PineAPPL: towards NLO EW in NNPDF

NLO EW corrections (not only) for PDF fits arXiv:2008.12789

Christopher Schwan

DIS 2021, 13 March 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

Introduction					
0	00	00	00	00	

NLO EW PDF fit with NNPDF: motivation

- NNPDF4.0—see Emanuele's talk yesterday—aims for $\lesssim 1\%$ accuracy/precision
- Further improvement need previously neglected contributions: theory uncertainties, NLO EW, ...
- Has never been done in a global (all processes) and consistent way (correct data)

- Can include extreme phase-space regions that show large EW corrections: large M_{ℓℓ} in Drell-Yan, large p_T of Z boson, ... → constrain high x
- Those regions are going to be measured more precisely in the future!

Introduction					
00	00	00	00	00	0

NLO EW in a PDF fit: What has to be done?

✓ Theory: Need corrections in the form of interpolation grids: PineAPPL

- interfaced with MG5_aMC@NLO, see [S. Carrazza, E.R. Nocera, C.S., M. Zaro]; now released in v3.1.0: https://launchpad.net/mg5amcnlo
- WIP: SHERPA/MCgrid [E. Bothmann et al.]
- API available in C, C++, Fortran, Python, Rust
- ✓ Data: Needs careful selection
 - no subtraction of FSR
 - no photon-initiated subtraction
 - proper observable definition
- ✓ Write/test runcards for all PDF processes and
- X Run them (WIP)
- × Implement changed data (WIP)
- \rightarrow Run fit

	PineAPPL				
00	00	00	00	00	

What is PineAPPL?

PineAPPL

A tool/library for storing PDF-independent theoretical predictions in interpolation grids [S. Carazza, E.R. Nocera, C.S., M. Zaro]

- write runcards for your process/distributions
- Ø MC generates histograms with PDFs baked-in
- **③** changing PDFs is slow—need to rerun everything

grids can be convolved with arbitrary PDF sets in a matter of seconds

	PineAPPL				
00	00	00	00	00	

Interpolation techniques and applications

Not a new idea:

- APPLgrid [T. Carli et al.] or
- fastNLO [T. Kluge, K. Rabbertz, M. Wobisch]

Interpolate PDFs $f_a(x)$ with kernels $L_i(x), x \mapsto (0, 1)$:

$$f_a(x) = \sum_{i=1}^{\infty} f_a^i L_i(x)$$

Convolution turns into a sum:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}} = \sum_{a} \int \mathrm{d}x \, f_{a}(x) \frac{\mathrm{d}\sigma_{a}}{\mathrm{d}\mathcal{O}}(x) = \sum_{a,i} f_{a}^{i} \, G_{a}(x)$$

Interpolation grid $\{G_i\}_{i=1}^{\infty}$ indep. of PDFs:

$$G_i = \int \mathrm{d}x \, L_i(x) \sigma_a(x)$$

Applications of interpolation grids

- input for PDF fits or
- study impact of PDFs uncertainties of observables

Why PineAPPL?

- \rightarrow need support EW corrections (any powers of α and/or α_s)
- performance becomes very important
- powerful tooling (see later slides)

		EW corrections			
00	00	00	00	00	

Which EW corrections will be included for $pp \rightarrow \ell \bar{\ell}$?

• NNLO QCD corrections included in PDF fits

- ightarrow include also higher-order lpha contributions in NNPDF 4.×
 - for all processes
 - check impact of the corrections,
 - be more inclusive, etc.
- → PineAPPL supports all higher-orders
- $\mathcal{O}(\alpha_{\rm s}\alpha^3)$ might become available at some point . . .

	Evv concections	D'ata issues		
00 00	00	00	00	0

Which EW corrections will be included for $pp \rightarrow \ell \bar{\ell}$?

- NNLO QCD corrections included in PDF fits
- $\rightarrow\,$ include also higher-order $\alpha\,$ contributions in NNPDF 4.x
 - for all processes
 - check impact of the corrections,
 - be more inclusive, etc.
- \rightarrow PineAPPL supports all higher-orders
- $\mathcal{O}(\alpha_{\rm s} \alpha^3)$ might become available at some point . . .

		EW corrections		
00	00	00		

Which EW corrections will be included for $pp \to t\bar{t}?$

- NNLO QCD corrections included in PDF fits
- $\rightarrow\,$ include also higher-order $\alpha\,$ contributions in NNPDF 4.x
 - for all processes
 - check impact of the corrections,
 - be more inclusive, etc.
- \rightarrow PineAPPL supports all higher-orders

			Data issues		
00	00	00	•0	00	

Which datasets do we fit? Final-state radiation (FSR) subtraction

• pre-FSR data/Born leptons: leptons "before they radiate", calculated using shower inversion (PHOTOS), from

- \rightarrow post-FSR data/dressed leptons: leptons with photons recombined around $\Delta R_{f\gamma}$, typically $\Delta R_{f\gamma} = 0.1$
- bare leptons: non-collinear safe
- dressing factors

$$\mathcal{C}_{\mathsf{dress}} = rac{\mathrm{d}\sigma_{\mathsf{post-FSR}}/\mathrm{d}\mathcal{O}}{\mathrm{d}\sigma_{\mathsf{pre-FSR}}/\mathrm{d}\mathcal{O}}$$

can be very large, up to 50 % in invariant mass distributions

- pre-FSR data for comparisons with QCD-only theory predictions
- \rightarrow post-FSR data for comparisons with EW corrections (up to one photon at NLO)
- For some analyses post-FSR data (preferred choice) not published: double counting issue with pre-FSR data!
- Often C_{dress} (+uncertainty) and pre-FSR dataset given \Rightarrow need to change systematic uncertainties!
- ightarrow NLO EW PDF dataset largely determinedy by whether dressed-lepton observables/post-FSR dataset is available

			Data issues		
00	00	00	00	00	

Effects of FSR in Drell-Yan

- distortions of the NLO EW around the Z peak: QED FSR (one-photon emission)
- not described by FSR: weak corrections for large $M_{\ell\ell}$ \rightarrow need full EW corrections
- Experiments: please publish dressed-lepton observables/post-FSR datasets!

			Examples	
00 00	00	00	0	0

How can I use Madgraph5_aMC@NLO+PineAPPL?

- Install Madgraph5_aMC@NLO: https://launchpad.net/mg5amcnlo
- Install PineAPPL: https://github.com/N3PDF/pineappl
- Example for generating the DY plot (next page) available at https://github.com/N3PDF/pineappl/tree/master/examples/mg5amcnlo

- only one line needs to be added in the mg5amc runcard (rhs)
- No two-phase generation of the grids needed
- Replaces the aMCfast [V. Bertone et al.] interface in Madgraph5_aMC@NLO v2.x
- PineAPPL's CLI allows to easily produce convolutions and plots

```
launch processname
[..]
set ptl = 25.0
set etal = 2.5
set mll_sf = 116
set req_acc_F0 0.001
set pineappl True
done
quit
```

		Examples	
		00	

Example: DY plot


```
$ pineappl --silent-lhapdf plot \
    DY_14.pineappl.lz4 \
    210219-01-rs-nnpdf40-baseline \
    MSHT20nnlo_as118 \
    CT18NNLD \
    ABMP16als118_5_nnlo > plot.py
$ python3 plot.py
```

• PDF uncertainties for

- NNPDF 4.0 candidate fit
- MSHT20
- CT18 (only main set)
- ABMP16
- pull: weighted difference w.r.t. NNPDF 4.0 in units of σ

		Conclusions

Summary

- NLO EW corrections for PDF fits: upgrading the precision of PDF processes
- PineAPPL: interpolation tool/library for storing PDF-independent theoretical predictions https://github.com/N3PDF/pineappl
- Built-in support in Madgraph5_aMC@NLO v3.1.0
- data issues: FSR subtraction, photon-initiated subtraction,

Outlook:

- We will publish grids for ATLAS/CMS/LHCb analyses (PDF processes) soon
- \rightarrow PineAPPL already public and Open Source: https://n3pdf.github.io/pineappl
- NLO EW PDF fit not too far away

Backup	slides
0000	0

Interpolation grids

For PDF fitting we need PDF independent predictions. Use Lagrange interpolation,

$$f_a(x_1, Q^2) f_b(x_2, Q^2) \approx \sum_{i,j,k} f_a(x_i, Q_k^2) f_b(x_j, Q_k^2) L_i(x_1) L_j(x_2) L_k(Q^2),$$

with Lagrange polynomials L_i over the 3D grid $\{(x_i, x_j, Q_k^2)\}_{i,j,k}$. Insert into master formula:

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{O}} &= \sum_{a,b} \int_0^1 \mathrm{d}x_1 \int_0^1 \mathrm{d}x_2 \int_{Q_{\min}^2}^{Q_{\max}^2} \mathrm{d}Q^2 f_a(x_1, Q^2) f_b(x_2, Q^2) \frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\mathcal{O}}(x_1, x_2, Q^2, \mathcal{O}) \\ &= \sum_{a,b} \sum_{i,j,k} \sum_{m,n} f_a(x_i, Q_k^2) f_b(x_j, Q_k^2) \alpha_{\mathrm{s}}^m (Q^2) \alpha^n \frac{\mathrm{d}\Sigma_{abjkmn}}{\mathrm{d}\mathcal{O}} \end{aligned}$$

where

 \rightarrow generate

$$\frac{\mathrm{d}\Sigma_{abijkmn}}{\mathrm{d}\mathcal{O}} = \int_0^1 \mathrm{d}x_1 \int_0^1 \mathrm{d}x_2 \int_{Q^2_{\min}}^{Q^2_{\max}} \mathrm{d}Q^2 L_i(x_1)L_j(x_2)L_k(Q^2) \frac{\mathrm{d}\sigma_{ab}^{(i,k)}}{\mathrm{d}\mathcal{O}}(x_1,x_2,Q^2,\mathcal{O})$$

Example: $\Sigma_{\mathrm{gg}ij021}/\Sigma_{\mathrm{gg}ij020}$, $\mathcal{O}(\alpha_{\mathrm{s}}^{2}\alpha)/\mathcal{O}(\alpha_{\mathrm{s}}^{2})$ for $\mathrm{gg} \to \mathrm{t}\bar{\mathrm{t}}$ @ 8 TeV

- no interpolation in y_a , y_b , or Q^2
- \bullet correction for ixs roughly $-0.5\,\%$

•
$$y_{a/b}(x) = -\ln x_{a/b} + 5(1 - x_{a/b}), y(1) = 0$$

- \bullet lower left corner \rightarrow production threshold
- at threshold: Coulomb singularity
- $y_a \leftrightarrow y_b$ symmetry: initial-state symmetry of $\mathrm{gg} \to \mathrm{t} \overline{\mathrm{t}}$
- negative correction for larger x_a , x_b

Subtraction of photon-photon contribution

- For ATLAS and CMS it seems to be standard procedure to subtract double-photon induced contributions: The photon-induced process, $\gamma\gamma \rightarrow \ell \bar{\ell}$, is simulated at LO using Pythia 8 and the MRST2004qed PDF set.
- I am not sure why this is done
- This is a problem: proton contains photons, should be counted towards signal!
- Size of the LO contribution can become significant in large-invariant-mass bins (3 %) depending on the used PDF—up to twice as large for pre-LUXQED photon PDFs

t-channel single-top production

Not properly definable (!?) at NLO EW:

- Analyses, e.g. [ATLAS collaboration], treat s-channels as irreducible background
- single-production at LO:

• but at NLO EW not (gauge-invariantly) separable:

- $\rightarrow\,$ ignore these datasets
- probably not too important, but see [E.R. Nocera, M. Ubiali, C. Voisey]

Z transverse momentum

$$q$$
 Z, γ μ^+
 \bar{q} μ^-

$$\mu=M_{
m Z}$$
 vs. $\mu=\sqrt{M_{
m Z}^2+(p_{
m T}^{\ellar{\ell}})^2}$

- FSR issues similar to DY
- no photon subtraction

static scale:

- $\bullet\,$ accidental cancellation of NLO QCD correction $\rightarrow\,$ uncertainty band shrinks
- NLO EW are artificially enhanced because of normalisation

dynamic scale:

- scale variation is stabilised
- still significant EW corrections, comparable to data uncertainty

Z transverse momentum

$$q$$
 Z, γ μ^+
 \bar{q} μ^-

$$\mu=M_{
m Z}$$
 vs. $\mu=\sqrt{M_{
m Z}^2+(p_{
m T}^{\ellar{\ell}})^2}$

- FSR issues similar to DY
- no photon subtraction

static scale:

- $\bullet\,$ accidental cancellation of NLO QCD correction $\rightarrow\,$ uncertainty band shrinks
- NLO EW are artificially enhanced because of normalisation

dynamic scale:

- scale variation is stabilised
- still significant EW corrections, comparable to data uncertainty

