Parton densities with deep learning models

based on arXiv:1907.05075

Stefano Carrazza

LHCP2020, 25 May 2020.

Università degli Studi di Milano and INFN Sezione di Milano

Acknowledgement: This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement number 740006.

PDF challenges

Data

Collect and implement data from different processes.

Data

Collect and implement data from different processes.

Theory

Compute theoretical predictions for multiple processes.

Data

Collect and implement data from different processes.

Theory

Compute theoretical predictions for multiple processes.

Methodology

Define an optimized regression models for the PDF fits.

xg(x,Q), 50 compressed replicas

The technology used in NNPDF3.1:

- Neural Networks optimized with Genetic Algorithms
- Custom implementation in C++
- Tuning performed manually

Challenges:

- How to increase fit performance speed?
 - faster fits \Rightarrow more fits
- How can we tune/learn the methodology?
 - select the best model for our data/theory

Challenges:

- How to increase fit performance speed?
 - faster fits \Rightarrow more fits
- How can we tune/learn the methodology?
 - select the best model for our data/theory

Solution \Rightarrow move towards deep learning

- in terms software/technology
- in terms of **methodology**

Towards a DL approach

PDF determination is a supervised learning problem thus we need to provide review for the following sectors:

PDF determination is a supervised learning problem thus we need to provide review for the following sectors:

The n3fit model

New features:

- Python/C++ implementation using TensorFlow
- Modular approach \Rightarrow easier and faster development
- Can vary all aspects of the methodology

Performance benefits - time per replica

Benefits

- · Gain on speed and efficiency, less CPU hours for a fit
- Usage of new technologies \rightarrow hardware, libraries
- Usage of gradient descent optimization methods

 \Rightarrow Possibility to learn and tune the methodology

Learning the methodology

How to determine the best methodology?

Perform hyperoptimization scans:

Neural Network	Fit options	
Number of layers (*)	Optimizer (*)	
Size of each layer	Initial learning rate (*)	
Dropout	Maximum number of epochs (*)	
Activation functions (*)	Stopping Patience (*)	
Initialization functions $(*)$	Positivity multiplier (*)	

- Optimize figure of merit: validation χ^2
- Use bayesian updating (hyperopt)

The overfitting problem

Using validation set χ^2 :

The choice of the right figure of merit is important:

- **NNPDF** wiggles ightarrow finite size , goes away as $\mathit{N}_{
 m rep}$ grows
- N3PDF wiggles → overfitting, correlations training-validation data!

The overfitting problem

Using validation set χ^2 :

The choice of the right figure of merit is important:

- **NNPDF** wiggles ightarrow finite size , goes away as $\mathit{N}_{
 m rep}$ grows
- N3PDF wiggles → overfitting, correlations training-validation data!

 \Rightarrow define a proper quality control criterion

Cross-Validation vs hyperoptimization

Define a completely uncorrelated Test Set

Optimize on weighted average of validation and test.

Removing overfitting

Using test-validation set χ^2 :

- No overfitting
- Greater stability
- Reduced uncertainties

	DIS only	Global
n3fit (new)	1.10	1.15
nnfit (old)	1.13	1.16

Quality control

Chronological fits

Idea:

- Take a pre-HERA dataset
- **2** Perform hyperoptimization
- ❸ Compare predictions to "future" data

Chronological fits

Idea:

- Take a pre-HERA dataset
- Perform hyperoptimization
- 3 Compare predictions to "future" data

Examples:

⇒ Results within PDF uncertainty!

Defining a proper Test set

How to define a proper Test Set?

- we have a limited dataset with lots of features, $\textit{N}_{\rm data}\approx5000$

Defining a proper Test set

How to define a proper Test Set?

- we have a limited dataset with lots of features, $\mathit{N}_{\mathrm{data}} pprox$ 5000
- \Rightarrow **Potential solution:** use *k*-fold cross-validation.
 - Use k partitions in a rotation estimation for the Test Set
 - hyperoptimize the mean value of the Test Set χ^2

Defining a proper Test set

How to define a proper Test Set?

- we have a limited dataset with lots of features, $\textit{N}_{\rm data}\approx 5000$
- \Rightarrow **Potential solution:** use *k*-fold cross-validation.
 - Use k partitions in a rotation estimation for the Test Set
 - hyperoptimize the mean value of the Test Set χ^2

 \Rightarrow Compatible with our previous Test Set definition.

Future challenges

Extrapolation region

The current parametrization uses preprocessing:

$$f(x) = x^{-\alpha}(1-x)^{\beta} NN(x)$$

If preprocessing is removed, we observe saturation at small-x:

Challenges:

- Modify neural network input architecture
- Generate pseudodata in the extrapolation region

Extrapolation region

Gaussian pseudodata:

- use gaussian process to model DIS observables
- propagate a prior gaussian into extrapolation
- generate gaussian pseudodata and add it to fit

Towards the NNPDF4.0 release:

- Faster run times and stable results
- Possibility to learn the methodology
- Quality control, reduced uncertainties
- Better understanding of model behavior

Thank you!