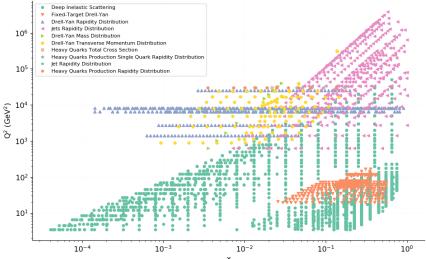
Motivation	Parton Distributions	The SMEFT framework	Methodology	Conclusion and Further Directions

Can New Physics Hide inside the Proton?

Shayan Iranipour

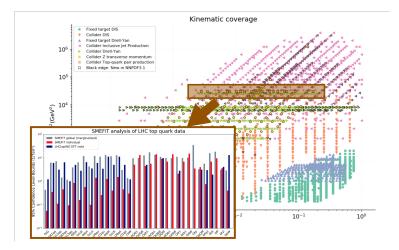
DAMTP, University of Cambridge

November 26, 2019


S. Carrazza, C. Degrande, S. Iranipour, J. Rojo, and M. Ubiali, "Can New Physics hide inside the proton?," Phys. Rev. Lett., vol. 123, p. 132001, 2019

Motivation	Parton Distributions	The SMEFT framework	Methodology	Conclusion and Further Directions
0000				

Motivation


- Need to assess if BSM effects can be absorbed into PDFs during fitting
- State of the art Parton Distribution Functions (PDFs) now using high Q² data from LHC. With increasing kinematic coverage (LHeC, FCC), need to consider the validity of using SM for PDFs.
- Contrast bounds on BSM degrees of freedom using PDFs fitted with BSM operators with bounds obtained by using fixed SM PDFs.
- High energy degrees of freedom become important at large Q^2 .

Kinematic coverage

х

Hartland et al 1901.05965. Image credit: Maria Ubiali (HEFT 2019)

Motivation 000●	Parton Distributions	The SMEFT framework	Methodology 00000	Results 00000	Conclusion and Further Directions

- Important to fully probe a multi-dimensional parameter space to see effects of having several BSM degrees of freedom present together.
- Want to include data sets that constrain BSM and PDF simultaneously.

See arXiv: 1902.03048 and 1107.2478 alongside earlier talks for analyses using xFitter studies restricted to H1 and ZEUS data.

Motivation 0000	Parton Distributions ●0	The SMEFT framework	Methodology 00000	Results 00000	Conclusion and Further Directions
NNPDF Met	hodology				

NNPDF Methodology

Obtain PDFs $(q(x, Q^2))$ by fitting to experimental data.

- Data provided by experimental collaborations
- Generate *pseudodata* replicas of original data, with the same statistical properties
- \blacksquare Use pseudodata to train and validate a neural network by minimizing χ^2 cost function against theory predictions

$$\chi^2 = (\mathsf{data} - \mathsf{theory})^T \mathsf{cov}^{-1}(\mathsf{data} - \mathsf{theory})$$

Where cov^{-1} is the inverse covariance matrix provided by experimentalists.

	Parton Distributions	The SMEFT framework	Methodology 00000	Results 00000	Conclusion and Further Directions
NNPDF Metho	odology				

- Generate one PDF replica per pseudodata replica (typically 100 replicas).
- Cascade experimental error to the PDF fit level due to finite ensemble size.
- For analysis use central value from the 100 replicas (central replica).

Standard Model as an EFT

Treat the Standard Model as the low energy, IR limit of some UV complete theory.

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \sum_{d \ge 5} \sum_{i=1}^{N_d} \frac{a_i}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

Motivation	Parton Distributions	The SMEFT framework	Methodology	Results	Conclusion and Further Directions
0000	00	●00000	00000	00000	
Standard Mo	del as an Effective Field	Theory			

Standard Model as an EFT

Treat the Standard Model as the low energy, IR limit of some UV complete theory.

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \sum_{d \ge 5} \sum_{i=1}^{N_d} \frac{a_i}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

 Λ high energy cut-off, d the mass-dimension of operator $\mathcal{O}_i^{(d)}$. The $\{a_i\}$ called the Wilson Coefficients.

Motivation	Parton Distributions	The SMEFT framework	Methodology	Results	Conclusion and Further Directions
0000	00	●00000	00000	00000	
Standard Mo	del as an Effective Field	Theory			

Standard Model as an EFT

Treat the Standard Model as the low energy, IR limit of some UV complete theory.

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \sum_{d \ge 5} \sum_{i=1}^{N_d} \frac{a_i}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

 Λ high energy cut-off, d the mass-dimension of operator $\mathcal{O}_i^{(d)}$. The $\{a_i\}$ called the Wilson Coefficients.

Ignore odd d values. Violate baryon/lepton number conservation. First non-trivial contribution at d=6

Motivation 0000	Parton Distributions	The SMEFT framework ○●○○○○	Methodology 00000	Results 00000	Conclusion and Further Directions
Standard Mo	odel as an Effective Field	Theory			

Convenient because:

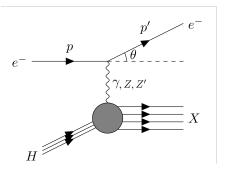
- Model independent. Uses same matter fields and gauge symmetry as the SM.
- For d = 6 and 3-flavours, minimal {O_i⁽⁶⁾} basis fully determined (Warsaw basis¹).
- Encompasses any UV complete theory that has SM as an IR limit.

Motivation 0000	Parton Distributions	The SMEFT framework	Methodology 00000	Results 00000	Conclusion and Further Directions
Standard Mo	del as an Effective Field	Theory			

As a proof of concept consider only the subset of the Warsaw basis:

$$\begin{aligned} \mathcal{O}_{lu} &= \left(\bar{l}_R \gamma^{\mu} l_R\right) \left(\bar{u}_R \gamma_{\mu} u_R\right) \quad , \quad \mathcal{O}_{ld} &= \left(\bar{l}_R \gamma^{\mu} l_R\right) \left(\bar{d}_R \gamma_{\mu} d_R\right) \\ \mathcal{O}_{lc} &= \left(\bar{l}_R \gamma^{\mu} l_R\right) \left(\bar{c}_R \gamma_{\mu} c_R\right) \quad , \quad \mathcal{O}_{ls} &= \left(\bar{l}_R \gamma^{\mu} l_R\right) \left(\bar{s}_R \gamma_{\mu} s_R\right) \end{aligned}$$

For l either an electron or muon.


Wish to find a confidence interval on the Wilson Coefficients for these operators using DIS data.

Motivation 0000	Parton Distributions	The SMEFT framework ○○○●○○	Methodology 00000	Results 00000	Conclusion and Further Directions
Hadronic Str	ucture Functions				

Hadronic Structure Functions

- Can think of these 4 SMEFT operators as low energy limit of some heavy Z' coupling to right handed leptons/quarks.
 - Allows for easier computation of modified structure functions, by drawing analogy to the SM computation

New Z' contributes to the NC DIS process:

Motivation 0000	Parton Distributions	The SMEFT framework ○○○○●○	Methodology 00000	Results 00000	Conclusion and Further Directions
Hadronic Str	ucture Functions				

This alters the NC DIS observable:

$$\frac{d^2 \sigma^{\text{NC},l^{\pm}}}{dx dQ^2}(x,Q^2) = \frac{2\pi\alpha^2}{xyQ^4} \left[Y_+ F_2^{\text{NC}}(x,Q^2) \mp Y_- xF_3^{\text{NC}}(x,Q^2) - y^2 F_L^{\text{NC}}(x,Q^2) \right]$$

Note $F_L = F_L^{SM}$ since it is only non-zero for NLO QCD.

Requires a modification of the APFEL program (arXiv:1310.1394). In turn alters the theory input in the NNPDF methodology.

Motivation 0000	Parton Distributions	The SMEFT framework ○○○○○●	Methodology 00000	Results 00000	Conclusion and Further Directions	
Hadronic Structure Functions						

Dimension 6 operators modify hadronic structure functions.

$$F_{2}(x,Q^{2}) = F_{2}^{\text{SM}}(x,Q^{2}) + \frac{x}{12e^{4}} \left[\left(4a_{u}e^{2}\frac{Q^{2}}{\Lambda^{2}} \underbrace{\overset{Z'/\gamma}{\Lambda}}_{1} + \underbrace{\overset{Z'/Z}{4K_{Z}s_{W}^{4}}}_{W} + \underbrace{3a_{u}^{2}\frac{Q^{4}}{\Lambda^{4}}}_{1} \right) \left(u(x,Q^{2}) + \bar{u}(x,Q^{2}) \right) + \cdots \right]$$

$$F_{3}(x,Q^{2}) = F_{3}^{\text{SM}}(x,Q^{2}) + \frac{1}{12e^{4}} \left[\left(4a_{u}e^{2}\frac{Q^{2}}{\Lambda^{2}} (1 + 4K_{Z}s_{W}^{4}) + 3a_{u}^{2}\frac{Q^{4}}{\Lambda^{4}} \right) \left(u(x,Q^{2}) - \bar{u}(x,Q^{2}) \right) + \cdots \right]$$

Where

$$K_Z = \frac{Q^2}{4c_W^2 s_W^2 (Q^2 + M_Z^2)} \qquad c_W^2 = 1 - s_W^2 = \cos^2 \theta_W.$$

Motivation	Parton Distributions	The SMEFT framework	Methodology	Results	Conclusion and Further Directions
0000	00	○○○○○●	00000	00000	
Hadronic Stri	ucture Functions				

Dimension 6 operators modify hadronic structure functions.

$$F_{2}(x,Q^{2}) = F_{2}^{\text{SM}}(x,Q^{2}) + \frac{x}{12e^{4}} \left[\left(4a_{u}e^{2} \frac{Q^{2}}{\Lambda^{2}} \underbrace{\overset{Z'/\gamma}{1} + \overbrace{4K_{Z}s_{W}^{4}}^{Z'/Z}}_{\Lambda} + \underbrace{3a_{u}^{2} \frac{Q^{4}}{\Lambda^{4}}}_{\Lambda} \right) \left(u(x,Q^{2}) + \bar{u}(x,Q^{2}) \right) + \cdots \right]$$

$$F_{3}(x,Q^{2}) = F_{3}^{\text{SM}}(x,Q^{2}) + \frac{1}{12e^{4}} \left[\left(4a_{u}e^{2} \frac{Q^{2}}{\Lambda^{2}} (1 + 4K_{Z}s_{W}^{4}) + 3a_{u}^{2} \frac{Q^{4}}{\Lambda^{4}} \right) \left(u(x,Q^{2}) - \bar{u}(x,Q^{2}) \right) + \cdots \right]$$

Where

$$K_Z = \frac{Q^2}{4c_W^2 s_W^2 (Q^2 + M_Z^2)} \qquad c_W^2 = 1 - s_W^2 = \cos^2 \theta_W.$$

Main analysis done up to $\mathcal{O}\left(\frac{1}{\Lambda^2}\right)$ because:

- Subleading compared to Z'/SM
- \blacksquare Will be corrected by $\mathcal{O}^{(8)}$ operators
- \blacksquare Results largely unchanged if you include them for a 1 dimensional analysis

Motivation 0000	Parton Distributions 00	The SMEFT framework	Methodology ●0000	Results 00000	Conclusion and Further Directions
Fixed PDF					

Fixed PDF analysis

- Initially, keep PDF fixed using the NNPDF31 NNLO DIS only PDF set.
- Scan the SMEFT operator phase space by sampling (a_u, a_d, a_s, a_c) .
- \blacksquare Then obtain a χ^2 value for how well modified DIS observable fits data.

Results look like:

(a_u, a_d, a_s, a_c)	χ^2
(0, 0, 0, 0)	3568.915
(-0.18, 0, 0, 0)	3571.693
(0.9, 0.9, 0, 0)	3583.612
:	

Motivation 0000	Parton Distributions	The SMEFT framework	Methodology 0●000	Results 00000	Conclusion and Further Directions
Fixed PDF					

Since structure functions are linear in Wilson Coefficient (a_i) , the χ^2 is quadratic in a_i . Can represent the χ^2 as a quadratic form.

$$\chi^2(a;\beta) = \chi_0^2 + \frac{1}{2}(a-a_0)^T H(a-a_0)$$

H the Hessian, a_0 position of minimum and χ_0^2 value at minimum. Fit to χ^2 values using least squares to obtain fit parameters β (dim $\beta = 15$).

Motivation 0000	Parton Distributions 00	The SMEFT framework	Methodology 00●00	Results 00000	Conclusion and Further Directions
Fixed PDF					

Minimize, w.r.t
$$\beta$$

$$\sum_{i}^{N_{BP}} ||y_i - \chi^2(a_i;\beta)||^2$$

Can obtain analytic solution for β , since functional form is polynomial in fit parameters:

$$\beta = (X^T X)^{-1} X^T \vec{y}$$

for X the design matrix and \vec{y} the vector of data to fit to.

Motivation 0000	Parton Distributions 00	The SMEFT framework	Methodology ○○○●○	Results 00000	Conclusion and Further Directions
Obtaining op	erator bounds				

Confidence Intervals

A 90% CI is defined by the region:

$$\Delta \chi^2 = \frac{1}{2} (a - a_0)^T H(a - a_0) = 7.779$$

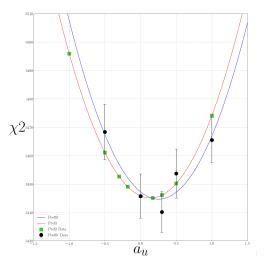
Defines a dim 3 ellipsoid embedded in \mathbb{R}^4 .

Extremes of this ellipsoid give 90% CI on Wilson Coefficients.

Fitting PDFs in the presence of BSM operators

Now allow the PDF to change in the presence of SMEFT operators. Requires employing NNPDF methodology to fit PDFs from scratch.

- Modify theory prediction (d²σ) with BSM operators (generated by APFEL)
- Use NNPDF methodology to obtain PDF fits using the modified theory.


Motivation 0000	Parton Distributions	The SMEFT framework	Methodology 00000	Results ●0000	Conclusion and Further Directions
Fixed PDF					

One dimensional analysis

Choose BPs along each of the principal axes, e.g $(a_u, 0, 0, 0)$

Motivation 0000	Parton Distributions	The SMEFT framework	Methodology 00000	Results ●0000	Conclusion and Further Directions
Fixed PDF					

One dimensional analysis

Error bars due to finite number of replicas.

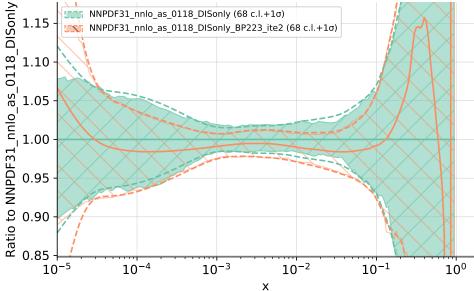
Motivation 0000	Parton Distributions	The SMEFT framework	Methodology 00000	Results 0●000	Conclusion and Further Directions
Fixed PDF					

Four Dimensional Analysis

Perform the analysis in the presence of all 4 SMEFT operators (marginalized bounds) and compare with individual bounds.

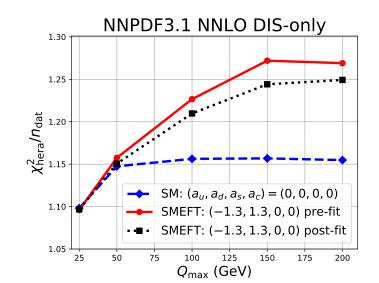
Flavour	Individual Bounds	Marginalized Bounds
up	[-0.1, +0.4]	[-2.3, +1.4]
down	[-1.6, +0.4]	[-13, +3.9]
strange	[-2.8, +4.2]	[-18, +29]
charm	[-2.6, +1.2]	[-13, +7.0]

Motivation 0000	Parton Distributions 00	The SMEFT framework	Methodology 00000	Results ○○●○○	Conclusion and Further Directions
PDF with SMEFT operators					


Four Dimensional Analysis

Bounds obtained with PDFs fitted with SMEFT operators

Flavour	Individual Bounds	Marginalized Bounds
up	[0.0, +0.5]	[-0.4, +2.4]
down	[-1.1, +0.8]	[-4.4, +4.5]
strange	[-4.5, +3.6]	[-61, +39]
charm	[-2.4, +0.7]	[-29, +2.7]



g at 10.0 GeV

Motivation 0000	Parton Distributions 00	The SMEFT framework	Methodology 00000	Results ○○○○●	Conclusion and Further Directions	
PDF with SMEFT operators						

Variaton of PDF χ^2 for (-1.3, 1.3, 0, 0)

Motivation 0000	Parton Distributions	The SMEFT framework	Methodology 00000	Results 00000	Conclusion and Further Directions ●○

Outlook

- Fitting more SMEFT operators for more processes e.g NLO DIS and DY.
- Use higher energy data in PDF fits e.g high mass DY.
- Simultaneous fit of PDF and BSM dynamics. Requires updated methodology.

0000 00 000000 00000 0000 00					Conclusion and Further Directions
	0000	000000	00000	00000	00

Conclusions

- Demonstration of proof of concept. Can systematically disentangle BSM physics and PDFs.
- Demonstrates feasibility of constraining PDF and Wilson Coefficients simultaneously.
- Paves the way for future studies involving higher energy data.