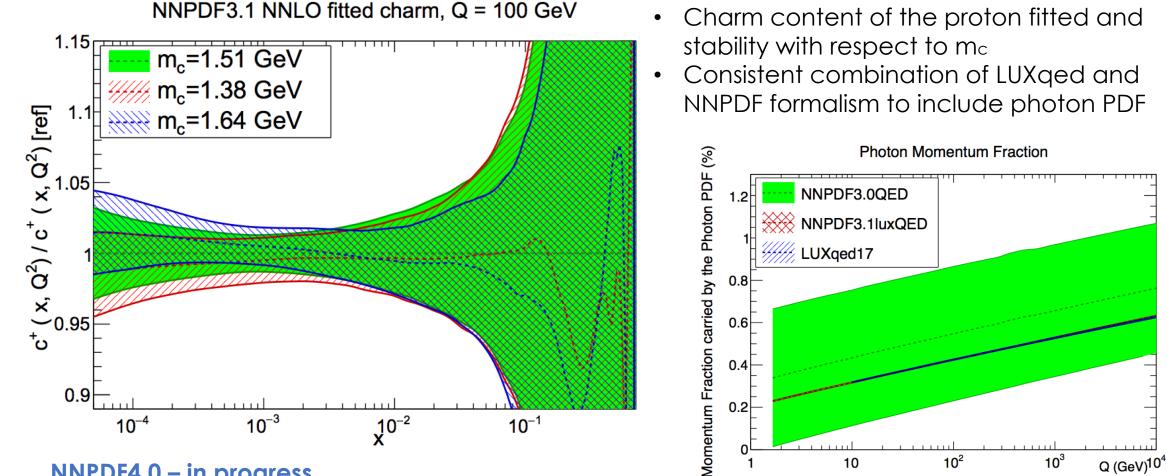

MMHT preliminary set - fit to new hadron collider (mainly LHC) data. Predictions good. Fit gives slight improvement and PDF uncertainty reduction.

	no. points	NLO χ^2_{pred}	NLO χ^2_{new}	NNLO χ^2_{pred}	NNLO χ^2_{new}
$\sigma_{t\bar{t}}$ Tevatron +CMS+ATLAS	18	19.6	20.5	14.7	15.5
LHCb 7 TeV $W + Z$	33	50.1	45.4	46.5	42.9
LHCb 8 TeV $W + Z$	34	77.0	58.9	62.6	59.0
LHCb 8 TeV e	17	37.4	33.4	30.3	28.9
CMS 8 TeV W	22	32.6	18.6	34.9	20.5
CMS 7 TeV $W + c$	10	8.5	10.0	8.7	8.0
D0 e asymmetry	13	22.2	21.5	27.3	25.8
total	3738/3405	4375.9	4336.1	3741.5	3723.7


Included some more up-to-date results on $\sigma_{\bar{t}t}$. Helps drive slight increase in $\alpha_S(M_Z^2)$. Updated fits also with high precision ATLAS W, Z data - increase strange quark.

Fit to high luminosity ATLAS and CMS 7 TeV inclusive jet data – MMHT at NLO and NNLO. For ATLAS improve χ^2 by decorrelating two uncertainty sources. Central values and uncertainties insensitive to decorrelation, and scales and jet radii.

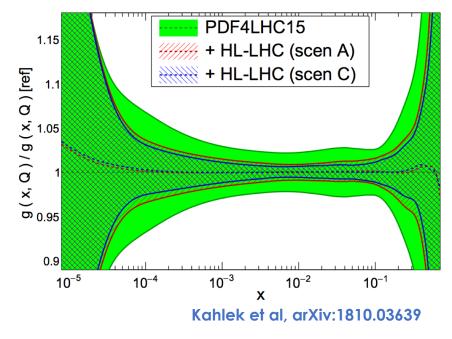

MMHT PDFs with QED corrections - base photon input for PDFs on LUX. Evolution fully incorporated with quarks and gluon.


Continue including types of data shown, when released, including those sensitive to photon (e.g high-mass Drell Yan – already started) along with new types, e.g Z_{p_T} , single top, differential $t\bar{t}$, all up to NNLO where feasible. Also look at theory uncertainties, building on existing study.

Updates from NNPDF

10⁻¹

Updates from NNPDF


<u>NNPDF4.0</u> – in progress

- Inclusion of many Run II data
- New process included: single top, V+j, isolated photon, DIS jets
- Inclusion of missing higher order uncertainties in the fit

Summary and conclusions

- Lots of new data in the pipeline for inclusion in new PDF sets
- **Benchmarking** exercise to assess impact of inclusion of Run I data on different PDF sets
- Assessing implications of **Run I** and **Run II** precision data will prepare us for challenges associated with **HL-LHC**
- Ignoring theory uncertainties (missing higher orders being dominant ones) will no longer be an option
- Inclusion of EW corrections and photon-induced contributions also necessary
- Closure test and statistical estimators for robust
 methodology

Time to work towards a new combination based on Run I data (PDF4LHC19 ?)

PDFs at the HL-LHC (Q = 10 GeV)

PDF4LHC meeting

- Thursday 13 Dec 2018, 09:00 → 19:00 Europe/Zurich
- 40-S2-A01 Salle Anderson (CERN)
- Albert De Roeck (CERN)

https://indico.cern.ch/event/761343/timetable/

stats

data

PROF. JAMES STIRLING

James Stirling's legacy on PDFs (and much more)