How instabilities in covariance matrices affect the interpretation of LHC data

Ultimate Precision at hadron colliders, Institut Pascal (Paris-Saclay)

Zahari Kassabov,

in collaboation with Emanuele Nocera and Michael Wilson

November 27, 2019

Cavendish Laboratory, University of Cambridge

European Research Council

- Inaccurate theory
 - Fixed order
 - Insufficient parametrization of degrees of freedom
- Inaccurate parameters of the theory
 - $\cdot\,$ E.g. $\alpha_S.$
- Inaccurate data
 - Underestimated experiment systematics.
 - Other problems with the measurement
- Instabilities on statistical estimators (this talk)

Instability

- Uncertainties on a parameter, even when *small*, can affect critically some function of them.
- This talk: Effect of uncertainties in covariance matrices on uncertainties on the χ^2 statistic.
- Still need to specify which parameter is varied and what are the small and big units.

$$\chi^2 = \sum_i^N \sum_j^N (\mathrm{data}_i - \mathrm{prediction}_i) \Sigma_{ij}^{-1} (\mathrm{data}_j - \mathrm{prediction}_j) = \delta^T \Sigma^{-1} \delta$$

- Predictions supplied by the theoretical model.
- Central measurement of data and covariance matrix $\boldsymbol{\Sigma}$ supplied by experiments.
- Used as:
 - Figure of merit in fits.
 - Assessment of agreement between data and theory.
- Underlying assumption: Experimental uncertainties distributed as a multivariate Gaussian.

 \cdot Consider any matrix A such that

$$\Sigma = AA^t$$

- \cdot A can be chosen to have physical meaning:
 - $\cdot \mathbf{v} = \mathbf{f}(\mathbf{p})$ vector of N unknown interesting quantities.
 - \mathbf{p} vector of M measurements, with central values $\mathbf{p^0}$ and independent Gaussian uncertainties \mathbf{s} . Assuming linear error propagation.
 - Then:

$$A_{ij} = \frac{\partial f_i}{\partial p_j} \Big|_{\mathbf{p} = \mathbf{p}^0} s_j$$

and ${f v}$ is multivariate Gaussian with mean ${f f}({f p^0})$ and covariance AA^t

$$\mathbf{v} \sim \mathcal{N}(\mathbf{f}(\mathbf{p^0}), AA^t)$$

- Or else, A can be obtained e.g. using the Cholesky decomposition of Σ .

Sampling uncertainties around true theory

- We expect that experimental deviations around the true theory (which we do not know) to be $\delta\sim\mathcal{N}(0,\Sigma)$
 - To sample, generate M independent numbers with $\mathbf{n}\sim\mathcal{N}(0,I)$ and do $\delta=A\mathbf{n}.$

• The quantity $\chi^2 = \|A^+\delta\|^2 = \|A^+A\mathbf{n}\|^2$ is a random variable following a χ^2 distribution with N degrees of freedom.

$$\begin{array}{l} \cdot \ \left\langle \chi^2 \right\rangle = \left\| A^+ A \right\|_F^2 = N \\ \cdot \ \left(\left\| A \right\|_F = \operatorname{tr}(AA^t)^{1/2} = \sqrt{\sum_i \sum_j A_{ij}^2} \right). \end{array}$$

 \cdot Standard deviation $\sqrt{2N}$

• Imagine the residuals are sampled using A, but we are given a different matrix, \bar{A} to estimate the χ^2 statistic. The expected value of the χ^2 , with the wrong matrix, $\bar{\chi}^2$, is

$$\left\langle \bar{\chi}^2 \right\rangle = \left\| \bar{A}^+ A \right\|_F^2$$

$$\Delta \chi^2 = \left\langle \bar{\chi}^2 \right\rangle - \left\langle \chi^2 \right\rangle = \left\| \bar{A}^+ A \right\|_F^2 - N$$

• We assert that the χ^2 statistic is stable upon making this mistake, if it results in differences that are smaller than its statistical fluctuations.

$$\left|\Delta\chi^2\right| < \sqrt{2N}$$

Toy model example

- Experiments have reached an impressive level of statistical precision.
 - Statistical component of the uncertainty (typically uncorrelated across bins) less important.
 - Systematic uncertainties (correlated across bins) tend to dominate.
- A somewhat realistic toy model for a matrix of uncertainties from HepData:

$$A = \begin{pmatrix} \epsilon & 0 & 0 & 0 & 1 \\ 0 & \epsilon & 0 & 0 & 1 \\ 0 & 0 & \epsilon & 0 & 1 \\ 0 & 0 & 0 & \epsilon & 1 \end{pmatrix}$$
$$\Sigma = \begin{pmatrix} \epsilon^2 + 1 & 1 & 1 & 1 \\ 1 & \epsilon^2 + 1 & 1 & 1 \\ 1 & 1 & \epsilon^2 + 1 & 1 \\ 1 & 1 & 1 & \epsilon^2 + 1 \end{pmatrix}$$

with $\epsilon^2 \ll 1.$

- Assumes 4 data points, and uncorrelated error of size ϵ and one completely correlated systematic of size 1.

Model for uncertainties in the correlations

· Add unknown parameter $x \in [0,2]$ controlling the correlations of the last bin.

$$A(x) = \begin{pmatrix} \epsilon & 0 & 0 & 0 & 1 & 0 \\ 0 & \epsilon & 0 & 0 & 1 & 0 \\ 0 & 0 & \epsilon & 0 & 1 & 0 \\ 0 & 0 & 0 & \epsilon & 1 - x & \sqrt{1 - (1 - x)^2} \end{pmatrix}$$
$$\Sigma(x) = \begin{pmatrix} \epsilon^2 + 1 & 1 & 1 & 1 - x \\ 1 & \epsilon^2 + 1 & 1 & 1 - x \\ 1 & 1 & \epsilon^2 + 1 & 1 & 1 - x \\ 1 & 1 & \epsilon^2 + 1 & 1 & 1 - x \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & \epsilon^2 + 1 & 1 - x \\ 1 - x & 1 - x & 1 - x & \epsilon^2 + 1 \end{pmatrix}$$

- We are keeping the total variance fixed. It is realistic to think that x could be anywhere in the range.
- \cdot . We have $\left<\bar{\chi}^2\right>=\left\|A^+(x_{\rm experimental})A(x_{\rm true})\right\|_F^2$
- Experimental results often presented by default with the highest correlation (i.e. $x_{\rm experimental}=0$).

Stability when assuming the highest correlation

Stability when assuming a lower correlation

Optimizing for stability

- Given some prior probability density on x, $P(x_{\rm true}),$ we can find the value for $x_{\rm experimental}$ that optimizes for stability

$$x^* = \underset{x_{\text{experimental}}}{\operatorname{argmin}} \int \left| \left\| A^+(x_{\text{experimental}}) A(x_{\text{true}}) \right\|_F^2 - N \Big| P(x_{\text{true}}) \mathrm{d}x_{\text{true}} \right| \right|_F$$

Toy model, assuming $P(x_{\rm true}) = {\rm Uniform}[0,1]$

Toy model summary and tentative conclusions

- Assuming smaller correlation wherever they are unknown seems like a good rule of thumb.
 - This is consistent with other studies, e.g. ATLAS Jets at 7 TeV (arxiv: 1410.8857): Enormous sensitivity to correlations studied in detail in [Harland-Lang, Martin, Thorne arxiv:1711.05757].

	Full	21	62	21,62
$\chi^2/N_{\rm pts.}$	2.85	1.58	2.36	1.27

Table 1: χ^2 per number of data points ($N_{\rm pts} = 140$) for fit to ATLAS jets data [23], with the default systematic error treatment ('full') and with certain errors, defined in the text, decorrelated between jet rapidity bins.

- In practice, not enough information to compute A^+A available from public data. Need to make some simplifications and assumptions.

Solving a different problem

- We typically have no information at all regarding the uncertainties of the experimental uncertainties.
- But unstable covariance matrices will lead to artificial discrepancies.

We want to solve a different problem that

- Avoids yielding data-theory discrepancies wherever those are likely due to instabilities.
- · Gives the same answers when the answers are not affected by instabilities.
- Does not result in decreased uncertainties anywhere.

In practice, find a new, regularized covariance matrix.

- Avoids the instabilities we assume to be problematic.
- We do need to make assumptions state what these are.
- General principle: Come up with covariance matrices that are, in all likelihood, compatible with the original ones within their precision.

Upper bound to instabilities

• We have:

$$\left<\bar{\chi}^2\right>=\left\|\bar{A}^+A\right\|_F^2$$

• Write

$$A = \bar{A} + \delta F$$

with δ a scalar parameter and F a matrix.

• Then

$$\begin{split} & \left< \bar{\chi}^2 \right> \leq 2 \sqrt{N} \delta \|A^+\|_2 \|F\|_F \\ & \left(\|A\|_2 = \max_{\{\mathbf{x} \in \mathbb{R}^{M:} \|\mathbf{x}\| = 1\}} \|A\mathbf{x}\| = \max \operatorname{singular} \operatorname{value}(A) \right) \\ & \left(\|A^+\|_2 = \frac{1}{\min \operatorname{singular} \operatorname{value}(A)} \right) \end{split}$$

Hence the condition

$$\delta \big\| \bar{A}^+ \big\|_2 \| F \|_F < 1$$

is sufficient to avoid overestimating χ^2 .

- Problem reduced to defining a value for δ and a model for $\|F\|_{F^{*}}$

Correlation matrix regularization

- Experimental covariance matrices can relate data with different magnitudes and even different units.
 - $\cdot \ \left\| F \right\|_F$ not particularly meaningful (units?).
 - The upper bound is a worst case. We don't want to include mislabelling of uncertainties in the analysis.
- On the other hand, estimating experimental correlations is well known to be challenging.
- Resolution: Assume the diagonal uncertainties are correct for the purposes of the regularization. Regularize the correlation matrix instead.
 - $\cdot\;$ Note that the correlation matrix is the covariance of

(data — theory) diagonal uncertainty

so everything so far applies to these reduced variables.

Example: ATLAS WZ rapidity 2011

- The data from ATLAS W/Z production at 7 TeV [arxiv 1612.03016] is a representative example.
- $\cdot\,$ Bad fit quality ($\chi^2/N=75/34$ for NNPDF 3.1) has attracted some discussion.

· Correlation matrix clearly unstable, and not dissimilar to the toy model.

- + δ measures the size of the uncertainties on the uncertainties.
- It is not possible to retrieve that information from the public analysis.
- Therefore there is a fundamental ambiguity.
- In practice choose so that the resulting regularized covariance matrices differ little from the original ones.
 - + E.g. given some regularization (to be described), impose δ such that diagonal elements change less than ~10% in the very worst case.

Assumptions on $\|F\|_F$

- Because we are regularizing correlations, $\|F\|_{F}$ is dimensionless.
- Need to specify how $\|F\|_F$ behaves as a function of N. This is important in a PDF fit because we have datasets of many different size (between 3 and 416 points for NNPDF 3.1).
- In practice choose so that the resulting regularized covariance matrices differ little from the original ones. This corresponds to assuming that $\|F\|_F = \operatorname{const}(N).$
 - Assumption same amount of *wrongness* irrespective of the number of data points.
 - We set

$$\left\|F\right\|_F=1$$

The stability condition is finally

$$\delta \left\| \bar{A}_{\mathrm{corr}}^+ \right\|_2 \left\| F \right\|_F < 1 \Rightarrow \left\| \bar{A}_{\mathrm{corr}}^+ \right\|_2 < \frac{1}{\delta}$$

We regularize A by clipping the singular values of $A_{\rm corr}$ from below, so the condition is satisfied.

- We compute the Singular Value Decomposition of $A_{\rm corr}$

$$A = DA_{\rm corr} = DUSV^t$$

• Find regularized singular values

$$s_i^{\mathrm{reg}} = \begin{cases} s_i & \mathrm{if}\, s_i > \frac{1}{\delta} \\ \frac{1}{\delta} & \mathrm{otherwise} \end{cases}$$

- *D* Diagonal matrix of standard deviations.
- $\cdot \, U$ and V orthogonal matrices.
- + S Diagonal matrix of singular values of $A_{\rm corr}.$

Finally

$$A_{\rm reg} = DUS^{\rm reg}V^t$$

Regularization on ATLAS WZ rapidity

δ	χ^2/N (NNPDF3.1)	Max change in diagonal uncertainties
∞	2.2	0
5	1.6	2%
4	1.2	4%
3	0.77	8.5%

- Correlation matrix highly unstable.
 - Reasonable to hypothesize that discrepancies measured by the χ^2 are spurious.
- Can find an almost indistinguishable covariance matrix that gives perfect agreement.
- Note χ^2 with fixed PDF that included the unstable data does not have to coincide with the result including regularized data in the fit instead.

- Made full NNPDF 3.1 NNLO-like fits, for several choices of thresholds.
- Only few dataset affected. Rest already "stable".
- PDFs themselves hardly change, in terms of distance between functions.
- $\cdot \ \chi^2$ estimators improve substantially.

Regularized datasets and pre-fit χ^2

δ	7			5			3		
	(chi2 - N)/sqrt(2N))	cov diag diff (%)	corr diff (abs)	(chi2 - N)/sqrt(2N))	cov diag diff (%)	corr diff (abs)	(chi2 - N)/sqrt(2N))	cov diag diff (%)	corr diff (abs)
BCDMSP	3.288	0	0	3.288	0	0	2.892	5.616	4.971E-2
BCDMSD	0.9470	0	0	0.9470	0	0	0.9233	2.409	2.025E-2
CHORUSNU	1.951	0	0	1.949	0.2726	2.779E-3	0.7943	7.180	6.703E-2
CDFZRAP	1.644	0	0	1.112	1.076	1.138E-2	-0.3105	8.222	7.975E-2
ATLASWZRAP36PB	-0.1758	0	0	-0.1758	0	0	-0.3405	2.378	2.277E-2
ATLASZHIGHMASS49FB	0.8799	0	0	0.8799	0	0	0.8660	0.4398	7.369E-3
ATLASLOMASSDY11EXT	-0.1779	0	0	-0.1779	0	0	-0.2287	2.564	3.012E-2
ATLASWZRAP11	4.133	0.5015	6.516E-3	2.175	2.160	2.473E-2	-1.238	9.438	9.489E-2
ATLAS1JET11	-0.1607	1.073	1.466E-2	-0.7020	2.724	3.338E-2	-1.543	9.854	0.1018
CMSDY2D11	1.984	0.4218	5.386E-3	1.936	1.534	1.941E-2	1.475	6.079	7.643E-2
CMSWMU8TEV	-1.209	1.046	1.355E-2	-1.945	2.891	3.253E-2	-2.614	10.42	0.1053
CMSJETS11	-0.3777	0.6244	6.024E-3	-0.7274	2.421	2.492E-2	-2.474	9.573	9.234E-2
CMSZDIFF12	1.153	0	0	1.153	0	0	0.6198	3.198	3.520E-2

- + Global χ^2 improved by up to 2 sigma.
- + Combined ATLAS + CMS χ^2 can be made order 1.

Threshold	Global χ^2 /(3979 datapoints)	ATLAS χ^2 /(211 datapoints)	CMS $\chi^2/(328)$ datapoints)
∞	1.16	1.17	1.17
5	1.15	1.06	1.03
4	1.13	1.00	0.96
3	1.10	0.89	0.85

Changes in PDF themselves

• We observe few differences in the PDF themselves.

- · Instabilities in statistical estimators affect notably description of the data.
- Regularization remedies best applied by experimentalists, since useful information is available in the experimental analysis only.
- Proposed a method to avoid instabilities on χ^2 .
 - Using minimal information.
 - Independent on what the theory is.
 - $\cdot\,$ Little change in PDFs, but notable change in the interoperation of the results.

Thank you!