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Abstract

A correct treatment of heavy quarks is crucial for a precise description of phe-
nomenology. This thesis analyses the Fixed-Order Next-Leading-Log FONLL
approach which defines a general framework for the matching of a calcula-
tion in which a heavy quark is treated as a massless parton to one in which
the mass dependence is retained throughout. We explicitly consider the case
of a deep-inelastic scattering, describing how to include heavy quark mass
contributions to deep-inelastic structure functions. We develop the FONLL
structure functions up to α3

s, which means one order higher than the actual
FONLL equations, with the basic idea of completely defining - at least theo-
retically - the FONLL framework at N3LO, the new frontier for high-precision
predictions. The obtained structure functions cannot be numerically stud-
ied yet because many Wilson coefficients that are required are analytically
known only in the asymptotic region.

We then study in detail the matching condition for the heavy quark, con-
sidering the concrete case of the charm. The main purpose is the comparison
among the perturbative charm PDF with a α3

s matching (our result), a α2
s

matching and a fitted charm that takes into account also a possible non-
perturbative component. Our result is only partial because the coefficients
required for the calculation are not fully known; anyway, the most significant
part has already been computed, which is sufficient for a first phenomenolog-
ical study. The charm PDF starts at order α2

s, which means that we consider
the first non trivial correction to the leading order.

Our result shows that the NLO correction to the charm matching condi-
tion is particularly high and it has the same shape of the LO contribution:
the perturbative series is far from convergence. For investigating the charm
content of the proton, one can thus neither fit the charm PDF or consider
our result with an error bar that covers the intermediate region between the
2-loop and 3-loop contributions.
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Chapter 1

Introduction

A correct treatment of heavy quarks is essential for precision measurements
at hadron colliders. Treating heavy flavours is not trivial because one must
take into account the changing role of the heavy quark over the full kinematic
range, from the production threshold, where mass effects are important, to
the high-energy region, where the heavy flavour can be considered as a mass-
less parton. In order to obtain reliable predictions on the whole kinematic
range, these two different frameworks must be matched together and rear-
ranged in a single theory, so that one can define a framework that is accurate
at all scales.

In this thesis, we will discuss the Fixed-Order Next-Leading-Log FONLL
approach which defines a framework for the inclusion of heavy quark effects
in deep-inelastic structure functions. Nowadays, the FONLL approach is
commonly used with a perturbative expansion up to α2

s, where αs is the
strong coupling. In this work we extend the FONLL equations one order
higher, with the main goal of completely defining the theoretical framework
for a full N3LO matching.

In fact, at hadron colliders such as the LCH, matching the precision of ac-
tual data needs a reduction of theory uncertainties, which are dominated by
errors related to Quantum Chromodynamics. This reduction requires predic-
tions at or beyond next-to-next-to-leading order (NNLO), which is today’s
state of heart for fixed order calculations. In particular, the recent N3LO
computation [20] of the partonic cross section for the production of a Higgs
boson via the fusion of two bottom quarks showed that N3LO is the new
frontier for high-precision predictions.

Another key ingredient in QCD is represented by Parton Distribution
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1. Introduction

Functions : a PDF fi(x,Q
2) represents the probability of finding a parton i

carrying a momentum fraction x inside a hadron. A precise knowledge of
PDFs is essential in order to make predictions in the Standard Model. In the
same vein of reducing the theory uncertainty related to QCD, we will deeply
discuss how a α3

s matching can modify the charm PDF. At the moment, the
matching condition for the charm PDF is known up to α2

s, which is however
just the leading order: the real charm PDF can thus be very different.

This thesis is structured as follows: the first chapter is a brief revision
of QCD factorization, starting from the important case of electromagnetic
deep-inelastic scattering. We also discuss the DGLAP evolution equation. In
this same section, we describe an important formalism which will be useful
in the next sections: the Operator Product Expansion OPE.

The second chapter is dedicated to the treatment of heavy quarks. We
describe how a theory with nl light quarks and a single heavy flavour can
be discussed, using both a massive scheme, in which the heavy mass is re-
tained, and a massless scheme, in which we consider the heavy flavour as a
massless parton. An important section is dedicated to the definition of the
perturbative matching conditions between the two schemes.

The third part is dedicated to the FONLL approach: we discuss in detail
how to construct the FONLL structure functions and we dedicate a section
to the matching condition for the heavy quark, considering the specific case
of the charm.

In the last chapter we discuss our results. The first part shows explicitly
how to construct the FONLL structure functions up to α3

s, providing analytic
expressions without a numerical implementation. The second part is related
to the charm matching condition, which is numerically implemented and
compared to the actually known charm PDFs.
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Chapter 2

Theoretical background:
factorization

Quantum Chromodynamics QCD is the modern theory of strong interactions.
It describes the interactions between quarks and gluons, and how they bind
together to form hadrons. Precision physics at hadron colliders requires an
accurate understanding of QCD over a vast range of scales, which span from
the proton mass (∼ 1 GeV) to the centre-of-mass energy of the hard scattering
processes (few TeV).

The non-abelian nature of QCD, and the consequent asymptotic freedom,
permits the calculation of partonic cross sections through perturbation theory
in the high-energy limit. By contrast, at lower scales perturbativity breaks
down and reliable results can be provided by non-perturbative approaches
only. For example, the technique of lattice simulations provided valuable
results in this region, thus becoming a well-established basic tool in these
calculations.

Even considering the high-energy region only, perturbative QCD could
be insufficient for describing data. In general, high-energy cross sections are
a combination of high- and low- energy contributions, and thus not directly
obtainable through a perturbative approach only. In practice, a direct calcu-
lation can be affected by infrared (low-energy) divergences. The predictive
power of perturbative QCD is restored thanks to the property of factorization
of collinear singularities.

Collinear factorization is a general property of QCD which allows one
to separate the high-energy, short-distance perturbative contribution to the
low-energy, long-distance non-perturbative part in the calculation of a high-
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2. Theoretical background: factorization

Figure 2.1: Deep-inelastic scattering.

energy cross section. This process can be systematically performed reab-
sorbing the non-perturbative contributions in universal objects: the parton
distribution functions PDFs.

In this chapter we describe how the factorization of collinear singulari-
ties works, considering explicitly the case of a deep-inelastic scattering DIS.
We then describe an important formalism which will be useful in the next
chapters: the operator product expansion.

2.1 Deep Inelastic Scattering
The deep-inelastc scattering is the process in which a lepton scatters off a
hadron with the exchange of an electro-weak boson with large virtuality. DIS
played, and still plays, an important role in strong-interaction physics, par-
ticularly in our understanding of the structure of the nucleon. Furthermore,
it provides a rich theoretical and experimental laboratory to quantitatively
study and test QCD.

We consider the process depicted in 2.1:

l1(k) +N(p) → l2(k
′) +X (2.1)

where a lepton with momentum k scatters off a proton of momentum p. The
momentum of the exchanged vector boson is q = k − k′. In this analysis we
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2. Theoretical background: factorization

use the common DIS variables:

Momentum transfer: Q2 = −q2 > 0

Energy transfer: ν = p · q

Bjorken variable: x =
Q2

2p · q
, x ∈ [0, 1]

Fractional energy transfer: y =
q · p
k · p

, y ∈ [0, 1]

(2.2)

At a given centre-of-mass energy s, the differential cross section of the process
is expressed as a function of Q2 and x or x and y. This differential cross
section is proportional to the matrix element squared and can be factorized
into an hadronic and a leptonic part:

d2σ

dxdQ2
∝ LµνW

µν (2.3)

where Lµν is the leptonic tensor and W µν is the hadronic one.

Lµν =
1

Q2

∑︂
spin

⟨l1|jµ|l2⟩⟨l2|jν†|l1⟩ (2.4)

W µν =
1

4π

∑︂
spin,X

⟨P |Jµ|X⟩⟨X|Jν†|P ⟩(2π)4δ(P + q − pX) (2.5)

The hadronic tensor contains all the information about the interaction of
the conserved current Jµ with the target hadron and, in its definition, the
sum is performed over all the final states compatible with the process and
the average is done over the incoming elicity states. While the leptonic
tensor can be easily calculated, the hadronic one is usually expressed in
the most general form introducing the structure functions which contains
the information about the structure of the hadron as seen by the virtual
boson. If we restrict ourselves to the electromagnetic case in which a virtual
photon γ∗ is exchanged 1, the constraints of Lorentz invariance and current
conservation lead to the following parametrization:

Wµν(p, q) =

(︃
−gµν−qµqν

q2

)︃
F1(x,Q

2)+

(︃
pµ−p · q

q2
qµ
)︃(︃

pν−p · q
q2

qν
)︃

1

p · q
F2(x,Q

2)

(2.6)

1Considering the exchange of a virtual photon γ∗ is correct only if Q2 ≪ m2
W , which

means that the transferred energy is not sufficient to produce a massive electro-weak vector
boson Z and W±.
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2. Theoretical background: factorization

where F1 and F2 are the structure functions. In the general case of an
electro-weak interaction, a third structure function F3 is needed: this new
term violates parity.

Defining the longitudinal structure function as FL = F2 − 2xF1 and ex-
plicitly calculating the leptonic tensor, equation (2.3) becomes

d2σ

dxdQ2
=

2πα2

xQ2
{[1 + (1− y)2]F2(x,Q

2)− y2FL(x,Q
2)} (2.7)

where α is the fine structure constant.
In early DIS experiments, structure functions were observed to obey an

approximate scaling law, the so-called Bjorken scaling : in the Q2 → ∞
region, structure functions depend only on the dimensionless variable x.

Fi(x,Q
2) −→ Fi(x) (2.8)

Bjorken scaling implies that the virtual photon scatters off pointlike con-
stituents, otherwise the dimensionless structure functions would depend on
the ratio Q/Q0, where 1/Q0 is some length scale characterising the size of the
constituents. This idea led Bjorken and Feynman to formulate the parton
model : the basic idea is assuming that a hadron is made up of point-like, non
interacting partons which carry a fraction x of the momentum of the hadron.
For each species a of parton, one can introduce a parton distribution function
(PDF) fa(x) which represents the probability that a parton a carries a frac-
tion x of the total momentum of the hadron. In this simple model, structure
functions can be obtained considering the scattering of the virtual photon off
a single parton, thus obtaining a partonic cross section, and then weighting
this term with the parton distribution function. The result must be summed
over all the parton species. At leading order in the strong coupling O(α0

s),
the structure functions become:

F2(x) =
∑︂
a

e2axfa(x)

FL(x) = 0

(2.9)

The second equation is the Callan-Gross relation, which is a consequence of
the spin-1/2 nature of partons.

Nowadays we interpret the parton model as the leading order of pertur-
bative QCD, in which Bjorken scaling is violated by collinear divergences.
In fact, in QCD both virtual and real corrections to a hard process produce
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2. Theoretical background: factorization

Figure 2.2: Real gluon emission from a quark line.

divergent terms which represent soft and collinear singularities. In virtual
diagrams, divergences appear when integrating the loop momentum on the
infrared region while, in real diagrams, singularities appear when integrating
over the phase space.

In order to understand the origin of these divergences we can study the
splitting of a quark line into a quark and gluon line, as in figure 2.2. If the
quark is massless, the internal fermion propagator is proportional to:

1

(p+ k)2
=

1

2EqEg(1− cos θ)

θ≪1−−→ 1

EqEgθ2
(2.10)

which diverges if the energy of the massless gluon goes to zero (soft singu-
larity), or if the angle θ goes to zero (collinear singularity), or both. More
precisely, in the soft limit the squared matrix element and the phase space
for the gluon emission factorize:

|M |2qq̄gdϕ ∼ |M |qq̄dϕdω (2.11)

where dω is the probability of soft gluon emission in the soft and collinear
limit

dω ∼ dEg

Eg

dθ2

θ2
(2.12)

Each singularity gives rise to a logarithmic divergence. If we consider a
massive quark, we introduce a natural regulator for collinear singularities
because the propagator becomes proportional to:

1

(p+ k)2 −m2
=

1

2EqEg(1−
√︂

1− m2

E2
q
cos θ)

(2.13)

For this reason, collinear singularities are also called mass singularities.
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2. Theoretical background: factorization

Figure 2.3: Real and virtual contribution to the initial state splitting.

These problems related to virtual and real emissions are notably simpli-
fied by the KLN theorem [41, 42] which states that fully inclusive observables
are free of infrared singularities: for total inclusive observables there is an
exact compensation of the real and virtual divergences. In the DIS process,
however, the KLN theorem does not hold for the initial state singularities
because of the different hard-scattering kinematics (see figure 2.3) of the
real and virtual contributions. While soft singularities (z → 1) cancel be-
tween real and virtual corrections, collinear divergences remain because the
momentum which flows in the hard process is different in the two cases.

To be more precise, the quark momentum which enters the hard scattering
is zp in the real contribution while it is p in the virtual correction. This
kinematic discrepancy is null only in the soft limit z → 1: the KLN theorem
guarantees the disappearance of soft divergences but collinear ones remain.

Specifically considering the DIS scattering, at the lowest order O(α0
s) the

cross section for the process γ∗q → q is proportional to e2qδ(z−1). At the first
order O(αs), both real and virtual QCD corrections arise (see figure 2.4). An

Figure 2.4: Virtual and real contributions at order αs in the process γ∗q → q.

explicit calculation of the partonic cross section at this order shows that the
αs contribution is:

σ̂(1) =
CFαs

2π

∫︂
dz
dk2⊥
k2⊥

1 + z2

1− z

(︃
σ̂(0)(zp)− σ̂(0)(p)

)︃
(2.14)
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2. Theoretical background: factorization

where k⊥ is the transverse momentum of the emitted gluon. The soft singu-
larity at z=1 cancels between real and virtual corrections but the collinear
singularity k⊥ → 0 does not.

Collinear singularities are treated similarly to UV divergences in a reno-
marlization procedure: they are reabsorbed into parton distribution func-
tions that, as a consequence, acquire a scale dependence. This process is the
factorization of collinear singularities.

2.2 Factorization of collinear singularities
The key concept for removing collinear singularities is realizing that the
small-k⊥ limit corresponds to a sensitivity to long-range strong interactions
which cannot be calculated in perturbative QCD. The parton distribution
functions introduced in the parton model are unmeasurable, bare quantities
and can be redefined in order to reabsorb the divergent terms into physical
PDFs. Hadronic cross sections can thus be obtained starting from partonic
cross sections, which are process-dependent, free of collinear singularities and
computable order by order in pQCD, and physical parton densities, which are
universal non-perturbative objects that must be extracted from data. The
procedure of separation of the high-energy contribution, computable order by
order in pQCD, and the low-energy correction, which must be experimentally
exctracted, is the factorization.

Turning back to the DIS discussion, equation (2.14) can be rewritten as

σ̂(1)(x,Q2) = e2qαs

[︃
P (x) ln

Q2

Q2
0

+ C(x)

]︃
(2.15)

where Q0 is a scale introduced for regularizing the logarithmic divergence,
C(x) is a calculable function and P (x) is the so-called splitting function
defined as

P (x) = CF

[︃
1 + x2

(1− x)+
+

3

2
δ(1− x)

]︃
. (2.16)

The plus distribution is defined so that its integral with any sufficiently
smooth distribution f is∫︂ 1

0

dx
f(x)

(1− x)+
=

∫︂ 1

0

dx
f(x)− f(1)

1− x
(2.17)
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2. Theoretical background: factorization

and
1

(1− x)+
=

1

1− x
for 0 ≤ x < 1 (2.18)

Considering for simplicity only one parton species, the structure function
at the first order in αs is

F (x,Q2) = e2q

[︃
f (0)(x) + αs

∫︂ 1

x

dz

z

(︃
P (z) ln

Q2

Q2
0

+ C(z)

)︃
f (0)(

x

z
) +O(α2

s)

]︃
(2.19)

where f (0) represents the bare parton density. The removal of collinear sin-
gularities can be performed introducing a factorization scale µF which allows
one to separate the divergent contribution:

ln
Q2

Q2
0

= ln
Q2

µ2
F

+ ln
µ2
F

Q2
0

(2.20)

so that equation (2.19) can be rewritten as

F (x,Q2) = e2q

[︃
f (0)(x)+αs

∫︂ 1

x

dz

z

(︃
P (z) ln

Q2

µ2
F

+P (z) ln
µ2
F

Q2
0

+C(z)

)︃
f (0)(

x

z
)

+O(α2
s)

]︃
(2.21)

The physical PDFs can be obtained introducing a µF -dependent term Γ

Γ

(︃
z,
µ2
F

Q2
0

)︃
= P (z) ln

µ2
F

Q2
0

+ Γreg(z) (2.22)

so that the µF -dependent PDFs are:

f(x, µF ) = f (0)(x) + αs

∫︂ 1

x

dz

z
f (0)

(︃
x

z

)︃
Γ

(︃
z,
µ2
F

Q2
0

)︃
+O(α2

s) (2.23)

In equation (2.22), Γreg represents finite (non-logarithmic) contributions. It
is clear that the parton distribution function f(x, µF ) cannot be calculated
from first principles in perturbation theory, since it receives contributions
from the low-energy (non-perturbative) part of the strong interaction. It
must be extrapolated from data.
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2. Theoretical background: factorization

The structure function (2.19) is now straightforward:

F (x,Q2) = e2q

[︃
f(z, µ2

F )+αs

∫︂ 1

x

dz

z

(︃
P (z) ln

Q2

µ2
F

+ Ĉ(z)

)︃
f

(︃
x

z
, µ2

F

)︃
+O(α2

s)

]︃
(2.24)

where Ĉ(z) depends on the specific choice of the regular part in (2.22).
It is important to underline that while factorization provides a prescrip-

tion for dealing with the logarithmic singularities, there is an arbitrariness on
the treatment of regular terms. How much finite contributions are factored
out defines the factorization scheme. A common choice for the factorization
scheme is the Modified Minimal Subtraction MS scheme, in which in addi-
tion to the divergent piece, a (ln 4π − γE) contribution is absorbed into the
parton distribution.

In general, the finite contributions that remain after the factorization
process are collected by defining a coefficient function C(z, Q

2

µ2
F
); the structure

function can thus be expressed as:

F (x,Q2) = e2q

[︃
f(z, µF ) + αs

∫︂ 1

x

dz

z
f

(︃
x

z
, µF

)︃
C(1)

(︃
z,
Q2

µ2
F

)︃]︃
(2.25)

where the superscript (1) refers to the first perturbative order in the strong
coupling. In fact, coefficient functions can be computed order by order in
perturbation theory as an expansion in αs:

C(x, αs) = C(0)(x) + αsC
(1)(x) + α2

sC
2(x) + ... (2.26)

So far, we considered the specific case of a DIS process at the first order in
αs with a single partonic species. This discussion can be extended considering
that, in a general case, structure functions are obtained considering all the
partonic species which enters the process at a desired order: equation (2.25)
must then contain all the information carried by the different active flavours
and the gluon.

F (x,Q2) =
∑︂
a

∫︂ 1

x

dz

z
Ca

(︃
x

z
,
Q2

µ2
F

, αs

)︃
fa(z, µ

2
F ) (2.27)

In a compact form, equation (2.27) can be express introducing the convolu-
tion symbol ⊗ :

F (x,Q2) =
∑︂
a

Ca

(︃
x,
Q2

µ2
F

, αs

)︃
⊗ fa(x, µ

2
F ) (2.28)
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2. Theoretical background: factorization

Structure functions are thus obtained as the convolution between coeffi-
cient functions, which are computable order by order in perturbation theory
and represent the high-energy contributions to the process, and parton dis-
tribution functions, which are universal non-perturbative objects that must
be extrapolated from data. Furthermore, equation (2.28) explicitly shows
that Bjorken scaling is broken in QCD by logarithms of the hard scale Q.

In this section we showed how factorization is a key concept in QCD that
enables one to apply perturbative calculations in many important processes
involving hadrons: the factorization procedure consists in a systematic sepa-
ration between low- and high- energy contributions in the calculation of hard
processes through the definition of physical parton distribution functions
which reabsorb divergent terms. Several arguments show that factorization
can be performed at all orders in perturbation theory, even if a solid proof is
present only for specific cases (for example, a DIS scattering). Anyway, the
factorization theorem is now widely accepted.

The factorization procedure necessarily requires the introduction of a new
scale in the theory. The first-principles calculation of the parton distributions
is beyond the scope of perturbation theory, however what can be calculated
is how they depend on the factorization scale µF . This scale dependence is
described by the DGLAP evolution equation.

2.3 DGLAP evolution equation
In the previous section we saw how the factorization procedure requires the
introduction of a new scale in the theory: the factorization scale µF . The
physical parton distribution functions PDFs depend on this scale through
the DGLAP equation. To see how to obtain this evolution equation, one can
notice that the right-hand side of equation (2.24) does not depend on the
factorization scale because structure functions must be independent of µ2

F :

µ2
F

∂

∂µ2
F

F (x,Q2) = 0 (2.29)

This constraint leads to a renormalization group equation for the parton
density f(x, µ2

F ):

µ2
F

∂

∂µ2
F

f(x, µ2
F ) = αs(µ

2
F )

∫︂ 1

x

dz

z
P

(︃
x

z

)︃
f(z, µF

2) (2.30)
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2. Theoretical background: factorization

This equation is known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
equation [43]. The splitting function P can be calculated order in perturba-
tion theory as an expansion in the running coupling:

P (z, αs) = P (0)(z) + αsP
(1)(z) + α2

sP
(2)(z) +O(α3

s) (2.31)

Strictly speaking, equation (2.30) is correct only in the case of a theory
in which quarks of a single flavour radiate gluons. However, in a complete
theory one must take into account the presence of gluons and antiquarks
in the target hadron and the different active flavours of quarks/antiquarks.
The DGLAP equation is in fact a (2nf+1)-dimensional matrix equation in
the space of quarks, antiquarks and gluons:

µ2 ∂

∂µ2

(︃
qi(x, µ

2)
g(x, µ2)

)︃
= αs(µ

2)
∑︂
qj ,q̄j

∫︂ 1

x

dz

z

×
[︃
Pqiqj

(︁
x
z
, αs(µ

2)
)︁

Pqig

(︁
x
z
, αs(µ

2)
Pgqj

(︁
x
z
, αs(µ

2)
)︁

Pgg

(︁
x
z
, αs(µ

2)

]︃(︃
qj(z, µ

2)
g(z, µ2)

)︃
(2.32)

where we dropped the subscript F to the factorization scale. Each splitting
function is again calculable as a power series in αs:

Pqiqj(z, αs) = δijP
(0)
qq (z) + αsP

(1)
qiqj

(z) + ...

Pqg(z, αs) = P (0)
qg (z) + αsP

(1)
qg (z) + ...

Pgq(z, αs) = P (0)
gq (z) + αsP

(1)
gq (z) + ...

Pgg(z, αs) = P (0)
gg (z) + αsP

(1)
gg (z) + ...

(2.33)

Thanks to charge conjugation invariance and SU(nf ) flavour symmetry, the
following identities are valid:

Pqiqj = Pqīqj̄

Pqiqj̄ = Pqīqj

Pqig = Pqīg ≡ Pqg

Pgqi = Pgqī ≡ Pgq

(2.34)

i.e. the splitting functions Pqg and Pgq are independent of the quark flavour
and the same for quarks and antiquarks. The leading order Pqiqj splitting
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2. Theoretical background: factorization

function is zero unless qi = qj. This allows the matrix equation (2.32) to be
considerably simplified at this order.

The DGLAP equation describes the evolution of the PDFs with the fac-
torization scale µF . Given a boundary condition, DGLAP evolution allows
one to obtain the behaviour of the PDFs at a generic scale µ. In practice,
knowing the PDFs at some initial scale µ0, equation (2.32) predicts how the
PDFs change from the scale µ0 to any other scale µ.

2.4 Operator Product Expansion
In this section, we describe an important formalism which will be useful in
the following chapters: the Operator Product Expansion (OPE), also called
Wilson expansion.

The operator product expansion is a technique used for the calculation
of the product of local operators when their separation |x| goes to zero. In
quantum field theory, for many applications one needs to compute products
of some operators. As we will see, an important example is the calculation
of the hadronic tensor in DIS, which can be reduced to the computation of
the product of two electromagnetic currents.

If we consider two local operators O1 and O2, the Wilson expansion ex-
presses the product of these two operators as a linear combination of local
operators of the theory weighted for some coefficients:

O1(x)O2(0) →
∑︂
n

C12,n(x)On(0) (2.35)

The coefficients C12,n are c-number functions while On represents a full set of
operators of the theory. The interesting aspect is that all the x-dependence
is embedded in the coefficients C12,n.

Using the OPE, a generic product between operators can be factorized
into universal |x|-dependent c-number functions and operators. Applying the
OPE consists thus in evaluating the universal coefficients and studying all
the operators of a theory. As for the coefficients, one must notice that (2.35)
is valid on generic states of the Fock space and that the coefficients Cn do
not depend on the specific states. In order to calculate these coefficients, one
can thus perform a calculation of the form

⟨ψ|O1(x)O2(0)|ψ⟩ (2.36)
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2. Theoretical background: factorization

where |ψ⟩ is a simple state, i.e. a state over which we can make analytic cal-
culations, and then use the universal coefficients for calculating the operator
product on the states of interest.

We can now analyse the full set of operators of the theory. Operators can
be classified using dimensional analysis: both the right and left members of
equation (2.35) must have the same dimensions. For example, if we consider
the product of two equal operators, each of which with dimension dj in
terms of length, all the members on the right hand side must have the same
dimension:

[CnOn] ∼ [x]2dj (2.37)

If we consider [On] ∼ [x]dn , we obtain the dimension of the coefficient Cn:

[Cn] ∼ [x]2dj−dn (2.38)

In the limit in which the separation goes to zero, operators with a big
and negative dimension in terms of length are suppressed, because the related
coefficients are suppressed.

In general, operators can have an arbitrary small dimension in terms
of length, or equivalently an arbitrary large dimension in terms of mass.
Equation (2.38) thus states that the number of operators which contributes
in the calculation is rather small.

An important feature must now be underlined: we are working in a
Minkowski space, not in an Euclidean one. This fact represents a complica-
tion: considering that the norm of a vector |x| tends to zero is not equivalent
to the requirement that each of the components of the 4-vector goes to zero
independently. More precisely, xµxµ can tend to zero with finite x0 and xi.
If we want to apply the dimensional analysis described before, we must dis-
tinguish between two cases: operators which depend on |x| and operators
which depend on xµ.

Let’s consider as a simple example the product of two scalar currents:

J(x)J(0) =
∑︂
n

CnOn (2.39)

Coefficients can be scalars, vectors and tensors:

Cn(x) = fn(|x|)
Cµ

n(x) = xµgn(|x|)
Cµν

n (x) = xµxνhn(|x|)
(2.40)
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2. Theoretical background: factorization

in which fn have the same dimensions of Cn, gn have the same dimension of
Cµ

n minus one, hn the same as Cµν
n minus two, and so on. We are considering

the case in which |x| tends to zero, but xµ is finite: with coefficients with the
same dimensions, gn goes to zero slower than fn, and hn even slower than
gn. The correct dimension in Minkowski space is thus:

Cn ∼ |x|2dj+dn−s (2.41)

where s represents the number of indexes of the operator under consideration
(it is its spin). The dimension of an operator in terms of mass minus its spin
defines the twist t:

|dn| − s = t (2.42)

If in the euclidean case the dominant contribution in the calculation comes
from operators with the lowest dimension, in the minkovskian case the dom-
inant contribution comes from operators with the lowest twist.

In a theory with fermion fields of dimension 3/2 and gauge fields with
dimension 1, operators with lowest twist have dimension 2. In particular,
we can consider two different types of operator: in the fist case, they are
obtained starting from bilinear fermion fields:

ψ̄γµψ d = 3, s = 1, t = 2 (2.43)

and we have also operators obtained from gauge fields of the form

F µαF ν
α d = 4, s = 2, t = 2 (2.44)

In QCD the number of operators of the form (2.43) is related to the number
of colours and flavours in the theory.

Operators with the lowest twist are called leading twist operators.
We can now see how this formalism works explicitly considering the cal-

culation of the hadronic tensor W µν in equation (2.5):

W µν =
∑︂

⟨P |Jµ|X⟩⟨X|Jν†|P ⟩(2π)4δ(P + q − pX) (2.45)

where for simplicity we removed the 1/4π factor. We introduce an integral
representation of a 4-dimensional delta, obtaining:

W µν =
∑︂∫︂

d4xeiq·x⟨P |Jµ|X⟩⟨X|Jν†|P ⟩ (2.46)
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We can eliminate the dependence on the final state |X⟩ using the optical
theorem [26], through which one can express the relation between forward
scattering amplitudes and total cross sections. Considering the matrix ele-
ment from an initial state |Pγ∗⟩ (proton and virtual photon) and a generic
final hadronic state |X⟩

iT = ⟨X|Pγ∗⟩ = ⟨X|Jν |P ⟩ϵν (2.47)

and applying the optical theorem (Jν is the electromagnetic current that
creates the photon), one can express the hadronic tensor as:

W µν =
2

π
Im

∫︂
d4xeiq·x⟨Pγ∗|Pγ∗⟩ = 2

π
Im

∫︂
d4xeiq·x⟨P |T (Jµ(x)Jν(0))|P ⟩

(2.48)
thus removing the dependence on the final hadronic state. T is the chrono-
logical product. The π at the denominator comes from the correct covariant
normalization of physical states.

The difficulties in performing this calculation are related to the evaluation
of the product of the currents on a proton state |P ⟩. This problems are solved
using the operator product expansion.

We now want to study how to calculate T µν defined as:

T µν = ⟨P |T (Jµ(x)Jν(0)|P ⟩ (2.49)

Of course, the decomposition of the hadronic tensor in (2.6) holds also for
T µν , so that one can introduce functions Ti which play the same role of the
structure functions in the hadronic tensor:

Tµν(p, q) =

(︃
− gµν − qµqν

q2

)︃
T1(x,Q

2) +

(︃
pµ − p · q

q2
qµ
)︃(︃

pν − p · q
q2

qν
)︃

1

p · q
T2(x,Q

2)

Fi =
2

π
ImTi

(2.50)
Using the OPE formalism we should consider a complete twist-2 basis of

operators in the theory: in order to simplify the calculation, we will consider
only fermionic operators. The chronological sorting can be removed thanks
to the OPE (the product is seen as the sum of single operators). We can
write the expansion of the product:

Jµ(x)Jν(0)
∞∑︂

k=2,k=even

Oµνµ1...µk−2xµ1 ...xµk−2
Ck(|x|) (2.51)
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where the sum is performed only on even k for parity invariance. We have
now to consider this expression on a proton state |P ⟩.

Firstly, one can observe that the matrix element ⟨P |Oµνµ1...µk−2 |P ⟩ does
not depend on the separation x. All the x dependence is included in the
coefficients Ck. In Fourier space, x becomes q, the transferred momentum.
The result depend both on q and p, where p is the proton momentum. This
means that the operator matrix element can depend only on the proton
momentum p, which thus carries the vectorial indexes:∫︂

d4xeiqx⟨P |T (JµJν |P ⟩ =
∞∑︂
k=2

2pµpνpµ1 ...pµk−2Ak

∫︂
d4xeiqxxµ1 ...xµk−2

Ck(|x|)

(2.52)
The factor 2 is a normalization and Ak defines the reduced matrix element,
the scalar contribution of the operator. We can calculate the Fourier trans-
form introducing the conjugate vectors that must be divided for Q2 for di-
mensional analysis:∫︂

d4xeiqx⟨P |T (JµJν |P ⟩ =
∞∑︂
k=2

2pµpνpµ1 ...pµk−2Ak
2qµ1

Q2
...
2qµk−2

Q2
Ck(Q

2)
1

Q2

(2.53)
The previous equation can be rewritten as follows2:∫︂

d4xeiqx⟨P |T (JµJν |P ⟩ =
∞∑︂
k=2

AkCk(Q
2)
2pµpν

Q2

(︃
2p · q
Q2

)︃k−2

(2.54)

where we recognize the Bjorken variable x = Q2/2pq.
Comparing this equation with the explicit expression of T µν in terms of

coefficient functions Ti (2.50), one can conclude that

T2 =
∑︂
k=2

AkCk(Q
2)

(︃
2p · q
Q2

)︃k−1

(2.55)

T2 is thus a Laurent series in ω = 1/x and we can thus extract the k-th
coefficient of the expansion using Cauchy’s formula:

AkCk =
1

2πi

∮︂
dωω−kT2(x,Q

2) (2.56)

2Expression (2.54) is easier than the correct one, because a term proportional to gµν

arises due to orthogonality. This term is completely defined by gauge invariance.
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T2 presents two branch cuts (see discussion in chapter 18.5 in [49]) but tak-
ing the imaginary part, as required by (2.50), we obtain a finite result. In
particular, one finds:

AkCk =

∫︂ 1

0

dxxk−1

(︃
F2(x)

x

)︃
(2.57)

This equation is a fundamental result of perturbative QCD: if we take the
k-th momentum of the structure function F2, we obtain a Wilson coefficient
Ck(Q

2), explicitly computable in perturbation theory, and the matrix element
of an operator Oµνµ1....µk−2 on proton states. For example, if we consider
k = 2, we have ∫︂

F2(x) = C2(Q
2)A2 (2.58)

where A2 is related to Oµν
2 = ψ̄γµ∂νψ.

In this way, we reobtained the crucial property of factorization in per-
turbation theory using the operator product expansion formalism: if one
considers the following Mellin transforms for the Wilson coefficient and the
reduced operator matrix element

Ck(Q
2) =

∫︂ 1

0

dxC(x,Q2)xk−1 Ak =

∫︂ 1

0

f(x)xk−1 (2.59)

the structure function can be rewritten exactly as defined in (2.27):

F2(x,Q
2) = x

∫︂ 1

x

dz

z
C

(︃
x

z
,Q2

)︃
f(z). (2.60)

This analysis is simpler than the real QCD discussion, in which one must
take into account the contributions of both quark and gluon operators, the
different flavours and colours. Anyway, the power of this result is clear:
we wrote the structure functions as a the product of a Wilson coefficients,
which are computable in perturbation theory, and non-perturbative terms
embedded in the reduced matrix elements.
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Chapter 3

Treatment of heavy quarks

In the previous chapter we provided a detailed description of the factorization
procedure. So far, we have worked under the hypothesis of massless quarks
but this assumption is unsatisfactory when the hard scale of the process Q
is comparable to the quark mass: in this case, the use of a mass-independent
scheme such as a MS scheme is not justified and precision predictions require
the inclusion of heavy quark mass corrections when Q ∼ mh.

In general, the up, down and strange quarks can always be considered as
massless partons, while for the charm, bottom and top quarks we must allow
for the effects of their mass mh. More precisely, we can distinguish heavy
and light quarks using the typical scale of strong interactions, namely 1 GeV:
particles with a higher mass are heavy quarks while the others are light ones.

The basic problem in treating heavy quarks is that a precise analysis
must properly take into account the changing role of the heavy quark over
the full kinematic range of the relevant process, from the threshold region -
where the quark behaves like a heavy particle - to the asymptotic region -
where the same quark behaves effectively like a parton similar to light quarks.
Precise results for a process at a certain perturbative scale Q2 require thus
matching these two different behaviours, which means including heavy quark
mass effects near the threshold region Q2 ∼ m2

h and the resummation of large
collinear logarithms for Q2 ≫ m2

h.
Nowadays, different techniques incorporate both approaches in a unified

framework in perturbative QCD which provides a smooth transition between
the two schemes. In particular, in this thesis we focus on how to include
heavy quark mass contributions to deep-inelastic structure functions.

In this section we will discuss the two main schemes used in the compu-
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3. Treatment of heavy quarks

Figure 3.1: Deep inelastic scattering process with the production of a heavy quark h.

tation of deep-inelastic structure functions in the presence of a heavy quark,
the so-called fixed flavour number scheme (FFNS) and the variable flavour
number scheme (VFNS).

3.1 FFNS and VFNS
In order to understand how the inclusion of heavy quark mass effects works
in deep inelastic scattering, we consider a general DIS process in which we
explicitly require the presence of a heavy quark h in the final state.

l1(k) +N(p) → l2(k
′) + h(ph) +X(pX) (3.1)

In the final state there is an heavy quark h of momentum pµh and mass
mh which has been explicitly separated from the final total hadronic state
X ′:

X ′(P ′) = h(ph) +X(PX).

The process is mediated by a virtual photon γ∗ of momentum q.
From now on, we will consider only heavy structure functions (i.e. with

a heavy quark in the final state) up to the first order in αs, in order to avoid
unnecessary complications due to higher-order corrections. At this order,
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3. Treatment of heavy quarks

using the factorization theorem the DIS heavy structure functions reduce to:

Fk(x,Q
2) =

∑︂
i=g,h,h̄

∫︂ 1

x

dz

z
Ck,i(

x

z
,Q2, αs(µ

2))fi(z, µ
2) =

=
∑︂
i=h,h̄

C
(0)
k,i ⊗ fi + αs

∑︂
i=g,h,h̄

C
(1)
k,i ⊗ fi

(3.2)

where the coefficient functions Ck,i have been perturbatively expanded in
terms of the running coupling αs. The sum runs over the heavy quark and the
gluon PDFs because only gluon-initiated and heavy quark-initiated diagrams
contribute to the heavy structure functions up to αs. The gluon contribution
to the coefficient function at LO is zero, since no gluon-initiated graphs
contribute at α0

s.
Coefficient functions in equation (3.2) can be computed in perturbation

theory using two different approaches, each of which has a better accuracy in
a certain kinematic region. At high scales, i.e. Q2 ≫ m2

h, the heavy quark is
expected to behave like a massless parton. Therefore, it is possible to calcu-
late the coefficient functions Ck,i explicitly setting to zero the masses of the
internal lines and the external partons in graphs for partonic subprocesses.
The calculation now presents collinear divergences which can be subtracted
in a MS scheme. These singularities arising from setting mh = 0 reflect
the presence of large collinear logarithms log(Q2

m2
h
): the natural way to resum

these contributions is to reabsorb them into the heavy quark PDF fh which,
as a consequence, start evolving according to the DGLAP equation. Using
this strategy, one obtains structure functions in the so-called zero-mass (ZM)
scheme:

FZM
k (x,Q2) =

∑︂
i=g,h,h̄

∫︂ 1

x

dz

z
CZM

k,i (
x

z
,Q2, αs(µ

2))fi(z, µ
2) =

=
∑︂
i=h,h̄

C
ZM,(0)
k,i ⊗ fi + αs

∑︂
i=g,h,h̄

C
ZM,(1)
k,i ⊗ fi

(3.3)

where CZM
k,i are the zero-mass MS coefficient functions.

Coefficient functions and DGLAP evolution equation depend on the num-
ber of active flavours nf alike: this yields the so-called Zero-Mass Variable
Flavour Number scheme ZMVFNS. The notion variable flavour number is
used since the number of active quark flavours is increased by one unit,
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3. Treatment of heavy quarks

nl → (nl + 1), when the energy scale crosses certain transition scales, which
are usually taken equal to the heavy quark mass. The ZMVFNS works well
if the scale Q is much greater than the heavy quark threshold. If we consider
a scale Q2 ≃ m2

h, this scheme is not accurate because it neglects potentially
important terms proportional to m2

h/Q
2.

Alternatively, one can perform calculations retaining the full dependence
of the quark mass mh in the coefficient functions Ck,i. In this case, resum-
mation of large logarithms is not required because the heavy quark mass mh

is a regulator for the IR divergences. Considering the heavy quark as the
(nl + 1)-th flavour, calculations at a scale Q2 < m2

h can be performed in
the ZM nl flavour scheme: in this way, the heavy quark decouples from the
evolution of the running coupling and the DGLAP evolution of the PDFs,
which are equal to the MS scheme with nl flavours. The structure functions
become

F FF
k (x,Q2) =

∫︂ 1

x

dz

z
CFF

k,g (
x

z
,Q2, αs(µ

2),mh)fg(z, µ
2) =

= αsC
FF,(1)
k,g ⊗ fg

(3.4)

where it is clear that the heavy quark PDFs is no longer present in the
calculation. This procedure defines the so called Fixed Flavour Number
Scheme FFNS: it basically consists in fixing the number of active flavours nl

and keeping the mass contribution of the (nl+1)-th flavour in the coefficient
functions for scales above the heavy quark threshold. This scheme is not
accurate in the region Q2 ≫ m2

h because of unresummed collinear logarithms.
The ZMVFNS and the FFNS are two distinct schemes which are indi-

vidually unsatisfactory over the full energy range, but are mutually comple-
mentary. From now on, we will simply refer to these schemes respectively
as massless (or (nl +1)-flavour scheme) and massive (or nl-flavour scheme)
scheme. Reliable predictions in perturbative QCD can be obtained using a
composite procedure that can smoothly interpolate between these two ap-
proaches, so that one can use a single accurate scheme over a wide range
of energy scales. Techniques which are able to combine the massless and
the massive scheme are commonly defined as General Mass Variable Flavour
Number Scheme.

It must be underlined that the massive and the massless schemes are not
independent: they can be related perturbatively considering how the running
coupling and the PDFs are connected in the two schemes. For instance, a
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Figure 3.2: Graphs which contribute to the β-function in the one-loop approximation.

generic observable can be expressed in both frameworks as a perturbative
expansion in the coupling (in the correct scheme): if the relation between
the nl and (nl + 1) coupling is known, the coefficients of the perturbative
expansion can be matched order by order.

3.2 Matching conditions
The calculation of the perturbative matching conditions that relate the nl

and (nl+1) schemes at a specific matching scale µmatch is a key ingredient in
the definition of a GMVFNS. These matching conditions express the relations
between the running coupling and the PDFs in the two frameworks.

The matching relation for the coupling is obtained studying the evolution
of αs through the renormalization group equation in the two schemes, which
is determined by the β-function of the theory.

µ2∂αs

∂µ2
= β(αs) (3.5)

The β-function admits a perturbative expansion of the form

β(αs) = −β0α2
s + β1α

3
s + β2α

4
s + ... (3.6)

where the coefficients βi can be calculated in perturbation theory.
β is extracted from the higher-order corrections to the bare vertices of

the theory and thus it assumes a different value when switching form the
nl scheme to the (nl + 1) one. A clear example is depicted in 3.2: these
graphs contribute to the β-function in the one-loop approximation. When
changing scheme nl → (nl + 1), the number of active flavours that circulate
in the fermion loop (figure (b)) changes, which determines a difference in the
calculation of the β-function in the two theory: β explicitly depends on the
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3. Treatment of heavy quarks

number of active flavours. The β-function is currently known up to five-loop
corrections [44].

Comparing order by order in perturbation theory the evolution of the cou-
pling in the massless and in the massive schemes, one can find the matching
relation:

α(nl+1)
s (µ2

match) = α(nl)
s (µ2

match) + ∆αs (3.7)

in which ∆αs is a calculable function with a perturbative expansion of the
form:

∆αs =
∞∑︂
i=2

ci(L)(α
nl
s (µ2

match))
i (3.8)

where ci(L) are polynomials which depends on log (µ2
match/m

2
h). For example,

considering only the first perturbative correction, c1 can be written as

c1(L) = A log (µ2
match/m

2
h), (3.9)

where A is a function independent on the matching scale.
The matching scale is usually taken equal to the mass of the heavy flavour

mh for a question of naturalness: this choice is somehow arbitrary but it
simplifies substantially the calculation because all the terms proportional to
powers of log (µ2

match/m
2
h) vanish. In fact, thanks to equation (3.9), at leading

order the running coupling is continuous when switching from the nl to the
(nl + 1) description:

α(nl+1)
s (µ2

match) = α(nl)
s (µ2

match) +O(α(nl)
s

2
). (3.10)

Expression (3.7) can be used to relate the coefficients of the perturbative
expansion of a generic observable F (αs) in the two schemes

F (αs) =
∑︂
k

(︃
α(nl)
s

)︃k

F (nl)
k
=

∑︂
k

(︃
α(nl+1)
s

)︃k

F (nl+1)k (3.11)

by expanding and matching the two expressions order by order once both
are written in terms of the coupling in the same scheme. In fact, one can
consider that a generic structure function F (x,Q2) can be expressed both
in the massless and in the massive scheme, respectively F (x,Q2)(nl+1) and
F (x,Q2)(nl). These two structure functions are not independent, because
they represent the same physical quantity. More precisely, they must be equal
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order by order in the high energy limit up to power-suppressed contributions.
In the nl scheme, the structure function reads:

F (nl)(Q2,m2
h) =

∑︂
i=q,q̄,g

C
(nl)
i

(︃
m2

h

Q2
, α(nl)

s (Q2)

)︃
⊗ f

(nl)
i (Q2) (3.12)

For simplicity, we considered the hard scale equal to the factorization scale
Q2 = µ2. The coefficient functions C

(nl)
i are calculated factorizing only

collinear divergences associated to massless quarks, while radiative correc-
tions which involve the massive flavour are infra-red finite. The PDFs evolve
according to the DGLAP equation with nl active flavours.

The structure function in the massless scheme is:

F (nl)(Q2,m2
h) = F (nl)(Q2, 0) +O(

m2
h

Q2
) =

=
∑︂

i=q,q̄,g,h,h̄

C
(nl+1)
i

(︃
0, α(nl+1)

s (Q2)

)︃
⊗ f

(nl+1)
i (Q2) +O(

m2
h

Q2
) (3.13)

In this case, the divergences associated to the collinear emission of a heavy
quarks are reabsorbed into the definition of the heavy quark PDF.

It is now possible to construct a matching relation for the PDFs at the
matching scale µmatch:

f
(nl+1)
i (µ2

match) =
∑︂

j=q,q̄,g

Kij

(︃
m2

h

Q2

)︃
⊗ f

(nl)
j (µ2

match) (3.14)

By inserting this equation in (3.13) we recover (3.12) up to power-suppressed
contributions provided:∑︂

q,q̄,g,h,h̄

C
(nl+1)
i (0)⊗Kij

(︃
m2

h

Q2

)︃
= C

(nl),0
j

(︃
m2

h

Q2

)︃
(3.15)

where C(nl),0
i is the nl coefficient function with all power suppressed terms

set to zero. The matching condition can therefore be computed by calculat-
ing DIS structure functions in the massive and in the massless scheme and
expanding the result order by order in (the same) αs.

The Kij terms are calculated as Operator Matrix Elements (OMEs) that
appear in the operator product expansion of the commutator of two electro-
magnetic currents near the light cone. These OMEs are intrinsically related
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to the heavy flavour coefficient functions computed in the asymptotic limit
Q2 ≫ m2

h. The basic idea when considering a theory with (nl + 1) massless
partons and a single heavy flavour is reabsorbing the initial state collinear
singularities into bare parton densities except for those that are regulated by
the heavy quark mass. Instead of reabsorbing these terms into the parton
densities as well, they are used to reconstruct the asymptotic behaviour of
the heavy flavour coefficient functions through a transition function Γij.

More precisely, the calculation of these terms starts from considering
the heavy flavour contributions to a generic structure function F (x,Q2)
in deep-inelastic scattering, in case of single electro-weak gauge-boson ex-
change at large virtualities Q2. Structure functions are described as con-
volutions between the parton densities fi(x, µ2) and the Wilson coefficients
Cj

i (x,Q
2/µ2,m2

h/µ
2)

Fj(x,Q
2) =

∑︂
i

Cj
i

(︃
x,
Q2

µ2
,
m2

h

µ2

)︃
⊗ fi(x, µ

2) (3.16)

where the coefficient functions are calculable in perturbation theory and
are the sum of both heavy Hi and light Li contributions.

In the limit Q2 ≫ m2
h, a generic heavy quark coefficient function Hi

behave logarithmically as

Hi

(︃
x,
Q2

µ2
,
m2

h

µ2

)︃
=

k∑︂
l=1

c
(n,l)
i

(︃
x,
µ2

m2
h

)︃
logl

Q2

m2
h

(3.17)

where the above large logarithms arise when Q2 is kept fixed and m2 → 0 so
that they originate from collinear singularities. These collinear divergences
can be removed via mass factorization. The key point is that a generic
heavy flavour Wilson coefficient Hi factorize in the high-energy limit into a
massive transition function and a light parton coefficient function, so that
the asymptotic Wilson coefficients can be obtained starting from the massless
contribution Li only:

Casymp
j

(︃
x, nl,

Q2

µ2
,
m2

h

µ2

)︃
=∑︂

i

Γij

(︃
x,
m2

h

µ2

)︃
⊗ Li

(︃
x, nl + 1,

Q2

µ2

)︃
+O

(︃
m2

h

Q2

)︃ (3.18)
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3. Treatment of heavy quarks

All the mass dependence is now transferred to the transition function Γij

and the removal of the logarithmic terms logl(µ2/m2
h) from the heavy flavour

coefficient function leads to an enhancement by one of the number of light
flavours nl in the light parton coefficient functions. The transition function
Γij is process independent and contains all the mass dependence except for
the power corrections of the form ∝ (m2

h/Q
2). The dependence on the process

is entirely included in the massless coefficient functions.
The transition function Γij is formally equal to an operator matrix el-

ement (OME) Kij that appears in the operator product expansion of the
commutator of two electromagnetic currents near the lightcone. Suppress-
ing the Lorentz index of the electromagnetic current, the expansion can be
written as:

lim
z2→0

[J(z), J(0)] =
∑︂
k

∑︂
m

C
(m)
k (z2)zµ1 ...zµmO

µ1...µm

k (0) (3.19)

where the coefficients C(m)
k (z2) (k = qg) are the Fourier transforms of the

light parton coefficient functions L(Q2/m2
h) and m represents the spin of the

local operator.
The OME Kij obeys the expansion

Kij

(︃
m2

h

µ2

)︃
= ⟨j|Oi|j⟩ = δij +

∞∑︂
l=1

αl
sK

(l)
ij (3.20)

of the twist-2 quark operators Oi between partonic states |j⟩. They admit
an expansion in the running coupling and they can be calculated in pertur-
bative QCD. They describe Feynman diagrams in which an heavy flavour is
produced starting from light quarks and gluons. At the moment, they are
almost fully known up to α3

s [5, 6, 7, 8, 11, 12].
The calculation of these OMEs Kij completely defines the matching rela-

tion for the PDFs when switching from a massive to a massless description.
The matching relation for the PDFs (3.14) is the analogue of equation (3.7)
for the coupling:

f
(nl+1)
i (µ2

match) = δijf
(nl)
j (µ2

match) + ∆fi (3.21)

Also in this case, the first correction is proportional to log (µ2
match/m

2
h), which

means that a matching performed at a scale equal to the heavy quark mass
defines continuity in the PDFs at the first order when switching from the nl

to the (nl + 1) framework.
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3. Treatment of heavy quarks

3.3 Perturbative and intrinsic heavy quark
The matching condition for the PDFs is usually obtained under the assump-
tion of a fully perturbative heavy quark. Requiring a perturbative heavy
flavour means that this quark is produced only via pair production starting
from the light quarks and gluons. Under this hypothesis, the heavy flavour
PDF can be expressed in terms of the light ones using equation (3.14), in
which the index j explicitly runs only on light flavours and gluons. In fact,
the requirement of a fully perturbative heavy quark can be expressed as
follows:

f
(nl)
h (x, µ2

match) = f
(nl)
h (x, µ2

match) = 0 (3.22)

This equation states that in the case of a perturbative heavy flavour the
heavy quark (antiquark) PDF is completely determined by a perturbative
evolution from a vanishing boundary condition at a scale of the order of the
quark mass.

However, many models [21, 22] suggest the existence of an intrinsic (i.e
non-perturbative) heavy component in the proton, especially in the case of
the charm: the existence of an intrinsic heavy component in the nucleon is a
rigorous prediction of QCD but an unambiguous experimental confirmation
is still missing.

The interest in a possible intrinsic component of the charm PDF is de-
termined by the fact that the charm has a mass mc ≃ 1.51 GeV similar to
the proton’s: if we can surely neglect an intrinsic component of the bottom
and the top, the intrinsic charm PDF could be significant.

The first suggestion of an intrinsic component of the charm PDF in the
proton is due to Brodsky, Hoyer, Peterson, and Sakai (BHPS) in 1980 [21]:
the BHPS prescription predicts an enhancement of the charm PDF in the
large x region. In the BHPS model, one considers a non negligible five-quark
Fock state |uudQQ̄⟩ as the origin of an intrinsic contribution of the charm.
The intrinsic charm PDF within a proton at a certain (unknown) scale in
terms of the momentum fraction x can be computed, thus obtaining:

fc(x) = fc̄(x) ∝ x2[6x(1 + x) log (x) + (1− x)(1 + 10x+ x2)] (3.23)

which defines a bump of the charm content at x ∼ 0.2.
This model suggests that the intrinsic sea quarks behave as valencelike

quarks and then their distribution peaks at relatively large x. (By contrast,
the extrinsic sea quarks are generated in the proton perturbatively through
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Figure 3.3: Intrinsic charm component of a proton using the BHPS prescription.

the splitting of gluons into quark-antiquark pairs in the DGLAP evolution,
they dominate at very low parton momentum fraction x and so have a sealike
features.)

Even if such intrinsic charm might have observable consequences at LHC
at processes like γ+c [23] or open charm production [24], at the moment there
is no an unambiguous confirmation of its existence and possible features.

If one wants to include an intrinsic heavy component in (3.14), equation
(3.22) must be relaxed. The heavy PDF f

(nl)
h (x, µ2

match) is thus non-zero and
it must be introduced at all scales. As in the nl scheme the heavy quark is
treated as a massive object which decouples from the renormalization group
equation, this PDF is scale independent.

3.4 Combining Massive and massless scheme
In the previous sections, we described how heavy flavours can be treated in
a DIS process. Basically, one can perform calculations using a massive or a
massless scheme. However, these frameworks are not accurate on the whole
kinematic region, which naturally leads to the necessity of defining a General
Mass Variable Flavour Number Scheme.

The construction of a GMVFS scheme must be performed with the main
goal of defining a single framework in which both the FFNS and ZM-VFNS re-
sults are restored in the correct kinematic region. In other words, a GMVFNS
must reproduce the massless scheme results in the high-energy region Q2 ≫
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3. Treatment of heavy quarks

m2
h and the massive scheme results when Q2 ∼ m2

h. In order to perform
this combination, corrections of order O(m2

h/Q
2) that are neglected in the

massless calculations must be restored.
Nowadays, different techniques are used in order to combine the massive

and the massless scheme. The first method that was introduced [15] was only
based upon a renormalization scheme with explicit heavy quark decoupling.
This method - usually called ACOT after Aivazis, Collins, Olness and Tung -
is based on the idea of calculating the coefficient functions by using standard
massless collinear counterterms for massless partons, while massive collinear
counterterms are used for heavy quarks. Several variants of this method were
subsequently proposed, such as S-ACOT [16] and ACOT-χ [17].

In this thesis we study a somewhat different technique for the inclusion
of heavy quark mass effects: the so-called Fixed-Order Next-Leading-Log
FONLL scheme [1].

FONLL relies only on standard QCD factorization and calculations with
massive quarks in the decoupling scheme and with massless quarks in theMS
scheme. The FONLL method does not require novel factorization schemes
as it is based on quantities calculated in well-defined schemes.

The original FONLL scheme is based on the observation that to obtain a
description of physical quantities valid both at threshold and at high energy
it is sufficient to add the nl and (nl + 1) results and subtract the double
counting: power corrections of O(m2

h/Q
2) are restored in the massless cal-

culation simply adding the massive fixed-order corrections. More precisely,
the FONLL method is simply based on the idea of expanding out both the
massless and massive schemes as power expansions in the strong coupling αs

and replacing the coefficients of the expansion in the former with their exact
massive counterparts in the latter, when available. Any double counted term
is then subtracted: they are constant and logarithmic terms that are both
resummed in the massless scheme and explicitly present in the massive one.
The final result has now a fixed order accuracy, thanks to the number of
orders that have been included in perturbation theory (FO, fixed order) and
a logarithmic accuracy (NkLL) due to the resummation of large logarithms
in the massless scheme.

The name FONLL is historically related to the first application of this
method to combine a fixed (second) order calculation with a next-to-leading
log one. However this method is completely general and it can be used to
combine a fixed order with a resummed calculation to any desired order.

In the next section we provide a detailed description of the FONLL
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3. Treatment of heavy quarks

method explicitly applied to deep-inelastic structure functions. We consider
the case of a perturbative heavy quark and we discuss how this hypothesis
constrains the FONLL equations. We also discuss the possibility of intro-
ducing an intrinsic component of the heavy quark PDF, considering as a
concrete example the interesting case of the charm.
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Chapter 4

The FONLL method

In this section we analyse how to include heavy quarks contributions in deep-
inelastic structure functions using the FONLL approach. This method was
originally defined in the context of heavy quarks production in hadron colli-
sions [19] and was then generalized to deep-inelastic scattering [1].

In this chapter we will theoretically describe the FONLL approach high-
lighting the main features of this method. We will explicitly show how the
massless and the massive schemes can be combined together in order to ob-
tain a single prescription that provides accurate results both at threshold
Q2 ∼ m2

h and in the high-energy region Q2 ≫ m2
h.

In this analysis, we consider the heavy flavour as a fully perturbative
quark and we will discuss how the introduction of an intrinsic component of
the heavy quark modifies the implementation of the FONLL method. As a
concrete example, we will consider the case of a theory in which the charm
quark is the single heavy flavour.

4.1 FONLL in deep-inelastic scattering
Let’s consider a generic structure function F (x,Q2) and assume a single
heavy quark with mass mh.

In the massless scheme, which is accurate when Q2 ≫ m2
h, the structure

function reads:

F (nl+1)(x,Q2) = x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,h,h̄,g

C
(nl+1)
i

(︃
x

y
, α(nl+1)

s (Q2)

)︃
f
(nl+1)
i (y,Q2)

(4.1)
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4. The FONLL method

where q is any light quark and h is the heavy quark. In this expression,
the heavy quark is considered as a light parton. The coupling αs and PDFs
satisfy the standard evolution equation with (nl + 1) active flavours. The
ZM coefficient functions C(nl+1)

i at any given order k in αs are obtained by
setting explicitly mh = 0 and the arising collinear singularities are subtracted
in the MS scheme. This means that the logarithmic terms αsln(Q

2/m2
h) are

resummed up to NkLL.
In the massive scheme, the same structure function can be written as:

F (nl)(x,Q2) = x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,g

C
(nl)
i

(︃
x

y
,
Q2

m2
h

, α(nl)
s (Q2)

)︃
f
(nl)
i (y,Q2) (4.2)

where the coefficient functions are computed retaining the mass dependence.
This is a NkLO fixed-order calculation. When Q2 ≪ m2

h, the heavy quark
mass drops out of the coefficient functions C(nl)

i which then reduce to the
standard massless MS scheme ones with nl flavours.

The FONLL approach consists in replacing a finite number of massless
terms with their massive counterparts, which requires to re-express both αs

and the PDFs in the massive scheme in terms of the massless ones. This
must be done order by order in perturbation theory.

The massless and the massive scheme are perturbatively related by the
equations defined in 3.2. At a fixed scale, the running coupling and the PDFs
can be matched between the two schemes with the following equations:

α(nl+1)
s (Q2) = α(nl)

s (Q2) +
∞∑︂
i=2

ci(L)× (α(nl)
s (m2

h))
i

(4.3)

f
(nl+1)
i (Q2) =

∫︂ 1

x

dy

y

∑︂
j=q,q̄,g

Kij

(︃
x

y
, L, α(nl)

s (Q2)

)︃
f
(nl)
j (y,Q2) (4.4)

where i = q, q̄, g, h, h̄ and L is defined ad L ≡ log Q2

m2
h
.

The matching relation for the running coupling is described in [2] while
the matching for the PDFs is obtained in [4].

The matching functions Kij can be expressed as a series in the running
coupling

Kij(Q
2) =

∑︂
n

αn
sK

n
ij(Q

2) (4.5)
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and, at the moment, these terms are fully known up to α2
s [4] and most of

them are analytically known at α3
s too [5, 6, 7, 8, 11, 12, 13].

In this section we discuss the FONLL method under the assumption of a
fully perturbative heavy quark. The heavy quark is thus produced only from
light quarks and gluons and the nl heavy quark PDF satisfies the following
relation:

f
(nl)
h (x,m2

h) = f
(nl+1)
h (x,m2

h) = 0 (4.6)

This hypothesis imposes that the index j in equation (4.4) must be dif-
ferent from h, h̄. For this reason, the first 2nl + 1 equations of (4.4) define
the relations between the light quarks and gluon PDFs in the two schemes,
while the last two equations provide the matching between the perturbative
heavy quark and antiquark PDFs in the massless scheme and the light PDFs
in the massive scheme.

In general, the matching between the nl and (nl+1) PDFs is performed at
a fixed scale µmatch taken equal to the heavy quark mass mh, as discussed in
3.2. Thanks to this choice, the matching conditions simplify because all the
terms proportional to powers of log(µmatch/mh) vanish: both the coupling
and the PDFs are continuous at the first order if µ2

match = m2
h. This is no

longer true at higher-orders.
The relation between the PDFs in the two schemes at a generic scale Q2

can be obtained from the matching condition at a scale equal to m2
h simply

applying the DGLAP evolution equation in the correct scheme.
Inverting the equations (4.3) and (4.4), α(nl)

s and f
(nl)
i can be expressed

in terms of α(nl+1)
s and f

(nl+1)
i . Plugging the result into (4.2), one obtains

the expression for the massive structure function F (nl)(x,Q2) in terms of the
coupling and the PDFs in the massless scheme:

F (nl)(x,Q2) = x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,g

Bi

(︃
x

y
,
Q2

m2
h

, α(nl+1)
s (Q2)

)︃
f
(nl+1)
i (y,Q2) (4.7)

The coefficients Bi are such that substituting the matching (4.3) and (4.4)
in the previous equation one gets back to the massive expression (4.2).

In order to match the two expressions for F in the massless scheme (4.1)
and in the massive scheme (4.2), one can rewrite the massless structure func-
tion F (nl+1) in terms of the light PDFs: using DGLAP evolution in absence
of an intrinsic heavy quark, the heavy PDFs fh and fh̄ can be expressed in
terms of the light quark parton distributions f (nl+1)

i convoluted with coeffi-
cient functions in a series of α(nl+1)

s . It is now possible to rewrite the structure

41



4. The FONLL method

function in the massless scheme only in terms of the light PDFs:

F (nl+1)(x,Q2) = x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,g

A
(nl+1)
i

(︃
x

y
, L, α(nl+1)

s (Q2)

)︃
f
(nl+1)
i (y,Q2)

(4.8)
At NNLL, the coefficient functions A(nl+1)

i are given by a perturbative ex-
pansion of the form

A
(nl+1)
i (x, αs(Q

2, L) =
N∑︂
p=0

(α(nl+1)
s (Q2))

p
∞∑︂
k=0

Ap,k
i (x)(α(nl+1)

s (Q2)L)
k

(4.9)

where the resummation of the logarithms is embedded in the infinite sum
over k.

On the other hand, the coefficient functions Bi introduced in (4.7) admit
a fixed order expansion:

Bi

(︃
x,
Q2

m2
h

, α(nl+1)
s (Q2)

)︃
=

P∑︂
p=0

(α(nl+1)
s (Q2))

p
Bp

i

(︃
x,
Q2

m2
h

)︃
(4.10)

where P denotes the order of accuracy.
Each of the perturbative contributions Bp

i can be expressed in a logarith-
mically enhanced part and a power suppressed part, which vanishes in the
limit Q2 ≫ m2

h. These terms can be thus decomposed:

Bp
i

(︃
x,
Q2

m2
h

)︃
= B

(0),p
i

(︃
x,
Q2

m2
h

)︃
+O

(︃
m2

h

Q2

)︃
(4.11)

so that one can define the massless limit of Bp
i as:

Bp
i

(︃
x,
Q2

m2
h

)︃
−→

Q2≫m2
h

B
(0),p
i

(︃
x,
Q2

m2
h

)︃
(4.12)

In analogy with (4.10), one can define a perturbative expansion for the mass-
less limit B(0)

i :

B0
i

(︃
x,
Q2

m2
h

, α(nl+1)
s (Q2)

)︃
=

P∑︂
p=0

(α(nl+1)
s (Q2))

p
B

(0),p
i

(︃
x,
Q2

m2
h

)︃
(4.13)
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All the contributions in (4.10) which do not vanish in the limit Q2 ≫ m2
h

must also be present in the coefficient functions in (4.9). These terms are
exactly the coefficient functions defined in (4.11) so one can conclude that:

B
(0),p
i

(︃
x,
Q2

m2
h

)︃
≡

p∑︂
k=0

Ap−k,k
i (x)Lk (4.14)

This means that the massless limit of the coefficient functions Bi correspond
to the logarithmic and constant terms which are present in (4.9).

In order to construct the FONLL structure function, we define the mass-
less limit of the massive structure function F (nl,0) as

F (nl,0)(x,Q2) = x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,g

B
(0)
i

(︃
x

y
,
Q2

m2
h

, α(nl+1)
s (Q2)

)︃
f
(nl+1)
i (y,Q2)

(4.15)
where the coefficient functions B(0)

i are defined in (4.13). Equation (4.15)
contains terms which are present both in the massless and in the massive
scheme, and thus must be subtracted in the final expression of the FONLL
structure function.

The FONLL structure function can be obtained considering the mass-
less structure function F (nl+1) to which one subtracts the double counted
terms F (nl,0) and finally one replaces these terms with their exact massive
contributions:

F FONLL(x,Q2) = F (nl)(x,Q2) + F (nl+1)(x,Q2)− F (nl,0)(x,Q2) =

= F (nl)(x,Q2) + F (d)(x,Q2)
(4.16)

In the previous equation we introduced the difference term that is defined
as:

F (d)(x,Q2) = F (nl+1)(x,Q2)− F (nl,0)(x,Q2) (4.17)

At this point, one can observe that the FONLL method behaves properly in
the two energy regimes Q2 ≫ m2

h and Q2 ∼ m2
h: when Q2 ≫ m2

h, equation
(4.16) reproduces the massless scheme results, while for Q2 ∼ m2

h it describes
the massive scheme plus the difference term (4.17) that is subleading.

In order to guarantee that (4.17) works properly, it is necessary to cal-
culate F (nl+1) at a power of αs that is as high as that of F (nl) at least: this
way one subtracts terms that are really present in F (nl+1). However, one can
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generalizes (4.17) to the case in which F (nl) is known with higher accuracy
simply retaining in F (nl,0) only those terms that are also present in F (nl+1).
In this case, it is no longer true that the FONLL result coincides with the
massless scheme in the limit Q2 ≫ m2

h because F (nl) and F (nl,0) does not
cancel anymore (some terms in F (nl,0) have been excluded). In this energy
region, the FONLL expression reduces to the massless scheme one up to mass
suppressed terms.

4.1.1 Light and heavy contributions

Deep-inelastic structure functions are usually decomposed into a heavy and
a light contribution. However, the definition of the heavy and light part is
not unambiguous.

From the experimental point of view, a heavy structure function F exp
h is

defined as the one related to the production of a heavy quark in the final
state, as this is indeed the only possible experimental definition. This is
exactly the definition we assumed in 3.1.

Theoretically speaking, this definition is not suitable because of mass
singularities. An explicit example is depicted in 4.1. The two diagrams are
respectively a real and a virtual correction to the DIS process. The graph on
the left contributes to F exp

h because of the heavy quark in the final state, while
the diagram on the right does not. The absence of the virtual correction in
the calculation of F exp

h can lead to singularities which would have cancelled
including both real and virtual corrections.

An alternative definition is considering Fh as the contribution to the total
structure function when all the charges are zero except for the heavy quark’s.
This way diagrams in 4.1 do not contribute to Fh: they are both included
in the light structure function Fl

1, leading to a cancellation of potential
singularities.

The decomposition of the structure function is now straightforward:

F (x,Q2) = Fl(x,Q
2) + Fh(x,Q

2) (4.18)

This equation leads to a separation of light and heavy contributions in the
coefficient functions too:

Ci(x, αs(Q
2)) = Ci,l(x, αs(Q

2)) + Ci,h(x, αs(Q
2)) (4.19)

1Given the definition of Fh, the complementary definition of Fl is straightforward: it is
the contribution to the structure function setting to zero the charge of the heavy quark.
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Figure 4.1: Explicit example of potential mass singularities: the picture on the left shows
a diagram contributing to Fl and to ˜︂Fh. The diagram on the right contributes only to Fl.

where Ci,h is defined as the contribution to Ci that is obtained when all the
charges are zero but the heavy quark’s.

In the case of an electromagnetic deep-inelastic scattering. the decom-
position in light and heavy contributions defines which quark couples to the
virtual incoming photon γ∗.

The same decomposition occurs for the FONLL expressions, so one can
write:

F FONLL
l (x,Q2) = F

(nl)
l (x,Q2) + F

(d)
l (x,Q2) (4.20)

F FONLL
h (x,Q2) = F

(nl)
h (x,Q2) + F

(d)
h (x,Q2) (4.21)

4.1.2 Perturbative ordering

The perturbative ordering in matching the massless and the massive schemes
for the computation of the FONLL structure functions can be defined in
various ways. It is possible to combine the two schemes with an absolute
ordering, order by order in αs, or with a relative ordering, which means
matching LO with LO, NLO with NLO, and so on. The issue is in general
non-trivial because in a global parton fit one may want to combine data for
observables whose LO starts at different orders in αs.

The central point is that the leading order in the massless scheme differs
from the leading order in the massive one in terms of power of the running
coupling. For example, the leading order contribution to the heavy quark
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production in the massless scheme is order O(α
(0)
s ), while in the massive

scheme is order O(αs). It it thus necessary to define how the matching
between the two schemes is performed.

An advantage of the FONLL method is that the perturbative order at
which heavy quark terms are included can be chosen freely. As we discussed
at the end of section 4.1, if there is a mismatch in accuracy between the two
schemes (F (nl) has been computed with a higher accuracy than F (nl+1)), the
FONLL structure function reproduces again the massless result in the high
energy region up to higher order corrections.

As described in [1], up to α2
s one can define three different options for the

perturbative matching:

• Scheme A: both F (nl) and F (nl+1) are calculated at order αs, which
means matching a LO calculation with a NLL one. There is no mis-
match in accuracy between the two schemes.

• Scheme B: different accuracy in αs but same relative ordering in the
computation of the different contributions to the FONLL structure
functions. F (nl) is computed at NLO, which is O(α2

s), while F (nl+1)

is computed again at NLL, O(αs). In this case the massive expression
exceeds in accuracy the massless one when L is not large. Thus, as
previously described, in the definition of F (nl,0) we must retain only
terms which are present in F (nl+1) too.

• Scheme C: the same as scheme A but one order higher. F (nl) is com-
puted at NLO, O(α2

s), while F (nl+1) is computed at NNLL, O(α2
s).

The same idea can be applied also to higher-order matching. In the next
chapter we will calculate explicit FONLL expressions at O(α3

s), performing
the matching using the analogue of scheme A/C at this order: all the equa-
tions will be expanded up to α3

s.

4.2 Heavy quark PDF: the charm
Among heavy quarks, the charm plays an important role because it has a
mass close to the scale where one would expect the non perturbative be-
haviour to manifest. For this reason, the assumption for a fully perturbative
heavy quark may be unsatisfactory when considering the charm quark.
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4. The FONLL method

The FONLL method has been improved in order to take into account
the possibility for an intrinsic component of the heavy quark PDF. Equa-
tion (4.6) is relaxed and f (nl+1)

h (x,m2
h) = f

(nl+1)

h̄
(x,m2

h) is just given by some
parametrization, with parameters to be determined by comparing to experi-
mental data. Considering both an intrinsic and a perturbative component of
the heavy quark leads to new contributions to the structure functions: as an
example, the heavy structure function F (nl)

h now receive a contribution from
f
(nl)
h and f (nl)

h̄
which starts at O(α0

s) (i.e. at the parton model level).

Figure 4.2: Feynman diagrams representing the contributions to the heavy F
(nl)
h (x,Q2)

structure function induced by the heavy quark PDF. From left to right, the LO diagram
and the NLO real and virtual diagrams are shown.

A complete implementation of the FONLL equations with the inclusion
of an intrinsic component of the heavy quark up to α2

s can be found in [25].
Even if considering both a perturbative and an intrinsic part of the heavy

quark PDF can surely improve the FONLL method, in this thesis we will
not consider an intrinsic component of the heavy quark: in the next chapter,
we will explicitly construct the FONLL structure functions at O(α3

s) with a
perturbative heavy flavour.

At the moment, the matching condition for the charm PDF is performed
at α2

s. Figure 4.3 shows a comparison between a fully perturbative charm
obtained with a α2

s matching and a fitted charm. A fitted heavy quark is ob-
tained performing a fit along with light quarks and gluon PDFs starting from
a proper parametrization. In this way, the fitted charm does not make any
distinction between a perturbative and an intrinsic component and whether
or not its PDF vanishes and at what scale is answered by the fit.

In figure 4.3 the scale is equal to the pole mass of the charm, mc =
1.51GeV. If one performs a matching at a scale equal to the charm mass, it
must be underlined that this mass is known with low accuracy.
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4. The FONLL method

Figure 4.3: Comparison between a perturbative charm up to a α2
s matching and a fitted

charm. The fitted charm + EMC curve includes data from the European Muon Col-
laboration experiment of deep-inelastic scattering with muon beams. This experiment
was particularly sensitive to the charm PDF at large x but the data analysis is rather
controversial: in the standard fitted charm PDF, EMC data are not included.

On the one hand, the fitted charm shows a bump in the large x region,
that is probably associated to the intrinsic component, and a slow decrease
at small x. The fitted charm has a large error bar in the whole domain. On
the other hand, the perturbative charm does not show any peak in the large
x region and it has a very different shape than the fitted quark.

At this point, one can notice that the matching condition for the charm
PDF at O(α2

s) is:

f
(nl+1)
h (x,m2

h) = α2
s

∫︂
dz

z

∑︂
j=q,q̄,g

Khj(z)f
(nl)
j (

x

z
,m2

h) +O(α3
s) (4.22)

This equation is obtained from the general matching condition (4.4) with the
assumption of a perturbative heavy quark, f (nl)

h (x,m2
h) = 0, and observing

that the linear term is zero if Q2 = m2
h. Equation (4.22) shows that the α2

s
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4. The FONLL method

matching is concretely the leading order contribution: the real shape of the
charm PDF can be very different than the one depicted in figure 4.3.

The motivation for considering a fully perturbative heavy quark PDF up
to α3

s is now straightforward: a perturbative heavy flavour PDF is described
in terms of light quarks and gluon PDFs starting at O(α2

s), which means that
the O(α3

s) contributions are the first non trivial corrections to the leading
order. A comparison between a perturbative charm at α3

s and a fitted charm
can clarify if a higher-order matching for the heavy quark provide a better
description of its PDF or if a fitted charm is the best option for studying
the charm content of the proton, even with a significant error. Furthermore,
this comparison can be useful in a first estimation of the intrinsic charm
contribution. We expect a peak at x ∼ 0.2 as a manifestation of the intrinsic
charm: if a α3

s charm shows an increase in the same region, we can conclude
that part of the peak we explicitly observe in the fitted charm is due to the
perturbative contribution.
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Chapter 5

FONLL method up to O(α3s )

5.1 Motivation
In this chapter we provide explicit expressions of the FONLL equations
for deep-inelastic electromagnetic structure functions at O(α3

s). Before this
work, the FONLL equations were fully known and commonly used up to the
second order in the strong coupling: in this thesis we present the FONLL
structure functions using the perturbative ordering defined as scheme C in
4.1.2 one order higher.

The importance of computing the FONLL equations at O(α3
s) is deter-

mined by the necessity of high precision predictions in perturbative QCD. In
the context of strong interactions, accuracy is usually achieved by computing
calculations that include an increasing number of terms of the perturbative
expansion in the strong coupling. Nowadays leading-order cross sections in
QCD can be computed for an arbitrary number of external particles. Au-
tomation has been achieved in recent years also for NLO calculations and an
increasing number of NNLO calculations is now available in computer pro-
grams. Moreover, for simple hadron-collider processes, different calculations
have achieved a N3LO accuracy [38, 39]. The recent N3LO computation [20]
of the partonic cross section for the production of a Higgs boson via the fu-
sion of two bottom quarks showed that N3LO is surely the new frontier for
high-precision predictions.

In particular, precise theoretical predictions for LHC processes require
precise and reliable parton distribution functions, which are usually investi-
gated through DIS processes. Several ingredients are either already available,

50



5. FONLL method up to O(α3
s )

or focus of current research. For instance, deep-inelastic scattering coefficient
functions with massless quarks have been known at three loops for a long
time [40], and a lot of progress has been done in the context of heavy quarks
[5, 6, 7, 8, 11, 12, 13]. A detailed study of the matching condition for the
charm PDF at α3

s can provide important phenomenological result as the first
non trivial correction to the leading order contribution.

This chapter is structured as follows: in the first section we provide ana-
lytic expressions for the FONLL structure functions up to O(α3

s) describing
the matching conditions for the running coupling and the PDFs, and then
explicitly constructing the FONLL structure functions as shown in 4.1. In
this first section we describe the complete theoretical framework without
providing any numerical results: as we will see, not all the massive Wilson
coefficients that are required are fully known at α3

s.
The second part concerns the heavy quark PDF: we will study the per-

turbative matching condition of the charm PDF at α3
s, describing in detail

our numerical implementation and providing a numerical result. Our result
will be then compared to the plot 4.3, analysing the differences between our
result, a two-loop matching charm and a fitted charm.

5.2 Explicit implementation
In this section we provide explicit expressions for the FONLL electromag-
netic deep-inelastic structure functions up to O(α3

s). In this analysis we use
the same notation as [1]. First of all, we discuss how to switch between the
massive and the massless scheme defining the matching conditions for the
running coupling and the PDFs between the two frameworks. Following the
idea described in the previous chapter, we then obtain the FONLL struc-
ture functions expanding out the massless equations and substituting a finite
number of terms with their massive counterparts. These same equations up
to O(α2

s) are explicitly described in [1].

5.2.1 Matching conditions

The relation between αs in the massive and in the massless schemes at a
generic scale Q2 is obtained in [2] comparing an effective nl flavour theory
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with a full (nl + 1) flavour theory:

α
(nl+1)
s (Q2)

π
=
α
(nl)
s (Q2)

π
+

(︃
α
(nl)
s (Q2)

π

)︃2
TRL

3
+

+

(︃
α
(nl)
s (Q2)

π

)︃3[︃
T 2
R

9
L2 +

5CATR − 3CFTR
12

L+
13

48
TRCF+

− 2

9
TRCA

]︃
+O(α4

s)

(5.1)
where we used the common notation TR = 1/2 for the trace normalization of
the fundamental representation , CA = 3 for the normalization of the Casimir
operators in the adjoint representation, CF = 4/3 for the normalization
of the Casimir operators in the fundamental representation and we defined
L = log(Q2

m2
h
). The mass mh is the heavy quark mass in the MS scheme at a

scale Q2.
It is easy to understand the origin of the different terms in (5.1) consid-

ering the self-energy contribution to the gluon propagator. For example, the
first correction is proportional to TRL

3
, which is related to the difference in

β0 - the first coefficient of the β-function - in the two theories. In fact, β0 is
proportional to the number of flavours through:

β0 ∼
TRnf

3
(5.2)

When considering a one loop approximation, the number of active flavours
which enter the loop is different in the two schemes.

Figure 5.1: Contribution to the β-function in the one loop approximation with different
numbers of active flavours in the loop.

The difference is thus δβ0 = TR/3. This term is associated to a logarith-
mic contribution L explicitly dependent on the (nl + 1)-th flavour mass.
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One order higher, the calculation involves both a propagator with two
contributions one-particle irreducible and graphs with internal corrections in
the loop (for example, a gluon can be exchanged between the fermion lines).
The first contribution gives raise to a term proportional to (δβ0)

2 =
T 2
R

9
while

the second contribution leads to all the other terms in (5.1), where a mixture
of terms proportional to CA and CF arise. At this order, the calculation
leads to contributions proportional to L2, L and L0. This same strategy can
be applied order by order i perturbation theory for matching the coupling in
the two schemes at any desired order.

It is now convenient to redefine the coupling as

˜︁αs(Q
2) ≡ αs(Q

2)

2π
(5.3)

and, for simplicity, we will omit the tilde symbol from now on. With this
definition and substituting the colour factors CA and CF with their values,
equation (5.1) becomes:

α(nl+1)
s (Q2) = α(nl)

s (Q2) + α(nl)
s

2
(Q2)

2TRL

3
+

+ α(nl)
s

3
(Q2)

[︃
4

9
T 2
RL

2 +
11

3
TRL− 11

9
TR

]︃
+O(α4

s)
(5.4)

The matching condition at the scale Q2 = m2
h is: 1

α(nl+1)
s (m2

h) = α(nl)
s (m2

h)−
11

9
TRα

(nl)
s

3
(m2

h) +O(α4
s) (5.5)

Finding the relation between αs(Q
2) and αs(m

2
h) requires solving the

renormalization group equation RGE, expanding the β-function at the de-
sired order:

L =

∫︂ αs(Q2)

αs(m2
h)

dα
1

−β0α2 + β1α3 + β2α4
(5.6)

1In this analysis we considered the heavy mass in the MS scheme. For simplicity, in
the next section we will explicitly consider the matching condition for the heavy quark
PDF at a scale equal to the pole mass of the charm. The MS mass mh and the pole mass
M are related though a perturbative expansion [45]. One can thus obtain the matching
relation at a scale equal to the pole mass of the heavy quark:

α(nl+1)
s (M2) = α(nl)

s (M2) +
7TR

3
α(nl)
s

3
(M2).

The only difference with (5.5) is the coefficient of α3
s.
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where the coefficients βi in a theory with nf active flavours are defined as:

β0 =
33− 4TRnf

6

β1 =
153− 38TRnf

24

β2 =
2857

16
− 5033TRnf

72
+

325TR
2nf

2

108

(5.7)

Solving iteratively equation (5.6), one finds the following relation, which
expresses how the running coupling evolves from a starting scale m2

h to a
generic scale Q2:

αs(Q
2) = αs(m

2
h)

[︃
1− β0αs(m

2
h)L+ α2

s(m
2
h)

(︃
β2
0L

2 + β1L

)︃
+

+ α3
s(m

2
h)

(︃
− β3

0L
3 − 5

2
β1β0L

2 + β2L

)︃]︃
+O(α5

s(m
2
h))

(5.8)

At this point the matching conditions for the running coupling are com-
plete. In order to construct the FONLL equations, the same procedure must
be applied to the PDFs.

Studying the matching conditions for the PDFs requires the same calcula-
tions performed for the matching of the running coupling. First of all, we can
calculate how a PDF f(x,Q2) evolves from a starting scale m2

h to a generic
scale Q2 using the DGLAP equation. For simplicity, this calculation can be
performed in Mellin space, where a convolution becomes a simple product
and then we can turn back to x-space. We thus need to solve the following
equation ∫︂ f(N,Q2)

f(N,m2
h)

df(N,Q2)

f(N,Q2)
=

∫︂ αs(Q2)

αs(m2
h)

dα
γ0α + γ1α2 + γ2α3

−β0α2 + β1α3 + β2α4
(5.9)

where γn = γnij defines the coefficients of the anomalous dimension γij [26],
which is the Mellin transform of the splitting function Pij.
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The solution up to third order in αs in x-space is given by:

f
(nl)
i (x,Q2) = f

(nl)
i (x,m2

h) + α(nl)
s

∫︂ 1

x

dz

z

∑︂
j

P
(nl),0
ij (z)f

(nl)
j (

x

z
,m2

h)L+

+α(nl)
s

2
[︃
− 1

2
β
(nl)
0

∫︂ 1

x

dz

z

∑︂
j

P
(nl),0
ij (z)f

(nl)
j (

x

z
,m2

h)L
2+

+
1

2

∫︂ 1

x

dz

z

∑︂
j

(︃
P (nl),0 ⊗ P (nl),0

)︃
ij

(z)f
(nl)
j (

x

z
,m2

h)L
2+

+

∫︂ 1

x

∑︂
j

P
(nl),1
ij (z)f

(nl)
j (

x

z
,m2

h)L

]︃
+

+α(nl)
s

3
[︃
1

6

∫︂ 1

x

dz

z

∑︂
j

(︃
P (nl),0 ⊗ P (nl),0 ⊗ P (nl),0

)︃
ij

(z)f
(nl)
j (

x

z
,m2

h)L
3+

+
1

2
β
(nl)
1

∫︂ 1

x

dz

z

∑︂
j

P
(nl),0
ij (z)f

(nl)
j (

x

z
,m2

h)L
2+

− 1

2
β
(nl)
0

∫︂ 1

x

dz

z

∑︂
j

(︃
P (nl),0 ⊗ P (nl),0

)︃
ij

(z)f
(nl)
j (

x

z
,m2

h)L
3+

+
1

3
β
(nl)
0

2
∫︂ 1

x

dz

z

∑︂
j

P
(nl),0
ij (z)f

(nl)
j (

x

z
,m2

h)L
3+

− β
(nl)
0

∫︂ 1

x

dz

z

∑︂
j

P
(nl),1
ij (z)f

(nl)
ij (

x

z
,m2

h)L
2+

+

∫︂ 1

x

dz

z

∑︂
j

(︃
P (nl),0 ⊗ P (nl),1

)︃
ij

(z)f
(nl)
j (

x

z
,m2

h)L
2+

+

∫︂ 1

x

dz

z

∑︂
j

P
(nl),2
ij (z)f

(nl)
j (

x

z
,m2

h)L

]︃
(5.10)

where we used the shorthand notation αs = αs(m
2
h) and the indexes run on

gluon and quarks: i, j = q, q̄, g. The main differences between the α2
s and

the α3
s solutions are due to the change in the running coupling (5.8), the

third iteration of the splitting function P 0
ij, a mixed contribution between

the αs and α2
s terms and the appearance of the next-to-next-to-leading order

splitting functions P 2
ij.

The matching conditions between the PDFs in the two schemes are de-
scribed in equations (4.4): at a scale equal to the heavy quark mass, for the
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light quarks and the gluon the following equation is valid:

f
(nl+1)
i (x,m2

h) = f
(nl)
i (x,m2

h) + α2
s

∫︂
dz

z

∑︂
j=q,q̄,g

Kij(z)f
(nl)
j (

x

z
,m2

h)+

+ α3
s

∫︂
dz

z

∑︂
j=q,q̄,g

K1
ij(z)f

(nl)
j (

x

z
,m2

h) +O(α4
s)

(5.11)

In the absence of an intrinsic heavy contribution, the heavy quark PDF
satisfies the constraint:

f
(nl)
h (x,m2

h) = f
(nl)

h̄
(x,m2

h) = 0 (5.12)

and thus its matching condition becomes:

f
(nl+1)
h (x,m2

h) = f
(nl+1)

h̄
(x,m2

h) = α2
s

∫︂
dz

z

∑︂
j=q,q̄,g

Khj(z)f
(nl)
j (

x

z
,m2

h)+

+ α3
s

∫︂
dz

z

∑︂
j=q,q̄,g

K1
hj(z)f

(nl)
j (

x

z
,m2

h) +O(α4
s)

(5.13)
The heavy quark PDF starts at order α2

s.
The perturbative coefficients Kij are calculated as described in section

3.2. Up to α2
s they are calculated in [4] while at α3

s they are defined in [5],
[6], [7] and [8] for the light quarks and gluons and in [11], [12] and [13] for
the heavy contribution. Not all the cited three-loop matching contributions
are fully known.

We can now obtain the matching condition for the PDFs at a generic
scale Q2. As for the gluon PDF, the coefficient functions start at order αs:
we can thus truncate the relation at O(α2

s), obtaining:

f (nl)
g (x,Q2) = f (nl+1)

g (x,Q2) + αsL
2TR
3
f (nl+1)
g (x,m2

h)+

− α2
s

∫︂ 1

x

dz

z

∑︂
j

Kgj(z)f
(nl+1)
j (

x

z
,m2

h)− α2
s

L2

2
β
(nl)
0

2TR
3
f (nl+1)
g (x,m2

h)+

+ α2
s

2TR
3

L2

2

∫︂ 1

x

dz

z
P (nl),0
gg (z)f (nl+1)

g (
x

z
,m2

h)+

− α2
sL

∫︂ 1

x

dz

z

∑︂
j

[︃
P

(nl+1),1
gj − P

(nl),1
gj

]︃
(z)f

(nl+1)
j (

x

z
,m2

h) +O(α3
s)

(5.14)
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For the light quarks a complete expansion up to O(α3
s) is needed.

f (nl)
q (x,Q2) = f (nl+1)

q (x,Q2)− α2
s

[︄∫︂ 1

x

dz

z

∑︂
j

Kqj(z)f
(nl+1)
j (

x

z
,m2

h)+

− 2TR

3

L2

2

∫︂ 1

x

dz

z

∑︂
j=q,q̄

P
(nl),0
qj (z)f

(nl+1)
j (

x

z
,m2

h)+

− L

∫︂ 1

x

dz

z

(︃
−∆qq(z)

)︃
f (nl+1)
q (

x

z
,m2

h)

]︄
− αs

3

[︄∫︂ 1

x

dz

z

∑︂
j

K1
qj(z)f

(nl+1)
j (

x

z
,m2

h)+

+ L

∫︂ 1

x

dz

z

∑︂
j

(︃
P (nl),0 ⊗K

)︃
qj

(z)f
(nl+1)
j

)︁
(
x

z
,m2

h)+

1

6

∫︂ 1

x

dz

z

∑︂
j

(︃
(P 0 ⊗ P 0 ⊗ P 0)

(nl+1)
qj − (P 0 ⊗ P 0 ⊗ P 0)

(nl)
qj

)︃
(z)f

(nl+1)
j (

x

z
,m2

h)L
3+

− 11TR

9
L

∫︂ 1

x

dz

z

∑︂
j

P
(nl),0
qj (z)f

(nl+1)
j (

x

z
,m2

h)+

+
L2

2

19TR

3

∫︂ 1

x

∑︂
j

P
(nl),0
qj (z)f

(nl+1)
j (

x

z
,m2

h)+

− L3

2
β
(nl+1)
0

∫︂ 1

x

∑︂
j

(P 0 ⊗ P 0)
(nl+1)
qj (z)f

(nl+1)
j (

x

z
,m2

h)+

+
L3

2
β
(nl)
0

∫︂ 1

x

∑︂
j

(P 0 ⊗ P 0)
(nl)
qj (z)f

(nl+1)
j (

x

z
,m2

h)+

+
L3

3

(︁
β
(nl+1)
0

2
− β

(nl)
0

2)︁ ∫︂ 1

x

dz

z

∑︂
j

P
(nl),0
qj (z)f

(nl+1)
j (

x

z
,m2

h)+

− β
(nl)
0 L2

∫︂ 1

x

∑︂
j

[︁
P (nl+1),1 − P (nl),1

]︁
qj
(z)f

(nl+1)
j (

x

z
,m2

h)+

+
2TR

3
L2

∫︂ 1

x

∑︂
j

P
(nl+1),1
qj (z)f

(nl+1)
j (

x

z
,m2

h)+

+ L2

∫︂ 1

x

∑︂
j

[︁
(P 0 ⊗ P 1)(nl+1) − (P 0 ⊗ P 1)(nl)

]︁
qj
(z)f

(nl+1)
j (

x

z
,m2

h)+

+ L

∫︂ 1

x

∑︂
j

[︁
P

(nl+1),2
qj − P

(nl),2
qj

]︁
(z)f

(nl+1)
j (

x

z
,m2

h)

]︄
(5.15)
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Using the same notation as [1], we defined ∆qq(z) starting from:

P
(nl+1),1
qj (z)− P

(nl),1
qj (z) = −δjq∆qq(z) (5.16)

so that

∆qq(z) = CFTR

[︃
1 + z2

1− z

(︃
2

3
log (z) +

10

9

)︃
+

4

3
(1− z)

]︃
+

(5.17)

Most of the multiple convolutions obtained in (5.15) are explicitly computed
in [9] and [10].

5.2.2 Structure functions

In this section we will show how to construct the FONLL structure functions
at O(α3

s). In the previous chapter we defined the massive structure function
as follows:

F (nl)(x,Q2) = x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,g

C
(nl)
i

(︃
x

y
,
Q2

m2
h

, α(nl)
s (Q2)

)︃
f
(nl)
i (y,Q2) (5.18)

The FONLL method requires to express the previous equation in terms of
the coupling and the PDFs in the massless scheme, obtaining a structure
function of the form:

F (nl)(x,Q2) = x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,g

Bi

(︃
x

y
,
Q2

m2
h

, α(nl+1)
s (Q2)

)︃
f
(nl+1)
i (y,Q2) (5.19)

Expanding out both the coefficient functions Ci and Bi in terms of αs in the
two schemes one obtains the following perturbative expansions:

C
(nl)
i =

P∑︂
p=0

(︃
α(nl)
s (Q2)

)︃p

Cp
i Bi =

P∑︂
p=0

(︃
α(nl+1)
s (Q2)

)︃p

Bp
i (5.20)

At this point we can explicitly separate the light and heavy contributions to
the total structure function and the coefficient functions:

F (x,Q2) =Fl(x,Q
2) + Fh(x,Q

2)

Ci(x, αs(Q
2)) =Ci,l(x, αs(Q

2)) + Ci,h(x, αs(Q
2))
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The coefficients Bi can be found rewriting the coefficient functions C(nl)
i in

terms of α(nl+1)
s at a generic scale Q2 using (5.4) and the f (nl)

i in terms of
f
(nl+1)
i using (5.14) and (5.15).

As for the running coupling, it is necessary to express α(nl)
s (Q2) as an

expansion of α(nl+1)
s (Q2). Inverting equation (5.4) one finds:

α(nl)
s (Q2) = α(nl+1)

s (Q2)− 2

3
TRLα

(nl+1)
s

2
(Q2)+ (5.21)

− α(nl+1)
s

3
(Q2)

[︃
− 4

9
T 2
RL

2 +
11

3
TRL− 11

9
TR

]︃
(5.22)

Up to the third order in αs, C
(nl)
i can thus be written as:

C
(nl)
i = C

(nl),0
i + α(nl)

s (Q2)C
(nl),1
i + α(nl)

s

2
(Q2)C

(nl),2
i + α(nl)

s

3
(Q2)C

(nl),3
i =

= C
(nl),0
i +

[︃
α(nl+1)
s (Q2)− 2

3
TRLα

(nl+1)
s

2
(Q2)+

− α(nl+1)
s

3
(Q2)

(︃
− 4

9
T 2
RL

2 +
11

3
TRL− 11

9
TR

)︃]︃
C

(nl),1
i +

+

[︃
α(nl+1)
s

2
(Q2)− 4

3
TRLα

(nl+1)
s

3
(Q2)

]︃
C

(nl),2
i + α(nl+1)

s

3
(Q2)C

(nl),3
i =

= C
(nl),0
i + α(nl+1)

s (Q2)C
(nl),1
i + α(nl+1)

s

2
(Q2)

[︃
− 2

3
TRLC

(nl),1
i + C

(nl),2
i

]︃
+

+ α(nl+1)
s

3
(Q2)

[︃
−

(︃
− 4

9
T 2
RL

2 +
11

3
TRL− 11

9
TR

)︃
C

(nl),1
i +

− 4

3
TRLC

(nl),2
i + C

(nl),3
i

]︃
(5.23)

where we explicitly separated the contributions to the massive coefficient
functions C(nl)

i in terms of the coupling α(nl+1)
s .

Equations (5.14) and (5.15) must be rewritten with all the PDFs and
the coupling evaluated at Q2. Starting from the PDFs of the light quarks
and noting that the lowest order of αs in (5.15) is two, it is sufficient a
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development of the Altarelli-Parisi equations up to the first order:

f (nl+1)
q (x,Q2) = f (nl+1)

q (x,m2
h)+α

(nl+1)
s (m2

h)L
∑︂
j

P
(nl+1),0
qj ⊗ f

(nl+1)
j (m2

h) ≃

≃ f (nl+1)
q (x,m2

h) + α(nl+1)
s (m2

h)L
∑︂
j

P
(nl+1),0
qj ⊗ f

(nl+1)
j (Q2)

→ f (nl+1)
q (x,m2

h) = f (nl+1)
q (x,Q2)−α(nl+1)

s (m2
h)L

∑︂
j

P
(nl+1),0
qj ⊗f (nl+1)

j (Q2)

(5.24)

The same strategy is used for the coupling. More precisely, in (5.15) all
the αs are in the nl scheme and at the scale m2

h. The lowest power of the
coupling in this same equation is two: considering that

α(nl)
s (m2

h) = α(nl+1)
s (m2

h) +O(α3
s),

up to α3
s all the α(nl)

s can be substituted with α(nl+1)
s . Evolving up to Q2 one

obtains:

α(nl+1)
s (Q2) = α(nl+1)

s (m2
h)− β

(nl+1)
0 Lα(nl+1)

s

2
(m2

h) ≃

≃ α(nl+1)
s (m2

h)− β
(nl+1)
0 Lα(nl+1)

s

2
(Q2)

→ α(nl+1)
s (m2

h) = α(nl+1)
s (Q2) + β

(nl+1)
0 Lα(nl+1)

s

2
(Q2)

(5.25)

The following substitutions are thus straightforward:

• α
(nl+1)
s

2
(m2

h) −→ α
(nl+1)
s

2
(Q2) + 2β

(nl+1)
0 Lα

(nl+1)
s

3
(Q2)

• α
(nl+1)
s

3
(m2

h) −→ α
(nl+1)
s

3
(Q2)

With the previous considerations, equation (5.15) with all the PDFs and
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the coupling evaluated in Q2 becomes:

f (nl)
q (Q2) = f (nl+1)

q (Q2)− α(nl+1)
s

2∑︂
j

Kqj ⊗ f
(nl+1)
j +

− 2β
(nl+1)
0 Lα(nl+1)

s

3∑︂
j

Kqj ⊗ f
(nl+1)
j + α(nl+1)

s

3
L
∑︂
j

(︃
K ⊗ P (nl+1),0

)︃
qj

⊗ f
(nl+1)
j +

− α(nl+1)
s

2 2TR

3

L2

2

∑︂
j=q,q̄

P
(nl),0
qj ⊗ f

(nl+1)
j +

− 2β
(nl+1)
0 Lα(nl+1)

s

3 2TR

3

L2

2

∑︂
j=q,q̄

P
(nl),0
qj ⊗ f

(nl+1)
j +

+ α(nl+1)
s

3 2TR

3

L3

2

∑︂
j=q,q̄

P
(nl),0
qj ⊗ P

(nl+1),0
jk ⊗ f

(nl+1)
k +

− α(nl+1)
s

2
L(−∆qq)⊗ f (nl+1)

q − 2β
(nl+1)
0 L2α(nl+1)

s

3
(−∆qq)⊗ f (nl+1)

q +

+ α(nl+1)
s

3
L2

∑︂
j

(−∆qq)⊗ P
(nl+1),0
qj ⊗ f

(nl+1)
j − α3

s

∑︂
j

K1
qj ⊗ f

(nl+1)
j +

− α(nl+1)
s

3L3

6

∑︂
j

[︃
(P 0 ⊗ P 0 ⊗ P 0)(nl+1))qj − (P 0 ⊗ P 0 ⊗ P 0)(nl))qj

]︃
⊗ f

(nl+1)
j +

+
11

9
TRα

(nl+1)
s

3
L
∑︂
j

P
(nl),0
qj ⊗ f

(nl+1)
j +

L2

2

19

3
TRα

(nl+1)
s

3∑︂
j

P
(nl),0
qj ⊗ f

(nl+1)
j +

+
L3

2
α(nl+1)
s

3∑︂
j

[︃
β
(nl+1)
0 (P 0 ⊗ P 0)

(nl+1)
qj − β

(nl)
0 (P 0 ⊗ P 0)

(nl)
qj )⊗ f

(nl+1)
j

]︃
+

− L3

3
α(nl+1)
s

3
(
2

3
TR)

2∑︂
j

P
(nl),0
qj ⊗ f

(nl+1)
j +

L3

3
α(nl+1)
s

3
β
(nl)
0 (

4

3
TR)

∑︂
j

P
(nl),0
qj ⊗ f

(nl+1)
j +

+ βnl
0 α(nl+1)

s

3
L2(−∆qq)⊗ f (nl+1)

q − α(nl+1)
s

3 2

3
TRL

2
∑︂
j

P
(nl+1),1
qj ⊗ f

(nl+1)
j −

− α(nl+1)
s

3
L2

∑︂
j

[︃
(P 0 ⊗ P 1)

(nl+1)
qj − (P 0 ⊗ P 1)

(nl)
qj

]︃
⊗ f

(nl+1)
j +

− α(nl+1)
s

3
L
∑︂
j

[︃
P (nl+1),2 − P (nl),2

]︃
qj

⊗ f
(nl+1)
j − α(nl+1)

s

3
L
∑︂
j

(︃
P (nl),0 ⊗K

)︃
qj

⊗ f
(nl+1)
j

(5.26)
This same calculations can be performed also in the gluon sector. The

gluon coefficient functions start at O(αs), so a development of the gluon PDF
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up to the second order is sufficient.

f (nl)
g (Q2) = f (nl+1)

g (Q2) + α(nl+1)
s L

2TR
3
f (nl+1)
g +

+ α(nl+1)
s

2
β
(nl+1)
0 L22TR

3
f (nl+1)
g − α(nl+1)

s

2
L22TR

3

∑︂
j

P
(nl+1),0
gj ⊗ f

(nl)
j +

− α(nl+1)
s

2∑︂
j

Kgj ⊗ f
(nl+1)
j +

2TR
3
α(nl+1)
s

2L2

2
P (nl),0
gg ⊗ f (nl+1)

g +

+ α(nl+1)
s

2L2

2
β
(nl)
0

(︃
− 2TR

3

)︃
f (nl+1)
g +

− α(nl+1)
s

2
L
∑︂
j

[︃
P

(nl+1),1
gj − P

(nl),1
gj

]︃
⊗ f

(nl+1)
j

(5.27)
We have now all the ingredients that are required for the evaluation of

Bi defined in (5.19) at order α3
s.

Firstly, we can consider the light contribution to the structure function.
The basic idea is substituting (5.23), (5.26) and (5.27) into equation (5.18)
and obtaining the coefficient Bi,l making a comparison with equation (5.19).

62



5. FONLL method up to O(α3
s )

With these substitutions one can find:

B3
q,l = C

(nl),0
q,l ⊗

[︄
− 2β

(nl+1)
0 LKqq + L

(︃
K ⊗ P (nl+1),0

)︃
qq

− 2β
(nl+1)
0 L

2TR

3

L2

2
P (nl),0
qq +

+
2TR

3

L3

2
P (nl),0
qq ⊗ P (nl+1),0

qq − 2β
(nl+1)
0 L2(−∆qq) + L2(−∆qq)⊗ P (nl+1),0

qq −K1
qq+

+
11

9
TRLP

(nl),0
qq − L3

6

[︁(︁
P 0 ⊗ P 0 ⊗ P 0

)︁(nl+1)

qq
−
(︁
P 0 ⊗ P 0 ⊗ P 0

)︁(nl)

qq

]︁
+

+
L2

2

19

3
TRP

(nl),0
qq +

1

2
L3[β

(nl+1)
0 (P 0 ⊗ P 0)(nl+1)

qq − β
(nl)
0 (P 0 ⊗ P 0)(nl)

qq ]+

− 1

3
L3

(︃
2TR

3

)︃2

P (nl),0
qq +

L3

3
β
(nl)
0

4TR

3
P (nl),0
qq + β

(nl)
0 L2(−∆qq)−

2TR

3
L2P (nl+1),1

qq +

− L2[(P 0 ⊗ P 1)
(nl+1)
qq − (P 0 ⊗ P 1)

(nl)
qq ]− L[P (nl+1),2

qq − P (nl),2
qq ]− L

(︃
P (nl),0 ⊗K

)︃
qq

]︃
+

+ C
(nl),1
q,l ⊗

[︃
−Kqq −

2TR

3

L2

2
P (nl),0
qq − L(−∆qq)

]︃
+

+

[︃
− (−4

9
TR

2L2 +
11

3
TRL− 11

9
TR)C

(nl),1
q,l − 4

3
TRLC

(nl),2
q,l + C

(nl),3
q,l

]︃
+

+ C
(nl),1
g,l ⊗

[︃
− L2 2TR

3
P (nl+1),0
gq −Kgq − L[P (nl+1),1

gq − P (nl),1
gq ]

]︃
+

+ C
(nl),0
q̄,l

[︃
L

(︃
K ⊗ P (nl+1),0

)︃
q̄q

−K1
q̄q −

L3

6
[(P 0 ⊗ P 0 ⊗ P 0)

(nl+1),0
q̄q − (P 0 ⊗ P 0 ⊗ P 0)

(nl),0
q̄q ]+

+
1

2
L3[β

(nl+1)
0 (P 0 ⊗ P 0)

(nl+1)
q̄q − β

(nl)
0 (P 0 ⊗ P 0)

(nl)
q̄q ]− 2TR

3
L2P

(nl+1),1
q̄q +

− L2((P 0 ⊗ P 1)
(nl+1)
q̄q − (P 0 ⊗ P 1)

(nl)
q̄q )− L(P

(nl+1),2
q̄q − P

(nl),2
q̄q )− L

(︃
P (nl),0 ⊗K

)︃
q̄q

]︃
(5.28)

where the first three square brackets come from the quark PDFs, the fourth
square bracket is linked to the gluon PDF and the last lines are the antiquark
contribution. The Bi,l coefficients for the antiquarks Bq̄,l can be obtained
with the substitution q → q̄ in the above equation.
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The same calculations can be done for the gluon coefficient function:

B3
g,l = C

(nl),1
g,l ⊗

[︃
β
(nl+1)
0 L2 2

3
TR − L2 2

3
TRP

(nl+1),0
gg −Kgg +

2

3
TR

L2

2
P (nl),0
gg +

+
L2

2
β
(nl)
0 (−2

3
TR)− L(P (nl+1),1

gg − P (nl),1
gg )

]︃
+

[︃
− 2

3
TRC

(nl),1
g,l + C

(nl),2
g,l

]︃
(L

2

3
TR)+

+

[︃
− (−4

9
TR

2L2 +
11

3
TRL− 11

9
TR)C

(nl),1
g,l − 4

3
TRLC

(nl),2
g,l + C

(nl),3
g,l

]︃
+

+ C
(nl),0
q,l ⊗

[︃
− 2β

(nl+1)
0 LKqg + L

(︃
K ⊗ P (nl+1),0

)︃
qg

+
2TR

3

L3

2
P (nl),0
qq ⊗ P (nl+1),0

qg +

+ L2(−∆qq)⊗ P (nl+1),0
qg −K1

qg +
11

9
TRLP

(nl),0
qg +

− L3

6
[(P 0 ⊗ P 0 ⊗ P 0)

(nl+1),0
qg − (P 0 ⊗ P 0 ⊗ P 0)

(nl),0
qg ] +

L2

2

19

3
TRP

(nl),0
qg +

+
L3

2
[β

(nl+1)
0 (P 0 ⊗ P 0)

(nl+1)
qg − β

(nl)
0 (P 0 ⊗ P 0)

(nl)
qg ]− L3

3
(
2TR

3
)
2

P (nl),0
qg +

+
L3

3
β
(nl)
0 (

4TR

3
)P (nl),0

qg − 2TR

3
L2P (nl+1),1

qg − L2[(P 0 ⊗ P 1)
(n1+1)
qg − (P 0 ⊗ P 1)

(n1)
qg )]+

− L(P (nl+1),2 − P (nl),2)qg − L

(︃
P (nl) ⊗K

)︃
qg

]︃
+

C
(nl),1
g,l ⊗

[︃
−Kqg

]︃
+

[︃
q → q̄

]︃
(5.29)

The first three lines come from the gluon PDF while the other terms are
linked to quarks and antiquarks contribution. The antiquarks contribution
can be obtained simply with the substitution q → q̄ and it has thus been
included in a compact form in the last bracket.

Using equations (5.28) and (5.29), we can recover the massive structure
function with the PDFs and the coupling expressed in the massless scheme.
The third order contribution reads:

F
(nl),3
l = x

∑︂
i=q,q̄,g

∫︂ 1

x

dy

y
B3

i,l

(︃
x

y
,
Q2

m2
h

)︃
f
(nl+1)
i (y,Q2) (5.30)

where the coefficients Bi,l are defined in (5.28) and (5.29).
The FONLL light structure function is constructed as the sum of the

massive structure function and the difference term introduced in (4.17):

F FONLL,3
l (x,Q2) = F

(nl),3
l (x,Q2) + F

(d),3
l (x,Q2) (5.31)
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The difference term can be obtained as follows:

F
(d),3
l = F

(nl+1),3
l − F

(nl,0),3
l =

= x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,g,h,h̄

C
(nl+1),3
i,l f

(nl+1)
i − x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,g

B
(nl,0),3
i,l f

(nl+1)
i =

= x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,g

[︃
C

(nl+1),3
i,l −B

(0),3
i,l

]︃
f
(nl+1)
i + x

∫︂ 1

x

dy

y

∑︂
i=h,h̄

C
(nl+1),3
i,l f

(nl+1)
i

(5.32)
where the coefficients B(0),3

i,l terms are the massless limits of the B3
i,l previously

defined. The light FONLL structure function is now complete.
Using the same strategy, one can obtain the FONLL heavy structure

function. First of all, it is necessary to calculate the coefficients Bi,h through
which express the massive structure function in terms of the massless PDFs
and coupling. The heavy coefficient functions Ci,h for i corresponding to any
light quark start at α2

s while the gluon coefficient Cg,h starts contributing at
αs.

B3
q,h =

[︃
− 4

3
TRLC

(nl),2
q,h + C

(nl),3
q,h

]︃
+

+C
(nl),1
g,h ⊗

[︃
− L22TR

3
P (nl+1),0
gq −Kgq − L(P (nl+1),1

gq − P (nl),1
gq )

]︄ (5.33)

B3
g,h =C

(nl),1
g,h ⊗

[︃
β
(nl+1)
0 L22

3
TR − L22

3
TRP

(nl+1),0
gg −Kgg+
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TR
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2
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L2

2
β
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0 (−2

3
TR)− L(P (nl+1),1

gg − P (nl),1
gg )

]︃
+

+

[︃
− 2

3
TRC

(nl),1
g,h + C

(nl),2
g,h

]︃
(L

2

3
TR)+

+

[︃
− (−4

9
TR

2L2 +
11

3
TRL− 11

9
TR)C

(nl),1
g,h − 4

3
TRLC

(nl),2
g,h + C

(nl),3
g,h

]︃
(5.34)

The third order contribution of the massive structure function is thus:

F
(nl),3
h = x

∑︂
i=q,q̄,g

∫︂ 1

x

dy

y
B3

i,h

(︃
x

y
,
Q2

m2
h

)︃
f
(nl+1)
i (y,Q2) (5.35)
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with Bi,h defined in (5.33) and (5.34). The heavy difference term is:

F
(d),3
h = F

(nl+1),3
h − F

(nl,0),3
h =

=x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,g,h,h̄

C
(nl+1),3
i,h f

(nl+1)
i − x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,g

B
(nl,0),3
i,h f

(nl+1)
i =

=x

∫︂ 1

x

dy

y

∑︂
i=q,q̄,g

[︃
C

(nl+1),3
i,h −B

(0),3
i,h

]︃
f
(nl+1)
i + x

∫︂ 1

x

dy

y

∑︂
i=h,h̄

C
(nl+1),3
i,h f

(nl+1)
i

(5.36)
Here C(nl+1),3

i,h are the massless scheme O(α3
s) contributions to the standard

coefficient functions for the production of a quark of electric charge eh with
the heavy quark treated as a massless flavour; B(0),3

i,h are the massless limits
of (5.33) and (5.34). The O(α3

s) contribution to the FONLL heavy structure
function is now complete:

F FONLL,3
h (x,Q2) = F

(nl),3
h (x,Q2) + F

(d),3
h (x,Q2) (5.37)

The implementation of the FONLL electromagnetic structure functions
up to α3

s is now fully defined.
With the actual knowledge of massive coefficient functions, it is impos-

sible to numerically study the structure functions we explicitly obtained in
this section. In fact, many of the massive coefficient functions that are re-
quired for the calculation are not analytically known (in most cases, they are
known only in the asymptotic region. For updated reviews, see [11, 12, 13]).
Probably, a complete N3LO matching will be performed in the next few years.

In the next section, we will analyse the matching condition for the heavy
quark in detail, considering the explicit case of the charm. Even if all the
terms required by the matching are not fully known, it is possible to provide
a first partial result with the main goal of understanding how a α3

s matching
can modify the perturbative charm PDF with respect to a fitted charm.
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5.3 Charm PDF
In this section we analyse the matching condition for the charm PDF in the
absence of an intrinsic contribution:

f
(nl+1)
h (x,m2

h) = f
(nl+1)

h̄
(x,m2

h) = α2
s

∫︂
dz

z

∑︂
j=q,q̄,g

Khj(z)f
(nl)
j (

x

z
,m2

h)+

+ α3
s

∫︂
dz

z

∑︂
j=q,q̄,g

K1
hj(z)f

(nl)
j (

x

z
,m2

h) +O(α4
s)

(5.38)
This equation can be rewritten in terms of the (nl+1) PDFs only without

any modification thanks to the matching condition of the light quarks and
the gluon described in the previous section: at a scale equal to the heavy
quark mass, they satisfy a matching condition of the form f

(nl)
i (x,m2

h) =

f
(nl+1)
i (x,m2

h)+O(α2
s), in which the term that is linear in αs is zero. Clearly,

if we consider the charm PDF at a different scale numerous terms arise due
to the DGLAP evolution equation.

The coefficients Kij are commonly used for the determination of the
charm PDF up to α2

s: in fact, at this order they are analytically known [4].
Recently, the K1

ij terms have been partially obtained [11, 12]: in this thesis
we perform a matching for the charm PDF one order higher than what has
been usually performed till now. Even if our result does not provide the
correct numerical result, all the leading terms of K1

ij have been calculated
and they are sufficient for a first phenomenological analysis.

From now on, we will refer to these terms using the same notation of the
cited papers, which means AQq and AQg. The incomplete term is AQg, while
AQq is analytically known.

The calculation has been performed at a scale equal to the pole mass of
the charm, M = 1.51GeV. The choice of the scale is determined by the fact
that AQq and AQg are expressed in terms of the pole mass of the heavy quark,
so that all the terms proportional to log (Q2/M2) are set equal to zero.

This chapter is structured as follows: in the first section we discuss the
calculation of the matching terms AQq and AQg as described in the cited
papers. We then provide a discussion on their analytic forms and the prob-
lems related to a direct use of them. The second section is dedicated to our
numerical implementation. The last part is a discussion of our result.

67



5. FONLL method up to O(α3
s )

5.3.1 Analytic calculation

The OMEs Aij obeys the expansion

Aij

(︃
m2

h

µ2

)︃
= ⟨j|Oi|j⟩ = δij +

∞∑︂
l=1

αl
sA

(l)
ij (5.39)

of the twist-2 quark operators Oi between partonic states |i⟩. The two match-
ing terms AQq and AQg have been (partially) calculated at α3

s in [11, 12] and
have been directly obtained for our implementation from the authors.

These OMEs are obtained generating all the Feynman diagrams which
contribute to the different channels (production of an heavy quark starting
from light quarks and gluons at α3

s), adding the corresponding operator in-
sertion as effective vertices of the theory. These graphs are obtained using a
fortran-based program QGRAPH [50].

Figure 5.2: Sample of diagrams contributing to A
(3)
Qq. The dashed arrow lines represent

massless quarks, while the solid arrow lines represent massive quarks. Curly lines are
gluons. The symbol ⊗ denotes the local operator insertion.

In our case, 125 diagrams contribute to AQq and 1358 contribute to AQg.
A sample of this contributions at α3

s is given in 5.2.
Calculations are then reduced to master integrals using integration by

parts IBP relations [27], which is one of the most widely used methods in
multi-loop calculations as it reduces a complicated Feynman diagram in terms
of a limited number of integrals. Nowadays, this reduction is automated
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thanks to different algorithms. [51]. Depending on their complexity, different
calculation methods exist to compute these integrals. The simplest integrals
can be expressed in terms of (generalized) hypergeometric functions, other-
wise one can construct a Mellin-Barnes representation [31], which expresses
a massive propagator in terms of a contour integral involving a massless one.
For more complicated integrals, one usually adopts the differential equation
method [32], which expresses Feynman integrals in terms of canonical differ-
ential equations through specific algorithms that have led to a certain degree
of automation in calculations at NNLO involving many particles.

The term AQq is analytically known while AQg presents some missing
terms. We expect that our calculation is not so far from the complete one
because the most significant part of AQg is analytically known (1122 Feynman
diagrams over a total of 1358). Furthermore, missing terms are subleading in
the colour factors, as they do not present the highest powers possible (whose
terms are included in our calculation).

The two OMEs are obtained in analytic form N -space. Explicit expres-
sions can be found in [11, 12, 13]. They present terms which explicitly depend
on the number of flavours nf .

They are expressed in terms of harmonic sums [46], defined as

Sb,a⃗(N) =
N∑︂
k=1

(sgn(b))k

k|b|
Sa⃗(k), S∅ = 1, b, ai ∈ Z \ {0} (5.40)

and generalized harmonic sums [12] (the 3-loop matching is the first case in
which these terms appear):

Sb,a⃗(c, d⃗)(N) =
N∑︂
k=1

ck

kb
Sa⃗(d⃗)(k), S∅ = 1, b, ai ∈ N \ {0}, c, di ∈ Z \ {0}

(5.41)
In particular, in AQq and AQg there are (generalized) harmonic sums up

to depth five. The depth represents the number of components of the vector
a⃗ plus one (it is the effective number of indexes of the harmonic sum Sb,a⃗).

At this point it is possible to evaluate the two OMEs AQq and AQg, making
a first comparison between their values up to α2

s and α3
s. This evaluation has

been done using the Mathematica package Harmonic Sums [33], which is a
package that deals with special functions (harmonic sums, S-sums, cyclotomic
sums, harmonic polylogarithms,..) in an algorithmic fashion.
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Figure 5.3: OMEs at α2
s and α3

s in N-space at 1.51 GeV. N is even because of the correct
analytic continuation concerning the singlet term Σ, which is defined as sum of all quark
and antiquark PDFs.

A first interesting feature that can be derived from 5.3 is that the α3
s

contribution in AQg is particularly higher than the α2
s part: more precisely,

α3
s momenta are almost three times grater than the α2

s ones. For this reason,
we expect an important increase in the gluon contribution in the matching
of the charm PDF. By contrast, the terms related to quarks AQq are almost
identical in the two cases.

5.3.2 Numerical implementation

The matching condition for the charm PDF can be computed in two different
ways: on the one hand, calculations can be performed in N space and then
one can implement a numerical inverse Mellin transform in order to obtain a
result in x-space. On the other hand, calculations can be performed directly
in x-space, which requires the explicit expressions for the OMEs in terms of
x.
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As for the first option, the inverse Mellin transform is defined as

f(x) =
1

2πi

∫︂ c+i∞

c−i∞
dNx−N ˜︁f(N) (5.42)

where c ∈ R is chosen in order to make the integral converge. In general,
a numerical inverse Mellin transform is performed on a path tilted with an
acute angle with respect to the negative real axis starting from a real point
which lies at the right of the last singularity. On this path, the integral
converges fast.

Figure 5.4: Complex path commonly used to perform a numerical inverse Mellin transform.

This calculation requires the knowledge of the OMEs on the whole com-
plex plane. However, using the recursion relations (5.40) and (5.41), the
harmonic sums can be evaluated only for integer values of N.

There are many examples of harmonic sums whose analytic continua-
tions are now well-known and have been deeply studied, such as the easi-
est harmonic sum S1(N). This function can be analytically continued as a
polygamma function through the relation:

S1(N) = ψ(N) + γE (5.43)

The polygamma function ψ(N) is defined starting from the Γ function

ψ(N) =
Γ′(N)

Γ(N)
(5.44)
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and γE=0.5772156 is the Euler-Mascheroni constant .

-4 -2 2 4

N

-5

5

10

Figure 5.5: Analytic continuation in the complex plane of the harmonic sum S1(N).

More complicated harmonic sums can be expressed in terms of the easi-
est ones using many recursion relations (see for example appendix A in [47]).
Anyway, these relations are not sufficient for calculating all the analytic con-
tinuations that appear in our OMEs: in order to overcome this problem, we
decided to work directly in x-space. In fact, these harmonic sums can be
expressed in integral form, which means as the Mellin transform of certain
functions. These relations are implemented in the package Harmonic Sums
that is thus been used for analytically inverting the two OMEs in x-space.

In x-space, harmonic sums become harmonic polylogarithms [34], which
are defined as iterated integrals:

Hb,a⃗ =

∫︂ z

0

fb(y)Ha⃗(y), fb ∈ U, H∅ = 1, H0, ..., 0⏞ ⏟⏟ ⏞
k

:=
1

k!
lnk(z) (5.45)

where U, called alphabet, is defined, in our case, as:

U =

{︃
dz

z
,
dz

1− z
,
dz

1 + z

}︃
≡ {f0(z), f1(z), f−1(z)} (5.46)

The alphabet represents the set of integration kernels appearing in a given
quantity.
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The numerical evaluation of these harmonic polylogarithms is done using
the C++ library GiNaC [35]. GiNaC is a software developed exactly in
the context of calculations of higher-order corrections to elementary particle
interactions which combines symbolical and numerical approaches alike. We
plotted the two OMEs at α2

s and α3
s in order to understand how the important

increase in the gluon term in N -space manifests in x-space.

Figure 5.6: OMEs at α2
s and α3

s in x-space with a log scale at 1.51 GeV.

Our region of interest is x ≥ 10−3. We thus plotted both a log-scale and
a linear-scale graph in order to highlight separately the low-x region and the
high-x region. In the low-x region, the OMEs do not modify significantly
when increasing the perturbative order. The main differences can be found
in the very large-x region (x > 0.6), where AQg at α3

s doubles its value at α2
s.

As we noticed in N -space, AQq does not modify significantly on the whole
domain. In order to verify the correctness of the calculation, we studied
also x times the OMEs, which is linked to the momentum space through
integration. The value obtained in N -space for N=2 must be reproduced by
the integration of x times the OME, simply using the definition of the Mellin
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Figure 5.7: OMEs at α2
s and α3

s in x-space with a linear scale at large x at 1.51 GeV.

Figure 5.8: Plot of x times the OMEs with a linear scale at large x at 1.51 GeV.

transform. Again, the plot clearly shows an important contribution due to
the gluon term AQg.
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5.3.3 Results

We have now all the ingredients for performing the matching condition of the
charm PDF. The PDFs which are required for the calculation are obtained
using the the LHAPDF grids [28], through which one can evaluate PDFs
starting from discretized data files. In particular, we used the PDF set
NNPDF31_nnlo_as_0118 [29] from the NNPDF collaboration. The PDFs
are already in x-space, so we simply need to implement the convolution
between the OMEs and the PDFs. Our program is written in C++; the
integration has been implemented using the gsl library [48].

The matching has been performed at 1.51 GeV.

Figure 5.9: The plot shows x times the charm PDF with a linear scale comparing a fully
perturbative charm up to α3

s and α2
s and a fitted charm.

In our final plots 5.9 and 5.10, we show the differences between a fully
perturbative charm with a O(α3

s) matching, a fully perturbative charm with
a O(α2

s) matching and a fitted charm.

• O(α3
s) charm PDF: the plot is obtained from (5.38) implementing a

convolution between the OMEs AQq and AQg and the corresponding
PDFs. The mean value is calculated using the central value of the PDF
set NNPDF31_nnlo_as_0118. The main problem in this calculation is
the computational time that is required: for this reason, it is impossible
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Figure 5.10: The plot shows x times the charm PDF with a log scale comparing a fully
perturbative charm up to α3

s and α2
s and a fitted charm.

to obtain the error bar as the standard deviation of all the replicas,
repeating the same calculation with all the PDFs provided in the set.
The plotted error is obtained using the same PDF set in a so-called
hessian version.

For hessian PDFs sets, both a central set and error sets are given. Hes-
sian sets provide a hessian matrix of the χ2 at the minimum whose
eigenvalues are the parameters with their uncertainties ai ± σai : each
error set corresponds to moving by one sigma in the positive or nega-
tive direction of each independent orthonormal Hessian eigenvector. In
other words, hessian sets provides a central value f0 and N error sets
fi, i = 1, .., N , for a PDF. The PDF uncertainty is defined as

δf(x,Q2) =

⌜⃓⃓⎷ N∑︂
i=1

(fi(x,Q2)− f0(x,Q2))2 (5.47)

which allows to construct a maximum and a minimum PDF:

f(x,Q2)max = f0(x,Q
2) + δf(x,Q2) (5.48)

f(x,Q2)min = f0(x,Q
2)− δf(x,Q2) (5.49)
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The error bar is obtained performing the calculation with maximum
and minimun gluon and quarks PDFs.

• O(α2
s) charm PDF: this PDF can be obtained either as described for the

O(α3
s) charm PDF, truncating the OMEs at the correct order, or using

the set NNPDF31_nnlo_pch_as_0118, where the charm is fully per-
turbative. We used directly this second method while the first one was
a cross check for our implementation of the code up to α3

s. The mean
value is obtained using the central PDF f0 of the set which corresponds
to

f0(x,Q
2) =

1

N

N∑︂
i=1

fi(x,Q
2) (5.50)

while the error bar is given by the standard deviation:

δf(x,Q2) =

⌜⃓⃓⎷ 1

N − 1

N∑︂
i=1

(fi(x,Q2)− f0(x,Q2))2 (5.51)

where the index i runs over all the replicas.

• Fitted charm PDF: this PDF is obtained from the same set
NNPDF31_nnlo_as_0118 in which the charm is parametrized and de-
termined along with light quarks and gluon PDFs. From this point of
view, the distinction between the perturbatively generated component
and a possible intrinsic component becomes irrelevant. The charm is
treated on the same footing as the other fitted PDFs using the NNPDF
methodology: its PDF is parametrized with an independent neural
network with 37 free parameters, without committing to any specific
hypothesis on its shape and without separating the perturbative and
non-perturbative components.

The charm and anti-charm PDFs are considered to be equal, since there
is currently no data which can constrain their difference.

Even if there are significant errors, in the large x region one can find
a little bump which is supposed to be the intrinsic component of the
charm.

Again, the mean value is obtained from the central PDF while the error
is given by the standard deviation.
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It is now possible to analyse the plots 5.9 and 5.10. The O(α3
s) matching

defines a PDF with a peak that is significantly higher than the second order
matching PDF: this is clearly due to the important increase in the gluon
contribution we previously described both in N -space and x-space. Even
if the missing terms make the peak lower down, we do not expect them to
reduce it at almost one third of its actual value.

The two plots show that the α3
s matching and the α2

s matching have a
very similar shape: we thus found an important NLO correction with the
same shape of the leading order. This means that the perturbative series
is still far from convergence and the error of the perturbative charm is thus
totally unreliable. What is really needed at the moment is waiting for the
calculation of the missing terms in AQg, in order to obtain a correct numerical
result and verify if there are important cancellations that modify significantly
our result. We expect that even including these terms, the new result will not
be so different from ours, so at this point a 4-loop matching would be crucial.
Actually such a calculation is totally inaccessible: an important conceptual
breakthrough would be needed.

As things stand, it is clear that a 2-loop matching charm is no longer
reliable. Basically, one can consider two different options: firstly, one can
consider the charm PDF as the one obtained with a α3

s matching f 3
c with an

error bar given by the difference between the α2
s and the α3

s PDFs, that is
δfc = f 3

c − f 2
c . In this way, the new charm PDF partially covers the upper

error bar of the fitted charm, which leads to suppose that the true charm
can be in this region. The second option is in fact fitting the charm PDF,
with the awareness that probably the real charm can be better described by
the upper error bar than by the fitted central value.
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Conclusions

This thesis provides a detailed description of the so-called Fixed-Order Next-
Leading-Log FONLL approach which defines a general framework for the
inclusion of heavy quark mass contributions to deep-inelastic structure func-
tions. We developed the FONLL equations up to α3

s, which means one order
higher than the actually used ones, with the basic idea of completely defining
- at least theoretically - the FONLL framework at the new frontier for high-
precision predictions. We then studied in detail the matching condition of
the heavy quark, considering the explicit case of the charm PDF, providing
a first phenomenological result at α3

s.

In the first part of this work, we briefly revised basic concepts of QCD in
the case of massless quarks, in order to explain why the treatment of heavy
quarks is not trivial.

The second chapter is dedicated to a discussion on how to treat heavy
quarks using a Fixed Flavour Number Scheme or a Variable Flavour Number
Scheme, highlighting the different accuracy on the whole kinematic region
and the perturbative matching relations between the two schemes. We also
introduced the concepts of perturbative and heavy quark component, which
naturally leads to focus on the charm quark, whose mass is close to the scale
where one would expect a non perturbative behaviour to manifest.

At this point, the FONLL approach is presented. Firstly, we described
the FONLL methodology for the construction of DIS structure functions:
basically, FONLL structure functions can be constructed expanding out the
massless equations and then substituting a finite number of terms with their
massive counterparts. Any double counting is then subtracted: they are con-
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stant and logarithmic terms that are both resummed in the massless scheme
and explicitly present in the massive one. The final result now presents a
fixed order accuracy, thanks to the number of orders that that have been
included in perturbation theory, and a logarithmic accuracy, due to the re-
summation of large logarithms in the massless scheme. FONLL equations
correctly reproduce the massless scheme results in the high energy region
Q2 ≫ m2

h and the massive one at threshold Q2 ∼ m2
h.

The FONLL structure functions are explicitly calculated in the case of
a DIS electromagnetic interaction at α3

s. In order to obtain the structure
functions, we explicitly studied the matching relations between the massless
and the massive schemes for the running coupling and the PDFs. We then
calculated the structure functions without providing any numerical result
because many massive Wilson coefficients that are required are analytically
known in the asymptotic region only. Actually, a great effort is dedicated to
the calculation of these terms [11, 12] and, probably, a full α3

s matching will
be performed in the next few years.

We then provided a detailed analysis of the heavy quark PDF. In this
thesis, we worked under the assumption of a fully perturbative heavy quark,
which can be unsatisfactory when considering the charm. The charm, in fact,
has a mass similar to the proton’s, which leads to suppose the existence of
a non negligible intrinsic component. The actual knowledge of the charm
PDF is described by figure 4.3: the fully perturbative charm, which is known
exactly up to α2

s, results particularly different than the fitted charm. Adding
the α3

s correction means considering the first non trivial contribution the the
leading order.

The computation required the calculation of two OMEs, AQq and AQg,
which has been obtained in N -space directly from the authors. After a
preliminary analysis in both N - and x-space, we obtained the charm PDF at
α3
s: we found a significant increase in the PDF, due to the gluon contribution.

In particular, we obtained an important NLO correction with the same shape
of the leading order, which means that the perturbative series is far from
convergence. It must be remarked that our result is only partial because the
required OMEs are not fully known; anyway, the most significant part has
already been computed, which is sufficient for a first phenomenological study.

Our result clearly shows that the α2
s charm PDF is unreliable. For study-

ing the charm content of the proton one can thus consider two different
options: the first one is considering the charm PDF as the 3-loop matching
PDF, with an error bar that covers the difference between the α2

s PDF and
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the α3
s one. The second option is fitting the charm: with the awareness of the

3-loop matching result, one can suppose that the real charm PDF can be bet-
ter described by a PDF in the upper error bar than by the fitted central value.

In order to complete the work presented in this thesis, a full matching at
α3
s with the complete AQg term should be performed. This way, one would

verify exactly how the missing terms modify our result. As already stated,
we believe that these missing terms will not modify substantially the charm
PDF, leading to the necessity for a 4-loop matching contribution. The cal-
culation of the α4

s correction is totally inaccessible at the moment and it will
probably require many years for its completion. At the moment, the best op-
tions we have are for studying the charm PDF is considering the fitted charm
or the 3-loop perturbative charm with an important error bar as described
before.
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