Towards NNPDF4.0: The Structure of the Proton to One-Percent Accuracy

XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects

Emanuele R. Nocera School of Physics and Astronomy, The University of Edinburgh on behalf of the NNPDF Collaboration

April 13, 2021

NNPDF4.0: data set extension

Kinematic coverage

 $\mathcal{O}(50)$ data sets investigated; $\mathcal{O}(400)$ data points more in NNPDF4.0 than in NNPDF3.1

Emanuele R. Nocera

NNPDF4.0: new data sets

Process	Experiment	Description	Reference
DIS	HERA	Combined reduced c and b cross sections	EPJ C78 (2018) 473
DV	NOMAD*	$\mathcal{R}_{\mu\mu}(E) = \sigma_{\mu\mu}(E) / \sigma_{\rm CC}(E)$	NPB 876 (2013) 339
DT	ATLAS	(mass laves) Z high mass distribution 9 ToV	[EFJ C77 (2017) 307]
	ATLAS	$\{m_{\ell\ell}, y_{\ell\ell} \} Z$ distribution 8 TeV	[HEP 12 (2017) 059]
	ATLAS	W rapidity distr. 8 TeV	EPJ C79 (2019) 760
	ATLAS	W and Z total cross section, 13 TeV	PLB 759 (2016) 601
	LHCb	y_Z distribution, $2e$ and 2μ , 13 TeV	[JHEP 09 (2016) 136
W+c	ATLAS [†]	$ \eta^{\ell} $ distribution 7 TeV	JHEP 05 (2014) 068
	CMS [†]	$ \eta^{\mu} $ distribution 13 TeV	EPJ C79 (2019) 269
single-jet	ATLAS	$\{p_T, y \}$ distribution, 8 TeV	[JHEP 09 (2017) 020]
$t\bar{t}$	CMS	total inclusive cross section, 5 TeV	[JHEP 03 (2018) 115]
	CMS	normalised $\{m_{t\bar{t}}, y_t\}$ distribution, 8 TeV	[EPJ C77 (2017) 459]
	CMS	normalised y_t distribution (dilepton), 13 TeV	[JHEP 02 (2019) 149]
	CMS	normalised y_t distribution (lepton+jet), 13 leV	[PRD 97 (2018) 112003]
single top	ATLAS	R_t 7, 8, 13 TeV	JHEP 04 (2017) 086
	ATLAS	normalised y_t and $y_{ar{t}}$ distributions, 7, 8 TeV	[PRD 90 (2014) 112006; EPJ C77 (2017) 531]
	CMS	$t + \bar{t}$ cross section, 7 TeV	[JHEP 12 (2012) 035]
	CMS	R_t 8, 13 TeV	[JHEP 06 (2014) 090; PLB 772 (2017) 752]
W+jet	ATLAS	p_T distribution, 8 TeV	[JHEP 05 (2018) 077]
isolated photon	ATLAS	$\{E_T^{\ \prime}, \eta^{\gamma} \}$ distribution, 13 TeV	PLB 770 (2017) 473
di-jets	ATLAS	$\{m_{12}, y^*\}$ distribution 7 TeV	[JHEP 05 (2014) 059]
	CMS	$\{m_{12}, y_{\max} \}$ distribution 7 TeV	[PRD 87 (2013) 112002]
DICLIMA		$\{p_{T,avg}, y_b, y_f\}$ distribution 8 lev	[EPJ C77 (2017) 740]
DIS+Jets	нт	Single- and di-jet differential distributions	EPJC15(2015)65; C11(2011)215
* Not in baseline	fit: studied v	ia reweighting	^T Only NLO fit

*Not in baseline fit; studied via reweighting Processes highlighted in red correspond to processes NOT in NNPDF3.1

NNPDF4.0: theoretical and methodological features

- <u>Refined</u> theoretical framework [EPJ C79 (2019) 282; EPJ C81 (2021) 37; EPJ C80 (2020) 1168;]
 - \rightarrow nuclear uncertainties for both deuteron and heavy nuclei included by default
 - \rightarrow NNLO charm-quark massive corrections implemented (a bug in the NLO corrected)
 - \rightarrow EW corrections not included to ensure consistency with data, but carefully checked
 - \rightarrow charm PDF parametrised on the same footing as other PDFs
- Improved implementation of PDF properties [JHEP11 (2020) 129] \rightarrow extended positivity constraints for light quark/antiquark and gluon PDFs \rightarrow extended integrability constraints of non-singlet light quark PDF combinations
- <u>New</u> PDF parametrisation and optimisation [EPJ C79 (2019) 676]
 → single neural network to parametrise eight independent PDF combinations
 → check of the independence of the results from the chosen parametrisation basis
 → new optimisation strategy based on gradient descent rather than genetic algorithms
 → scan of the hyperparameter space to find the optimal minimisation settings
- Complete statistical validation of PDF uncertainties [Acta Phys.Polon. B52 (2021) 243]
 → (multi-)closure tests to validate PDF uncertainties in the data region
 > future tests to shack the enrichteness of PDF uncertainties in extremelation region
 - \rightarrow future tests to check the sensibleness of PDF uncertainties in extrapolation regions
- <u>More efficient</u> compression tool for PDF set delivery [arXiv:2104.04535]

See also talks by R.L. Pearson later today and by C. Schwan and F. Heckhorn tomorrow.

NNPDF4.0: Fit quality - NNLO

			Overall good description of the data sets
Data set	N_{dat}	$\chi^2/N_{\rm dat}$	Overall good description of the data sets
Fixed-target DIS HERA	1881 1208	1.10 1.21	Two exceptions: HERA σ_c and ATLAS top pair
σ_c σ_b Fixed-target Drell-Yan CDF D0 ATLAS	37 26 189 28 37 621	2.11 1.48 1.00 1.31 1.00 1.18	Weighted fits analysis: in case of HERA σ_c : lack of small-x resummation in case of ATLAS top pair:
Drell-Yan, 7, 8, 13 TeV W+jet, 8 TeV	153 32	1.32 1.15	slight tension with (di-jet) data sets
single top, 7, 8, 13 TeV di-jets, 7 TeV jets, 8 TeV top pair, 7, 8, 13 TeV	14 90 171 16	0.36 1.93 0.61 2.30	poor fit if all distributions are included normalised rapidity distributions retained although their $\chi^2/N_{\rm dat}$ of order 3
Zp_T , 8 TeV direct photon, 13 TeV CMS	92 53 411	0.86 0.72 1.40	CMS top pair data almost insensitive to all this General remark:
Drell-Yan, 7, 8 TeV single top, 7, 8, 13 TeV di-jets, 7 TeV di-jets, 8 TeV	154 3 54 122	1.34 0.43 1.67 1.50	as statistical uncertainties become smaller a good control of systematic uncertainties
top pair, 5, 7, 8 TeV top pair, 13 TeV Zp_T , 8 TeV LHCb	29 21 28 116	0.84 0.67 1.42 1.53	to interpret the sensibleness of the fit
Total	4491	1.17	All results in the sequel are obtained at NNLO

From NNPDF3.1 to NNPDF4.0

Emanuele R. Nocera

NNPDF4.0

1.12

1.17

From NNPDF3.1 to NNPDF4.0

Emanuele R. Nocera

The gluon PDF: impact of data $d t\bar{t} data$ Zp_T and direct photon data

Hierarchical impact of different data sets di-jet measurements have the largest pull $t\bar{t}$ and Zp_T measurements have a comparatively small pull, which is consistent with the global fit direct photon measurements almost immaterial

Inclusion of di-jet measurements is preferred over single-inclusive jet measurements given their greater theoretical accuracy and the avoidance of decorrelation models For details, see [EPJ C80 (2020) 8]

Emanuele R. Nocera

April 13, 2021 8 / 14

Quark flavour decomposition: impact of data Quarks

Emanuele R. Nocera

Towards NNPDF4.0

Sea quark asymmetry: SeaQuest

Emanuele R. Nocera

The strange PDF: impact of data

Enhanced s and \bar{s} PDFs w.r.t. NNPDF3.1 effect of ATLAS W, Z and W+jet data

Good consistency with NNPDF3.1str no nuclear uncertainties in NNPDF3.1str no NOMAD data in NNPDF4.0

Good consistency of $K_{\boldsymbol{s}}$ across PDF sets

$$K_s(Q^2) = \frac{\int_0^1 dx [s(x,Q^2) + \bar{s}(x,Q^2)]}{\int_0^1 dx [\bar{u}(x,Q^2) + \bar{d}(x,Q^2)]}$$

See also [EPJ C80 (2020) 1168]

Impact of theory: perturbative vs fitted charm

3.5

C(Q = 100 GeV) [%]

4.0

Striking evidence of intrinsic charm even w/o EMC F_2^c data

Perturbative charm alters the flavour decomposition and deteriorates the fit

 $\chi^2_{\rm fitted\, charm} = 1.17 \rightarrow \chi^2_{\rm pert.\, charm} = 1.19$

mainly due to a worsening of the LHC $W\!,Z$ and top pair data sets

Emanuele R. Nocera

3.0

2.5

NNPDF4.0: implications for LHC phenomenology

Plots by courtesy of C. Schwan

Emanuele R. Nocera

April 13, 2021 13 / 14

Conclusions

NNPDF4.0 is the next generation parton set of the NNPDF family.

It achieves 1% accuracy in an unprecedentedly broad kinematic range by consistently improving the previous NNPDF3.1 parton set.

This result builds upon an extensive LHC data set combined with deep-learning optimisation models.

Its faithfulness in representing PDF uncertainties is completely validated by closure tests.

1% PDF uncertainties challenge the accuracy of theoretical predictions and demand an increasing effort towards the systematic inclusion in the fit of theoretical uncertainties (nuclear, higher orders, physical parameters, ...) and higher-order QCD and EW corrections.

The **NNPDF code** used to produce the NNPDF4.0 parton set **will be made publicly available** with its documentation.

Conclusions

NNPDF4.0 is the next generation parton set of the NNPDF family.

It achieves 1% accuracy in an unprecedentedly broad kinematic range by consistently improving the previous NNPDF3.1 parton set.

This result builds upon an extensive LHC data set combined with deep-learning optimisation models.

Its faithfulness in representing PDF uncertainties is completely validated by closure tests.

1% PDF uncertainties challenge the accuracy of theoretical predictions and demand an increasing effort towards the systematic inclusion in the fit of theoretical uncertainties (nuclear, higher orders, physical parameters, ...) and higher-order QCD and EW corrections.

The **NNPDF code** used to produce the NNPDF4.0 parton set **will be made publicly available** with its documentation.

Thank you

Individual data sets: χ^2 breakdown

data set fit	ATLAS jets	GMS jets	ATLAS	top	CMS top	ATLAS	Zp_T	CMS Z_1	p_T A	TLAS	dir.	phot.	total
NNPDF4.0 1.06		1.55	2.29		0.77	0.86		1.41		0.71			1.17
(no jets)	[1.71]	[3.70]	1.54		1.00	0.86		1.35		0.72			1.14
(no top)	1.08	1.57	[3.51]		[0.91]	8.0	0.86			0.74			1.18
$(no Z p_T)$	1.08	1.57	2.30		0.76	[0.99]		[1.41]		0.69			1.14
(no dir. phot.)	1.06	1.55	2.30		0.77	0.86		1.42	[0.71]			1.18	
data set fit		ATLAS 2j	CMS 2j	ATL	AS 1j (7 T	eV) AT	LAS 1j	(8 TeV)	CMS :	1j Z	p_T	top	total
NNPDF4.0		1.93	1.56	[1	1.28] [3.42]	*	0.61 [2	2.82]*	[1.31]	0	.99	1.17	1.17
(single-jets instead o	f di-jets)	[2.41]	[2.68]	1	L.23 [3.36]	*	0.85 [3	8.10]*	1.07	0	.99	1.19	1.14
* No decorrelation m	odel												
data set fit	I	FT DIS HE	ERA FT	DY	Tevatron	ATLAS	W, Z	CMS W	, Z Li	НСЬ	singl	le top	total
NNPDF4.0		1.10 1	.21 1.	00	1.14	1.2	8	1.33	1	.54	0.	.37	1.17
(no LHCb)		1.08 1	.21 0.9	97	1.27	1.3	4	1.35	[2	.60]	0.	.34	1.16
(no ATLAS/CMS W	7, Z)	1.05 1	.20 0.3	85	1.02	[2.1	4]	[1.36]	1	.39	0.	.37	1.11
DIS-only		1.03 1	.21 [1.4	40]	[1.22]	[4.1	5]	[3.83]	[2	.96]	[0.	.33]	1.10

Quark flavour separation: nuclear uncertainties

Effect of nuclear uncertainties relevant at large x to reconcile FT DIS with LHC DY data $\chi^2_{\rm tot} = 1.17 \rightarrow \chi^2_{\rm tot} = 1.26$ (no nucl. uncs.) $\chi^2_{\rm LHCb} = 1.54 \rightarrow \chi^2_{\rm tot} = 1.76$ (no nucl. uncs.)

The bulk of the effect is due to nuclear uncertainties for heavy nuclei deuteron uncertainties have a comparatively smaller effect at inermediate values of x

NNPDF4.0: parton luminosities

Emanuele R. Nocera

NNPDF4.0: parton luminosities

Emanuele R. Nocera

Positivity - Implementation

Quarks, anti-quarks and gluon \overline{MS} PDFs q_k have to be positive: we add a term in the χ^2 penalizing negative distributions

$$\chi^2_{tot} = \chi^2_{exp} + \sum_k \, \chi^2_{k, \text{pos}} \, , \label{eq:constraint}$$

$$\chi_{k,pos}^{2} = \Lambda_{k} \sum_{i} \Theta\left(-q_{k}\left(x_{i}, Q^{2}\right)\right), \quad \text{with} \quad \Theta\left(t\right) = \begin{cases} t & \text{if } t > 0\\ 0 & \text{if } t < 0 \end{cases}$$

.

Integrability

In order to satisfy valence and Gottfried sum rules the distributions $q_k = V, V_3, V_8, T_3, T_8$ have to be integrable at small-x

$$\lim_{x \to 0} xq_k\left(x, Q_0^2\right) = 0$$

Similarly to what done for positivity, we add to the total χ^2 a penalty of the form

$$\chi^2_{k,integ} = \Lambda_k \sum_i \left[x_i q_k \left(x_i, Q^2 \right) \right]^2$$
.

Fitbasis

Flavour basis: $g, u, \bar{u}, d, \bar{d}, s, \bar{s}, c$

Evolution basis: $g, \Sigma, V, V_3, V_8, T_3, T_8, T_{15}$

- independently on the basis choice the same physical constraints have to be satisfied: positivity and integrability
- NNPDF4.0 will be hyper-optimized in the evolution basis
- \bullet the final results should not depend on the details of the methodology \rightarrow fitbasis independence studies

Key differences with respect to the 3.1 methodology

NNPDF 3.1 code

\rightarrow Genetic Algorithm optimizer

- \rightarrow One network per flavour
- $\rightarrow\,$ Preprocessing fixed per each of the replicas
- \rightarrow C++ monolithic codebase
- → In-house Machine Learning optimization framework
- $\rightarrow~$ Fitting times of up to various days

Fit parameters manually chosen (manual optimization of hyperparameters)

NNPDF 4.0 code

- \rightarrow Gradient Descent optimization
- $\rightarrow~$ One network for all flavours
- $\rightarrow\,$ Physical constraints integrated in the optimization
- $\rightarrow\,$ Preprocessing can be fitted within replicas
- $\rightarrow~$ Python object oriented codebase
- \rightarrow Freedom to use external libraries (default: TensorFlow)
- $\rightarrow~$ Results available in less than an hour

Fit parameters chosen automatically (hyperparameter scan)

Beyond the PDF fit: fitting the methodology

The main objective of NNPDF is to minimize choices that can bias the PDF:

- **X** Functional form \longrightarrow Neural Networks
- X However: NN are defined by set of parameters!

Humans are good at recognising patterns but selecting the best set of parameters is a slow process and systematic success is not guaranteed

To overcome this selection problem we implement a hyperparameter scan: let the computer decide automatically

- $\checkmark\,$ Scan over thousands of hyperparameter combinations
- $\checkmark\,$ Define a reward function to grade the model
- \checkmark Check the generalization power of the model

Hyperparameter scan

Each blue dot corresponds to a fit of a different set of hyperparameters:

Thousands of fits for the hyperoptimization algorithm to choose:

- Optimizer
- 🗸 Initializer
- ✓ Stopping Patience
- ✓ Number of Layers

- ✓ Learning Rate
- Epochs
- ✓ Positivity Multiplier
- ✓ Activation Function

Hyperoptimization: reward and generalization

If we use as hyperoptimization target the χ^2 of the fitted data, we risk finding the hyperparameter set that better overfits.

We avoid this problem by adopting k-folding:

- Divide the data into k sets.
- Leave one set out and fit the k-1 sets left.
- Optimize the average χ^2 of the k non-fitted sets.

Example of function to hyperoptimize:

.oss(
$$optimizer_name$$
, $depth_of_network$) = $\frac{1}{k}\sum_{k}^{i}\frac{\chi_{i}^{2}}{N_{i}}$

Where we are computing the χ^2 for the data that did not enter the fit. This ensures that the methodology can accommodate well even data that has never been seen by the fit.

L

Closure Tests

Fit replicas to pseudodata in usual way

(1)
$$egin{array}{ccc} y=f+\eta+\epsilon \ =z+\epsilon, \end{array}$$

where $\eta \sim \mathcal{N}(0, C)$ and $\epsilon \sim \mathcal{N}(0, C)$ are sampled independently. Use predictions from an input PDF as proxy for f.

Example closure fit and input PDF.

Allows testing of methodology, if the input assumptions hold.

For example:

 $\ensuremath{\textbf{Bias:}}$ difference between central prediction and true observable

Variance: uncertainty of replica predictions

Bias is a stochastic variable. If PDF uncertainty is faithful then

$$\mathbf{E}_{\eta}[\text{bias}] = \text{variance}$$
 (2)

High demand on resources - made feasible with next generation fitting code.

Preliminary results

Compare first moments:

	$\sqrt{\mathbf{E}_{\eta}[\text{bias}]/\mathbf{E}_{\eta}[\text{variance}]}$
Total	1.11 ± 0.5

Alternatively look at the respective distributions

Bias distribution sampled with 25 fits, 40 replicas each.

How can we future-proof the methodology?

Do we trust our errorbands?

The smaller error bands in the NNPDF4.0 fits are driven both by the increased amount of data and the improved methodology. But there are still kin. regions not covered by data!

Ideally: design an experiment for the regions not covered by fitted-data!

Problem: we want the results before 2050...

Fig: Other valid and certified future-testing methods

Solution: chronologically ordered subsets of data to test unseen regions, we named this "future tests".

Future tests

for more information see arxiv:2103.08606

Juan Cruz-Martinez (University of Milan)

Future tests

for more information see arxiv:2103.08606

Juan Cruz-Martinez (University of Milan)