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The LHC and CERN

• The Large Hadron Collider at CERN:
• Collides protons accelerated to ~(1 − 10−9) times the speed of light.
• We learn about Physics by studying the results.

• Lots of opportunities and for IT R&D. Many existing results (www, cloud
computing, real time processing…).

• Some interesting applications of ML (this talk).
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LHC detectors

• Structured in layers specialized in measuring different properties of collision
results (momentum of an electron, energy energy depositions, …).
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An event display
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Predictions at the LHC: discovering the Higgs Boson

• Theory predicts a resonance peak in a concrete region of the spectrum of
decay products, above the predictions of the “No Higgs” background.

• Great success of theory +
experiments (2013 Nobel Prize).

• Theory doesn’t need to be very
precise: Only smooth background
needed.

• Theory does need to be precise to
describe its properties
e.g. measure spin.
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Searching for new Physics

• LHC set out to find New Physics:
Notably an explanation for dark
matter.

• So far very successful at ruling out
direct detection of new particles
(i.e. peaks we do not know about)
at accessible energy scales.

• Open question: Can we detect new
particles at inaccessible energies?

Need extremely precise data and theory!
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Theory predictions at the LHC

• Need to invert this very complicated system.
• Only high energy interactions can be predicted with fundamental theory
(modulo parameters).

• Rest has to be extracted from data.
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Parton distribution functions

• Roughly speaking, probability distribution of sampling a parton (e.g. quark or
gluon) from a proton, in a high energy collision, with a given momentum.

• Variables:
• Longitudinal momentum of parton (𝑥 = 𝑝parton/𝑝proton).
• Energy of the (partonic) collision.

E.g. 𝑢(𝑥 = 0.1, 𝑄 = 3.5 GeV)𝑑𝑥 means probability of sampling quark up with
fraction of momentum between 0.1 and 0.1 + 𝑑𝑥 in a 3.5 GeV collision.
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Some PDFs
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What we know about PDFs

Not much about 𝑥 dependence, from first principles. Only “sum rules”.

• Conservation of momentum
partons

∑
𝑖

∫
𝑥=1

𝑥=0
𝑥𝑓𝑖(𝑥, 𝑄)𝑑𝑥 = 1

• Quantum valence numbers:

∫
𝑥=1

𝑥=0
(𝑢(𝑥, 𝑄) − �̄�(𝑥, 𝑄))𝑑𝑥 = 2

∫
𝑥=1

𝑥=0
(𝑑(𝑥, 𝑄) − ̄𝑑(𝑥, 𝑄))𝑑𝑥 = 1

∫
𝑥=1

𝑥=0
(𝑓𝑖(𝑥, 𝑄) − ̄𝑓𝑖(𝑥, 𝑄))𝑑𝑥 = 0 𝑖 ∈ {𝑠, 𝑐, 𝑏, 𝑡}

Q dependence completely determined from theory (renormalization group
equation).

• ML problem reduced to finding all of the 𝑓𝑖(𝑥) at some fixed scale 𝑄0.
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Determining PDFs

Determining PDFs is:

• Important: Dominant source of uncertainty in many important analyses.
• Challenging: Effectively 8 “functional degrees of freedom”.
• Can be done by relating things we know how to calculate (partonic cross
sections) with things we know how to measure (hadronic cross sections).

𝜎𝑝𝑝→𝑋 =
partons

∑
𝑖,𝑗

∫
1

0
∫

1

0
𝑑𝑥1𝑑𝑥2𝜎𝑖𝑗→𝑋(𝑥1, 𝑥2, 𝑄)𝑓𝑖(𝑥1, 𝑄)𝑓𝑗(𝑥2, 𝑄)

11



Experimental data

• The input for the fit is a collection of hadronic cross sections, corresponding
to various kinematical regions and processes.

• Roughly 4000 points, so not “big data”.
• However note complicated relation between PDFs and input data.

• With good approximation, data has Gaussian Uncertainties, but with non
trivial correlations of experimental uncertainties.

• Can see it as a distribution with mean given by the experimentally measured
central values and the experimental covariance matrix Σ.

• Our loss function is the maximum likelihood estimator,

𝜒2 =
𝑁

∑
𝑖

𝑁
∑

𝑗
(data𝑖 − prediction𝑖)Σ−1

𝑖𝑗 (data𝑗 − prediction𝑗) = 𝛿𝑇 Σ−1𝛿
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Our dataset
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What we need

Three ingredients required to determine PDFs (from the ML point of view):

• A way to parametrice the functions.
• A way to fit the parameters to data.
• A way to propagate uncertainties.

• From the data.
• From interpolation and extrapolation.
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PDF fits: The old way.

• Assume a simple functional form (weakly motivated by theory considerations)
and fit the parameters to data:

𝑓(𝑥) = 𝐴𝑥𝛼(1 − 𝑥)𝛽

• Add more parameters ad-hoc when it doesn’t fit, e.g.:

𝑓(𝑥) = 𝐴𝑥𝛼𝑃(𝑥)(1 − 𝑥)𝛽

with P(x) some polynomial.
• Propagate experimental uncertainties with linear error propagation.
• In general uncertainties too optmistic as the model choice itself is not
considered a source of uncertainty.
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Enter NNPDF

Key ideas (circa 2002).

• Use neural networks to parametrice PDFs. Avoid “theoretical bias” of selecting
a restricted model.

𝑓(𝑥) = 𝐴𝑥𝛼𝑁𝑁(𝑥)(1 − 𝑥)𝛽

• Use a “Monte Carlo replicas” to propagate uncertainties and deliver the result.
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How popular was that?
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Monte Carlo replica sampling

• Experimental data has uncertainties. Generally optimization depends on
some random state. We want to propagate these uncertainties to the final
result.

• Idea: sample “pseudo datasets” from the distribution of experimental data
and produce a different fit for each (replica).

𝑑(𝑘)
𝑗 = 𝑑𝑗 + Σ1/2

𝑖𝑗 𝑛(𝑘)
𝑗 , 𝑛(𝑘)

𝑗 ∼ 𝒩(0, 1)

• To get the PDF uncertainty of a prediction, compute it for each replica and
look at the resulting sample.
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PDF replicas
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Optimization methodology

• Currently large scale effort to revamp the whole methodology. Will discuss a
mixture of current and new (experimental) results.

• Main difference so far: New optimization based on gradient descent with
Keras + Tensorflow. Old optimization based on genetic algorithm on a custom
C++ code.

• Factor ~10 improvement in training time. Can use extra efficiency for
hyperoptimization (but not completely obvious what do we want to optimize
for…).

20



Cross validation and stopping

• For each replica, we split each dataset in half: a training and validation subset.

• We optimize on the training subset but select the configuration that has the
best validation error function.

• For GA train for a fixed number of iterations and select best. For GD stop when
validation stops improving.
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Genetic algorithm

• Full details at https://arxiv.org/pdf/1410.8849.pdf#subsection.3.3
• At each iteration, create “mutants” by fluctuating parameters in the current
best (i.e. best training error function) result.

• Select best mutant for next iteration.
• Heavily hand tuned. Significative more wiggly replicas, but fit quality similar
to GD.
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PDF parametrization

• We have 𝑓(𝑥) = 𝐴𝑥𝛼𝑁𝑁(𝑥)(1 − 𝑥)𝛽

• 𝑁𝑁(𝑥): simple feed-forward multilayer perceptrons (sigmoid hidden layers
and linear output layer).

• Exponents random and fixed in GA fits, with iterated ranges. Just fitted in TF.

• Now experimenting with a single network with multiple outputs for all the
PDFs and other architectures.
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Positivity

• Contrary to usual probability density functions, PDFs do not need to be
positive everywhere (because partonic cross section isn’t).

• But hadronic cross sections have to be positive.
• We impose positivity by adding theory predictions for which we have no data
and requiring they are positive (by adding some penalty term to the error
function).

• In practice very challenging to add these positivity constraints.
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Post selection of replicas

In practice some replicas do not converge to reasonable results at the end of the fit.
We need to impose some cuts.

• Positivity could not be fitted.
• 𝜒2 too high (compared to other replicas).
• Replica too wiggly (high arc-length).

We have to impose veto on these quantities. For 𝜒2 and arc length, roughly 5 sigma
if these were distributed Gaussianly.

• Future hyperoptimization should seek to minimize these outliers.
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Extrapolation

• Regions at very large or small 𝑥 not constrained by available data or theory.
Yet crucial for high energy predictions.

• Currently GA and GD give very different results.

• Is there a principled way to decide which extrapolation is good? Bayesian
methods such as Gaussian Processes?
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Bad total 𝜒2

• If the experimental data are sampled from the model that we obtain, and we
applied appropriate cross validation, the 𝜒2 statistic should follow a 𝜒2

distribution, so we expect 𝜒2 = 𝑁 ±
√

2𝑁 .

• Yet we find a significatively (at ∼ 4𝜎) higher value. Possible explanations:

• Problems in the theory (we know it is approximate).
• Incorrect fixed theoretical parameters (e.g. strong coupling constant).
• Problems in the experimental data.
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How do we know our result is correct?

• People have been using it to make precise comparison of data and theory and
found good agreement.

• Closure tests:
1. Replace experimental central values (but not uncertainties) by the theoretical

predictions with the PDFs of our competitors.
2. Find that we get qualitatively the same PDF as the starting one (they agree

within uncertainties).
• Working on making this more quantitative.
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Unstable experimental covariance matrices

• Correlations of experimental uncertainties (off diagonal entries of the
covariance matrix) not estimated very precisely.

• Covariance matrices frequently close to singular.

• Uncertainty propagates amplified to the 𝜒2 when inverting the covariance
matrix.

• Some evidence that appropriate regularization might be enough to bring the
𝜒2 to the expected value.
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Regularization strategy

• Idea: Large contributions to the 𝜒2 should not come from components of the
covariance matrix that are not constrained precisely enough.

• Take the square root correlation matrix.
• Clip the smallest singular values to some threshold.

• Don’t yet know how to find the threshold in general…

• Reconstruct a new covariance matrix.
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Example

𝜒2/𝑁 = 71/34

Let’s apply the regularization… 31



Covariance matrix ratio
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Correlation matrices ratio
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Final 𝜒2

After regularizing and refitting…

𝜒2/𝑁 = 40/34

Minuscule change in the covariance matrix (below the experimental precision)
causes large correction in the 𝜒2.
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Thank you!


