

nNNPDF1.0 : Nuclear Parton Distributions from Neural Networks and the Impact of an Electron-Ion Collider

arXiv:1904.00018

Rabah Abdul Khalek (speaker), Jake Ethier, Juan Rojo Departement of Physics and Astronomy, Vrije Universiteit Amsterdam Nikhef Theory Group

> Talk at the University of Münster May 13th 2019

1 Introduction

How it started
Heavy-ion collisions
Flavour separation
Gluon saturation

Nuclear PDFs: How it started

Nuclear-binding effects (~MeV) Momentum transfer (~GeV)

Nuclear PDFs: How it started

Nuclear-binding effects (~MeV) Momentum transfer (~GeV)

Four equally possible scenarios:

- a) the fundamental interactions are the same but PDFs are different.
- b) The fundamental interactions are different in the medium but PDFs are the same.
- c) Both a) and b).
- d) The factorisation picture is no longer valid.

Nuclear PDFs: How it started

Nuclear-binding effects (~MeV) Momentum transfer (~GeV)

The simplest and most popular:

- a) the fundamental interactions are the same but PDFs are different.
- b) The fundamental interactions are different in the medium but PDFs are the same.
- c) Both a) and b).
- d) The factorisation picture is no longer valid.

Heavy-Ion Collisions

W[±] Production prediction with/without nuclear effects

EPPS16, Fig.19, [1612.05741]

Better description of the data

Heavy-Ion Collisions

Heavy-ion collisions themselves cannot teach us much about the initial state, most of the details are wiped out during the evolution of the plasma.

information on the initial state needs to be extracted from experiments on p+A and ultimately e+A with small and well understood final state effects.

Heavy-Ion Collisions

Heavy-ion collisions themselves cannot teach us much about the initial state, most of the details are wiped out during the evolution of the plasma.

information on the initial state needs to be extracted from experiments on p+A and ultimately e+A with small and well understood final state effects.

Proton Flavour Separation

The W[±] mediated DIS access different combinations of quark and anti-quark flavours than photon-mediated DIS.

CC DIS provide access to flavour-dependent PDFs without the uncertainties from fragmentation functions (SIDIS)

Gluon Saturation in Nuclei

Saturation scale for gluon PDF can be estimated by:

saturation can be more easily probed in collisions of protons on heavy nuclei targets

Introduction

- How it started
- Heavy-ion collisions
- Flavour separation
- Gluon saturation

2 nNNPDF1.0

Kinematics

- Parametrisation
- Cost Function
- Minimisation
- Closure Tests
- Data vs. Theory
- NLO fit
- A dependence
- Boundary Condition
- Architecture

	EPS09	DSSZ12	ка15	ncteq15	epps16	nNNPDF1.0
Order in α_s	LO & NLO	NLO	NNLO	NLO	NLO	NNLO
Neutral current DIS $\ell + A/\ell + d$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Drell-Yan dilepton p+A/p+d	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
RHIC pions d+Au/p+p	\checkmark	\checkmark		\checkmark	\checkmark	
Neutrino-nucleus DIS		\checkmark			\checkmark	
Drell-Yan dilepton $\pi + A$					\checkmark	
LHC p+Pb jet data					\checkmark	
LHC p+Pb W, Z data					\checkmark	
Q cut in DIS	1.3 GeV	1 GeV	1 GeV	2 GeV	1.3 GeV	1.87 GeV
datapoints	929	1579	1479	708	1811	451
free parameters	15	25	16	17	20	183*
error analysis	Hessian	Hessian	Hessian	Hessian	Hessian	Monte
error tolerance $\Delta \chi^2$	50	30	not given	35	52	Carlo rep
Free proton baseline PDFs	стер6.1	мятw2008	jr09	стеобм-like	ст14NLO	NNPDF3.1
Heavy-quark effects		\checkmark		\checkmark	\checkmark	\checkmark
Flavor separation				some	\checkmark	
Reference	[JHEP 0904 065]	[PR D85 074028]	[PR D93, 014026]	[PR D93 085037]	[EPJ C77 163]	[arXiv:1904.00018]

Table 1, [1802.05927]

Kinematics

²D,⁴He,⁶Li,⁹Be,¹²C,¹⁴N,²⁷Al,⁴⁰Ca,⁵⁶Fe,⁶⁴Cu,¹⁰⁸Ag,¹¹⁹Sn,¹³¹Xe,¹⁹⁷Au,²⁰⁸Pb

Parametrisation

Parametrisation

 $\xi_{2}^{(3)}$

 $\xi_{3}^{(3)}$

But in the data region... Σ and T₈ are anti-correlated

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{dat}} \left(R_{i}^{(exp)} - R_{i}^{(th)}(\{f_{m}\}) \right) \left(\operatorname{cov}_{t_{0}} \right)_{ij}^{-1} \left(R_{j}^{(exp)} - R_{j}^{(th)}(\{f_{m}\}) \right) + \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l},Q_{0},A) - f_{m}^{(p+n)/2}(x_{l},Q_{0}) \right)^{2}.$$

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{dat}} \left(R_{i}^{(exp)} - R_{i}^{(th)}(\{f_{m}\}) \right) \left(\operatorname{cov}_{t_{0}} \right)_{ij}^{-1} \left(R_{j}^{(exp)} - R_{j}^{(th)}(\{f_{m}\}) \right) + \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l}, Q_{0}, A) - f_{m}^{(p+n)/2}(x_{l}, Q_{0}) \right)^{2}.$$

<u>Per replica</u> boundary condition on the level of minimisation to reproduce NNPDF3.1 <u>central value and uncertainties</u> at A=1 with $x \in [10^{-3}, 0.7]$

$$\chi^{2} \equiv \sum_{i,j=1}^{N_{dat}} \left(R_{i}^{(exp)} - R_{i}^{(th)}(\{f_{m}\}) \right) \left(\operatorname{cov}_{t_{0}} \right)_{ij}^{-1} \left(R_{j}^{(exp)} - R_{j}^{(th)}(\{f_{m}\}) \right) + \lambda \sum_{m=g,\Sigma,T_{8}} \sum_{l=1}^{N_{x}} \left(f_{m}(x_{l}, Q_{0}, A) - f_{m}^{(p+n)/2}(x_{l}, Q_{0}) \right)^{2}.$$

<u>Per replica</u> boundary condition on the level of minimisation to reproduce NNPDF3.1 <u>central value and uncertainties</u> at A=1 with $x \in [10^{-3}, 0.7]$

Fitting pdf in ratio $R = \frac{C \otimes nNNPDF1.0(A)}{C \otimes nNNPDF1.0(A')}$

Minimisation

_With TensorFlow

- Training and validation splitting
- Architecture: [3, 25, 3]
- Linear solver: Reverse Automatic Differentiation
- Minimisation: Backpropagation + gradient descent [ADAM]

Minimisation

_With TensorFlow

- Training and validation splitting
- Architecture: [3, 25, 3]
- Linear solver: Reverse Automatic Differentiation
- Minimisation: Backpropagation + gradient descent [ADAM]

Minimisation

_With TensorFlow

- Training and validation splitting
- Architecture: [3, 25, 3]
- Linear solver: Reverse Automatic Differentiation
- Minimisation: Backpropagation + gradient descent [ADAM]

Methodology validation Closure Tests

Fitting pseudo-data is generated from the nCTEQ distributions without any additional statistical fluctuations.

The uncertainties are taken to be the same as the experimental data.

Closure Test Level 1

Pseudo-data is generated by adding statistical fluctuations to nCTEQ15 predictions.

These fluctuations are dictated by the corresponding experimental statistical and systematic uncertainties, and are the same that enter in the t0 covariance matrix.

nNNPDF 6/11	Comparisons 0/2	EIC 0/3	11
	nNNPDF 6/11	nNNPDF 6/11 Comparisons 0/2	nNNPDF 6/11 Comparisons 0/2 EIC 0/3

Closure Test Level 2

Pseudo-data generated in the L1 case is now used to produce a large Nrep number of Monte Carlo replicas.

A nuclear PDF fit is then performed for each replica, and look-back cross-validation is again activated to prevent over-fitting.

EMC - NMC

Introduction 5/5 nNNPDF 7/11 Comparisons 0/2 EIC 0/3 12

Errors computed as 90% CL (1k replicas)

NNPDF3.1 central value and uncertainties reproduced

$$f(x, Q, A = 1) = \frac{1}{2} \left[f_p(x, Q^2) + f_n(x, Q^2) \right]$$

The boundary condition constrain the nPDFs for low-A nuclei

13

A dependence

Nuclear effects more pronounced for larger A in the Σ + 1/4 T₈ combination

Gluon Uncertainties Within unity

Boundary Condition

No BC NNPDF3.1 NNPDF3.1+LHCb Imposed for $\mathbf{x} \in [\mathbf{10}^{-3}, \mathbf{0}.7]$ In the χ^2 : $\lambda \sum_{m=g, \Sigma, T_8} \sum_{l=1}^{N_x} \left(f_m(x_l, Q_0, A) - f_m^{(p+n)/2}(x_l, Q_0) \right)^2$

> Important constraints on nPDF central values and uncertainties <u>across A</u>

Pronounced <u>reduction</u> <u>of uncertainty</u> due to the accurate determination of the proton's quark sea at small-x in NNPDF3.1 + LHCb

Introduction 5/5 NNPDF 10/11 Comparisons 0/2 EIC 0/3 15

Architecture

Stable results for larger architecture (double the amount of parameters)

Results driven by the input data not by methodological choices such as degrees of freedom in the parametrisation

1 Introduction

- How it started
- Heavy-ion collisions
- Flavour separation
- Gluon saturation

2 nNNPDF1.0

- Data
- Kinematics
- Parametrisation
- Cost Function
- Minimisation
- Closure Tests
- ◆ Data vs. Theory
- ◆ NLO fit
- ◆ A dependence
- Boundary Condition
- Architecture

3 Comparisons

◆ A=1 limit

nPDFs

nNNPDF1.0

$$\sum_{i,j=1}^{N_{dat}} \left(R_i^{(exp)} - R_i^{(th)}(\{f_m\}) \right) \left(\text{cov}_{t_0} \right)_{ij}^{-1} \left(R_j^{(exp)} - R_j^{(th)}(\{f_m\}) \right) + \lambda \sum_{m=g,\Sigma,T_8} \sum_{l=1}^{N_x} \left(f_m(x_l, Q_0, A) - f_m^{(p+n)/2}(x_l, Q_0) \right)^2.$$

 <u>Per replica</u> boundary condition to reproduce NNPDF3.1 overall uncertainties (correlations included)

 $\chi^2 \equiv$

Imposed on the level of minimisation

Introduction 5/5 nNNPDF 11/11 Comparisons 1/2 EIC 0/3 17

nNNPDF1.0

EPPS16

$$\sum_{j=1}^{N_{dat}} \left(R_i^{(exp)} - R_i^{(th)}(\{f_m\}) \right) \left(\operatorname{cov}_{t_0} \right)_{ij}^{-1} \left(R_j^{(exp)} - R_j^{(th)}(\{f_m\}) \right) + \lambda \sum_{m=g, \Sigma, T_8} \sum_{l=1}^{N_x} \left(f_m(x_l, Q_0, A) - f_m^{(p+n)/2}(x_l, Q_0) \right)^2.$$

- <u>Per replica</u> boundary condition to reproduce NNPDF3.1 overall uncertainties (correlations included)
- Imposed on the level of minimisation

Central value:
$$f_i^{p/A}(x, Q^2) = R_i^A(x, Q^2) f_i^p(x, Q^2)$$
, CT14NLO

Uncertainties:

 $\chi^2 \equiv$

- Baseline parameters uncorrelated from the nPDF parameters
- On the level of observables: $(\delta \mathcal{O}_{total})^2 = (\delta \mathcal{O}_{EPPS16})^2 + (\delta \mathcal{O}_{baseline})^2$

Introduction 5/5	nNNPDF 11/11	Comparisons 1/2	EIC 0/3	17
------------------	--------------	-----------------	---------	----

nNNPDF1.0

$$\sum_{j=1}^{N_{dat}} \left(R_i^{(exp)} - R_i^{(th)}(\{f_m\}) \right) \left(\text{cov}_{t_0} \right)_{ij}^{-1} \left(R_j^{(exp)} - R_j^{(th)}(\{f_m\}) \right) \\ + \lambda \sum_{j=1}^{N_x} \sum_{j=1}^{N_x} \left(f_m(x_l, Q_0, A) - f_m^{(p+n)/2}(x_l, Q_0) \right)^2.$$

- <u>Per replica</u> boundary condition to reproduce NNPDF3.1 overall uncertainties (correlations included)
- Imposed on the level of minimisation

EPPS16 Central value:
$$f_i^{p/A}(x, Q^2) = R_i^A(x, Q^2) f_i^p(x, Q^2)$$
, CT14NLO

Uncertainties:

 $\chi^2 \equiv$

- Baseline parameters uncorrelated from the nPDF parameters
- On the level of observables: $(\delta \mathcal{O}_{total})^2 = (\delta \mathcal{O}_{EPPS16})^2 + (\delta \mathcal{O}_{baseline})^2$

 $m = \overline{g, \Sigma, T_8}$ $\overline{l=1}$

nCTEQ15
 Central value:

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1}(1-x)^{c_2} e^{c_3 x} (1+e^{c_4}x)^{c_5},$$

 for
 $i = u_v, d_v, g, \bar{u} + \bar{d}, s + \bar{s}, s - \bar{s},$

 For A=1, PDF = Central Value of CTEQ6.1
 $c_k \to c_k(A) \equiv c_{k,0} + c_{k,1} (1-A^{-c_{k,2}}),$
 $k = \{1, \dots, 5\}.$

nPDFs

nNNPDF1.0 EPPS16 nCTEQ15

All nPDFs are normalised to nNNPDF1.0(A=1) central value

90% CL for all nPDFs

- Hessian for nCTEQ15 and EPPS16
- Monte Carlo for nNNPDF1.0

18

Significant differences in uncertainties in non-data region

1 Introduction

- How it started
- Heavy-ion collisions
- Flavour separation
- Gluon saturation

2 nNNPDF1.0

- Data
- Kinematics
- Parametrisation
- Cost Function
- Minimisation
- Closure Tests
- ◆ Data vs. Theory
- ◆ NLO fit
- ◆ A dependence
- Boundary Condition
- Architecture

4 EIC ◆ Motivation

- Kinematics
- Impact

3 Comparisons

◆A=1 limit

nPDFs

The need for EIC

Hera DIS data being the backbone of free-proton PDFs, we need something similar for nPDFs

Reliable data to constrain the gluon at small-x and low-Q²

Introduction 5/5 nNNPDF 11/11	Comparisons 2/2	EIC 1/3	19
-------------------------------	-----------------	---------	----

EIC kinematics

Scenario	A	E_e	E_A/A	Q_{\max}^2	x_{\min}	$N_{\rm dat}$
eRHIC_5x50C	12	$5 \mathrm{GeV}$	$50 {\rm GeV}$	440 GeV^2	0.003	50
$eRHIC_5x75C$	12	$5~{ m GeV}$	$75~{ m GeV}$	$440 \ {\rm GeV^2}$	0.002	57
$eRHIC_5x100C$	12	$5~{ m GeV}$	$100 { m ~GeV}$	$780 \ { m GeV}^2$	0.001	64
eRHIC_5x50Au	197	$5~{ m GeV}$	$50~{\rm GeV}$	$440 \ {\rm GeV^2}$	0.003	50
eRHIC_5x75Au	197	$5~{ m GeV}$	$75~{ m GeV}$	$440 \ {\rm GeV^2}$	0.002	57
eRHIC_5x100Au	197	$5~{ m GeV}$	$100 { m ~GeV}$	$780 \ { m GeV}^2$	0.001	64
eRHIC_20x50C	12	20 GeV	$50 {\rm GeV}$	$\left 780 \text{ GeV}^2 \right $	0.0008	75
$eRHIC_20x75C$	12	$20~{\rm GeV}$	$75~{ m GeV}$	$780 \ { m GeV}^2$	0.0005	79
eRHIC_20x100C	12	$20 { m GeV}$	$100 { m ~GeV}$	$780 \ { m GeV^2}$	0.0003	82
eRHIC_20x50Au	197	$20 { m GeV}$	$50~{\rm GeV}$	$780 \ { m GeV}^2$	0.0008	75
eRHIC_20x75Au	197	$20 { m GeV}$	$75~{ m GeV}$	$780 \ { m GeV^2}$	0.0005	79
eRHIC_20x100Au	197	$20 { m GeV}$	$100 { m ~GeV}$	$780 \ { m GeV}^2$	0.0003	82

EIC projections, H. Paukkunen et al. [arXiv:1708.05654] **Two scenarios:**

- Low energy (5 GeV)
- High energy (20 GeV)

Pseudo-data constructed With nNNPDF1.0 (Gold, Carbon)

EIC impact on nPDFs

Signification reduction of nPDF uncertainties at low-x for large A Particularly for the higher energy scenario

Introduction 5/5 nNN	DF 11/11 Compariso	ns 2/2 EIC 3/3	21
----------------------	--------------------	----------------	----

Summary

- First determination of nPDF using NNPDF methodology.
- Excellent agreement (NLO and NNLO) with <u>all available NC DIS</u> data (A=2 to A=208).
- Quark distributions are reasonably constrained for $x \ge 10^{-2}$.
- Significant methodology improvement lead by <u>use of TensorFlow</u> and stochastic gradient descent for the first time in NNPDF.
- Vitality of the <u>boundary condition (A=1 limit</u>), reproducing NNPDF3.1 central values and uncertainties of using consistently the same theory settings.
- Quantification of the <u>future impact of e+A measurements</u> from an Electron-Ion Collider constraining the quark and gluon nPDFs down to x≈5x10⁻⁴.
- LHAPDF sets available on <u>NNPDF</u> website.
- Future steps: including CC DIS data, LHC data in a global fit.

Backup Slides

Effective Exponents

In previous NNPDF analyses, the preprocessing exponents α_f and β_f were fixed to a randomly chosen value from a range that was determined iteratively.

Here instead we will fit their values for each Monte Carlo replica, so that they are treated simultaneously with the weights and thresholds of the neural network.

Data vs. Theory BCDMS - FNAL - SLAC

Data vs. Theory

Q2 dependence

The sensitivity to nuclear modifications is reduced when going from low to high Q² in the small-x region

Large reduction in the gluon uncertainty at small-x due to DGLAP

NLO vs NNLO

Difference pronounced at large- and small- x

Reduction in uncertainty in NNLO

Parametrisation

_nCTEQ15 [1509.00792]	_EPPS16 [1612.05741]
$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1}(1-x)^{c_2} e^{c_3 x}(1+e^{c_4}x)^{c_5},$ for $i = u_v, d_v, g, \bar{u} + \bar{d}, s + \bar{s}, s - \bar{s},$	$f_i^{p/A}(x,Q^2) = R_i^A(x,Q^2) f_i^p(x,Q^2)$
$\frac{\bar{d}(x,Q_0)}{\bar{u}(x,Q_0)} = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3 x)(1-x)^{c_4}.$	$R_i^A(x, Q_0^2) = \begin{cases} a_0 + a_1(x - x_a)^2 & x \le x_a \\ b_0 + b_1 x^\alpha + b_2 x^{2\alpha} + b_3 x_a^{3\alpha} & x_a \le x \le x_e \end{cases}$
$c_k \to c_k(A) \equiv c_{k,0} + c_{k,1} \left(1 - A^{-c_{k,2}} \right),$	$(c_0 + (c_1 - c_2 x) (1 - x)^{-\beta} x_e \le x \le 1,$
$k = \{1, \dots, 5\}.$	

_nNPDF1.0 [1904.00018]		
$xg(x, Q_0, A) =$	$B_g x^{-\alpha_g} (1-x)^{\beta_g} \xi_3^{(3)}(x,A) ,$	
$x\Sigma(x, Q_0, A) =$	$x^{-\alpha_{\Sigma}}(1-x)^{\beta_{\sigma}}\xi_{1}^{(3)}(x,A),$	
$xT_8(x, Q_0, A) =$	$x^{-\alpha_{T_8}}(1-x)^{\beta_{T_8}}\xi_2^{(3)}(x,A)$	